
HAL Id: hal-01583320
https://inria.hal.science/hal-01583320

Submitted on 7 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ownership Types for the Join Calculus
Marco Patrignani, Dave Clarke, Davide Sangiorgi

To cite this version:
Marco Patrignani, Dave Clarke, Davide Sangiorgi. Ownership Types for the Join Calculus. 13th
Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS) / 31th In-
ternational Conference on FORmal TEchniques for Networked and Distributed Systems (FORTE),
Jun 2011, Reykjavik„ Iceland. pp.289-303, �10.1007/978-3-642-21461-5_19�. �hal-01583320�

https://inria.hal.science/hal-01583320
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Ownership Types for the Join Calculus

Marco Patrignani1, Dave Clarke1, and Davide Sangiorgi2 ?

1 IBBT-DistriNet, Dept. Computer Sciences, Katholieke Universiteit Leuven
2 Dipartimento di Scienze dell’Informazione, Università degli studi di Bologna

Abstract. This paper investigates ownership types in a concurrent set-
ting using the Join calculus as the model of processes. Ownership types
have the effect of statically preventing certain communication, and can
block the accidental or malicious leakage of secrets. Intuitively, a channel
defines a boundary and forbids access to its inside from outer channels,
thus preserving the secrecy of the inner names from malicious outsiders.
Secrecy is also preserved in the context of an untyped opponent.

1 Introduction

The Join calculus [16] is a message-based model of concurrency whose expres-
siveness is the same as the π-calculus up to weak barbed congruence [15]. It
is a theoretical foundation of programming languages for distributed, mobile
and concurrent systems, such as JOCaml [14], JErlang [22] and Scala’s actor
model [18]. The presence of several implementations of the calculus motivates
the choice of Join calculus over π-calculus. The Join calculus has a notion of
locality given by the channel definition construct: def channels in scope, but
this can be broken by exporting a channel out of the environment it was cre-
ated in. Ideally, scope boundaries are supposed to be crossed only by channels
used for communication while channels defining secrets are supposed to remain
within their scope. In practice, the malicious or accidental exportation of a chan-
nel name outside of a boundary it is not supposed to cross is a serious threat,
because it can result in the leakage of secrets. Since crossing boundaries allows
processes to communicate, it should not be eliminated, it has to be controlled.

Object-oriented programming suffers from a similar problem since object ref-
erences can be passed around leading to issues like aliasing. As a remedy for this
problem ownership types have been devised. Ownership types [11,9] statically en-
force a notion of object-level encapsulation for object-oriented programming lan-
guages. Ownership types impose structural restrictions on object graphs based
on the notions of owner and representation. The owner of an object is another
object and its representation is the objects it owns. These two key concepts can
be both defined and checked statically. The ultimate benefit imposed by own-
ership types is a statically-checkable notion of encapsulation: every object can
have its own private collection of representation objects which are not accessible
outside the object that owns them.
? Sangiorgi’s reasearch partly supported by the MIUR project IPODS and the EU

project FP7-231620 HATS

The aim of this paper is to adapt the strong encapsulation property imposed
by ownership types, also known as owners-as-dominators, to a concurrent setting
and use it for security enforcement. We do so by introducing an analogy between
objects and channels: just as an object is owned by another object, so is a chan-
nel owned by another channel; just as an object owns other objects and limits
access to them, so does a channel. As the Join calculus does not have references,
the owners-as-dominators property is mimicked by limiting how channels are ex-
ported. The idea is that allowing a channel to be passed around as a parameter
on another channel, enables other processes to refer to it. We impose access lim-
itations by forbidding a channel to be exported outside the scope of the channel
that owns it, thus allowing the kinds of restrictions analogous to those found in
the object-oriented setting. A channel is however free to be passed around inside
the area determined by its owner.

The contribution of this paper is a typed version of the Join calculus that
enjoys the owners-as-dominators form of strong encapsulation. This property
allows the calculus to define secrecy policies that are preserved both in a typed
and in an untyped setting.

The paper is structured as follows. Section 2 reviews ownership and encap-
sulation related ideas. Section 3 introduces an ownership types system for the
Join calculus and states its secrecy properties. Section 4 shows the secrecy re-
sults in the context of an untyped opponent. Section 5 presents related work and
Section 6 concludes.

2 Ownership Types

We describe the notions of object ownership and of encapsulation based on it.
In a basic ownership types system [9] every object has an owner. The owner

is either another object or the predefined constant world for objects owned by
the system. Two notions are key in this system: owner and representation. The
owner defines the entity to which the object belongs to. An object implicitly
defines a representation consisting of the objects it owns. The aforementioned
owner associated to an object is indicated using the function owner. Owners
form a tree (C,≺:), where ≺: is called inside, that represents the nesting of
objects C. The tree has root world and is constructed according to the following
scheme: ι ≺: owner(ι), where ι is a newly created object, and owner(ι) refers
to an already existing object. The following containment invariant determines
when an object can refer to another one: ι refers to ι′ ⇒ ι ≺: owner(ι′). Owners
and representations are encoded in a type system and the containment invariant
holds for well-typed programs.

The property the containment invariant imposes on object graphs is called
owners-as-dominators and it states that all access paths to an object from the
root of a system pass through the object’s owner. In effect, ownership types
erect a boundary that protects an object’s internal representation from external
access. The idea is having a nest of boxes where there is no access from outside
to inside a box, and every object defines one such box.

3 A Typed Join Calculus with Owners: JOT

In this section we extend the classical Join calculus with ownership annotations.
In this concurrent setting, channels will play an analogous role to objects in the
object-oriented world. A channel will have another channel as owner and it may
have a set of channels as representation.

3.1 Syntax

Following the notation of Pierce [21] we write x as a shorthand for x1, . . . , xn
(similarly T , t, o, etc), and f g for f1 g1 . . . fn gn. Let Σ be a denumerable set of
channel names ranged over by: x, y, u, z. The name world is not in Σ since it is a
constant. Let Ω be a denumerable set of owner variables ranged over by α, β, γ.

P = ∅ D = > J = x〈y〉 : T T = o
o〈|t|〉 o = x

| x〈u〉 | D ∧D | J | J | world
| P | P | J � P t = ∃α.T | α
| def D in P

Fig. 1. Syntax, types and owners definition.

Figure 1 presents the syntax of the calculus. A process P is either an empty
process, a message, the parallel composition of processes or a defining process.
A definition D is either an empty definition, the conjunction of definitions or
a clause J � P , called a reaction pattern, which associates a guarded process
P to a specific join pattern J . A join pattern J is either a typed message or
the parallel composition thereof. A type T ≡ o

o′〈|t|〉 is used to remember the
owner (o) and representation (o′) of a channel and to give types (t) to the
parameters the channel expects to send. Typing annotations explicitly establish
ownership relations. The pair owner-representation identifies a single branch of
the ownership tree. Define owners o as either a channel x, the constant world
or an owner variable α. Variables are classified as received (rv), defined (dv) and
free (fv), defined by structural induction in Figure 2. A fresh name is a name
that does not appear free in a process.

The difference with the standard Join calculus [15] is that channels introduced
in a message definition have a type annotation.

Existential quantification on owners is used to abstract over the representa-
tion of an expected parameter; thus a channel can send names that have different
representation while their owner is the same. Existential types are used implic-
itly, thus there are no primitives for packing and unpacking. Existential pairs
would have the form 〈x, x〉, but since the witness and the value coincide, we use
the binding x : T , which is the implicit form of 〈x, x〉 : ∃α.T [α/x].

rv(x〈y〉) = {y1} ∪ · · · ∪ {yn} rv(J | J ′) = rv(J) ∪ rv(J ′)
dv(x〈y〉) = {x} dv(J | J ′) = dv(J) ∪ dv(J ′)

dv(D ∧D′) = dv(D) ∪ dv(D′) fv(J � P) = dv(J) ∪ (fv(P) \ rv(J))
fv(x〈y〉) = {x} ∪ {y1} ∪ · · · ∪ {yn} fv(def D in P) = (fv(P) ∪ fv(D)) \ dv(D)

fv(o′
o 〈|t|〉) = {o} ∪ {o′} ∪ fv(t) fv(∃α.T) = fv(T) \ {α}

Fig. 2. Definition of received, defined and free variables (obvious cases omitted).

Example 1 (Typing and message sending). Consider the following two processes:

P = def o〈a〉�∅
∧ x〈〉 | y〈〉�R
in o〈x〉 | o〈y〉

PT = def o〈a〉 : world
o 〈|∃α. oα〈||〉|〉�∅

∧ x〈〉 : o
x〈||〉 | y〈〉 : o

y〈||〉�R
in o〈x〉 | o〈y〉

P defines three channels o, x, y and sends x and y on o. PT is the typed version of
P . R is in both cases an arbitrary process. Typing is used to enforce an ordering
relation between the defined channels so that o owns x and y, thus x, y ≺: o. To
allow both x and y to be sent on o, the type of o contains an abstraction over the
parameter’s representation: ∃α. oα〈||〉. Since the type of x and y are concretizations
of the abstraction obtained by replacing α with x and y respectively, o〈x〉 and
o〈y〉 are well-typed processes.

3.2 Semantics

The expression t[a/b] reads “where a is substituted for all occurrences of b in
t”. The substitution function [a/b] is defined inductively on P , the most notable
case being: (x〈z〉 : T)[u/y] ≡ x〈z〉 : T [u/y]. For the sake of simplicity we as-
sume names that are to be substituted to be distinct from the defined ones.
Substitution into types is also defined inductively and the most notable case is
(∃α.T)[o/β] = ∃α.T if α = β.

The matching of a join pattern and a parallel composition of messages (J)
is defined by structural induction below. The procedure identifies a substitution
σ that replaces all received variables of the join pattern with the ones of the
message sequence, namely if J $σ J then Jσ ≡ J . The domains of σ1 and σ2
are disjoint for well-typed join patterns, so the union of σ1 and σ2 is well defined.

x〈y〉 : T $[u/y] x〈u〉
J1 $σ1 J1 J2 $σ2 J2

J1 | J2 $σ1∪σ2 J1 | J2

The semantics is specified as a reduced chemical abstract machine RCHAM [17].
The state of the computation is a chemical soup D
 P that consists of: D, a
set of definitions, and P, a multiset of processes. Terms of soups will be called
molecules. Two kind of rules describe the evolution of the soup. Structural rules,

heating ⇀, and cooling ↽, (denoted together by
), are reversible and are used
to rearrange terms. Reduction rules (denoted by −→) represent the basic com-
putational steps. Each reduction rule consumes a process and replaces it with
another. The rules for the RCHAM are given in Figure 3. Rule S-PAR expresses

S-PAR

 P1 | P2

 P1, P2

dv(D) are fresh
S-DEF

 def D in P
 D
 P

J $σ J
R-BETA

D ∧ J � P ∧D′
 J −→ D ∧ J � P ∧D′
 Pσ
D1
 P1 ⇀↽−→ D2
 P2

(fv(D) ∪ fv(P)) ∩ (dv(D1) \ dv(D2) ∪ dv(D2) \ dv(D1)) = ∅
CTXD,D1
 P1,P ⇀↽−→ D,D2
 P2,P

Fig. 3. Chemical rules for the RCHAM.

that “|” is commutative and associative, as the soup is a multiset. Rule S-DEF
describes the heating of a molecule that defines new names. This rule enforces
that names defined in D are unique for the soup and limits the binding of such
names to the process P . The side condition of this rule mimics the scope ex-
trusion of the ν operator in π-calculus, and at the same time enforces a strict
static scope for the definitions. The basic computational step is provided by rule
R-BETA. Reduction consumes any molecule J that matches a given pattern J ,
makes a fresh copy of the guarded process P , substitutes the formal parameters
in P with the corresponding actual sent names via the substitution σ, and re-
leases this process into the soup as a new molecule. Rule CTX states a general
evolution rule for soups. The symbol ⇀↽−→ denotes any of the above reduction
steps. The side condition of CTX ensures that the names in the additional defi-
nitions D and processes P do not clash with those already in the soup.

3.3 The Type System

The type system needs to track the ownership relations along with the types of
regular variables. These are recorded in an environment parallel to the typing
one. When a channel is defined, the relationship between it and its owner is
added to such an environment.

Define the environment Γ , which provides types for free channel variables,
as Γ = ∅ | Γ, (x : T). Similarly, environment ∆ tracks constraints on owners
∆ = ∅ | ∆, (o ≺: o′). The function dom(∆) is define inductively as follows:
dom(∅) = ∅, dom(∆, (o ≺: o′)) = dom(∆) ∪ {o}.

We can now introduce the concept of ownership and how the environments
of the type system keep track of it.

Definition 1 (Ownership). A channel x is said to be owned by a channel o
w.r.t Γ and ∆ if either (x ≺: o) ∈ ∆ or (x : o

x〈|t|〉) ∈ Γ .

Note that these two notions will coincide in the sense that if x〈u〉 is a well-typed
message (via P-msg), then (x ≺: o) ∈ ∆ iff (x : o

x〈|t|〉) ∈ Γ .
A judgment Γ ` j is abbreviation for a sequence of judgments Γ ` j1, . . . , Γ `

jn. The type system is specified via the typing judgments of Figure 4.

∆ ` � well-formed environment ∆
∆;Γ ` � well-formed environments Γ and ∆
∆;Γ ` o good owner o
∆;Γ ` x : T channel x has type T
∆;Γ ` T good type T
∆;Γ ` oRo′ o is R-related to o′, where R ∈ {≺:,≺:∗,≺:+,=}
∆;Γ ` P well-typed process P
∆;Γ ` D :: ∆′;Γ ′ well-typed definition D. Environments ∆′ and Γ ′ contain

context relations and bindings for dv(D)
∆;Γ ` J :: ∆′;Γ ′ well-typed join pattern J . Environments ∆′ and Γ ′ contain

context relations and bindings for dv(J)
∆;Γ ` D
 P well-typed soup D
 P

Fig. 4. Typing judgments for JOT .

Rules for owners and for the inside relation follow Clarke and Drossopolou [10].
Syntax related rules are more or less standard for the Join calculus [17], except
for rules P-msg and J-def, where existential types are implicitly used.

Environment rules are standard.
Environments

Rel-n
∅ ` �

o /∈ dom(∆) ∪ {world} ∆; ∅ ` o′
Rel-c

∆, (o ≺: o′) ` �

∆ ` � Env-n
∆; ∅ ` �

x /∈ dom(Γ) ∆;Γ ` T
Env-c

∆;Γ, (x : T) ` �

The following rules give the validity of owners.
Owners

∆;Γ ` � o ∈ dom(∆)
C-rel

∆;Γ ` o
∆;Γ ` � x ∈ dom(Γ)

C-ch
∆;Γ ` x

The following rules capture properties of relations, based on the natural in-
clusions: ≺: ⊆ ≺:+ ⊆ ≺:∗, = ⊆ ≺:∗, and ≺:;≺: ⊆ ≺:+; and equivalences:
≺:;≺:∗ ≡ ≺:∗;≺: ≡ ≺:+ and =;R ≡ R; =≡ R and ≺:∗;≺:∗ ≡ ≺:∗.

Inside relation

∆;Γ ` � oRo′ ∈ ∆
In-rel

∆;Γ ` oRo′
∆;Γ ` o

In-ref
∆;Γ ` o = o

∆;Γ ` o
In-wo

∆;Γ ` o ≺: world

∆;Γ ` oRo′ R ⊆ R′
In-weak

∆;Γ ` oR′o′
∆;Γ ` oRo′ ∆;Γ ` o′R′o′′

In-trans
∆;Γ ` oR;R′o′′

A type is valid (Type-ch) if the representation is directly inside the owner,
and inside all the owners of the types that are sent. To access the owner of a
type, use the function own(), defined as: own(o′

o 〈|t|〉) = o′, own(∃α.T) = own(T).

Types

∆;Γ ` o ≺: o′

∆;Γ ` o ≺:∗ own(t) ∆;Γ ` t
Type-ch

∆;Γ ` o′

o 〈|t|〉

∆, (α ≺: o);Γ ` o
α〈|t|〉 Type-∃

∆;Γ ` ∃α. oα〈|t|〉

Rule P-msg enforces that the channel name and the representation indicated
in its type must coincide. The substitution Ti[ui/αi] in P-msg is an implicit
unpacking of the witness ui contained in the implicit existential pair 〈ui, ui〉
created in the eventual definition of ui.

Processes

∆;Γ ` � (x : T) ∈ Γ
Chan

∆;Γ ` x : T

∆;Γ ` �
P-null

∆;Γ ` ∅
∆;Γ ` P ∆;Γ ` P ′

P-par
∆;Γ ` P | P ′

∆,∆′;Γ, Γ ′ ` P
∆,∆′;Γ, Γ ′ ` D :: ∆′;Γ ′ dom(Γ ′) = dv(D) = dom(∆′)

P-def
∆;Γ ` def D in P

∆;Γ ` x : o
x〈|∃α.T |〉 ∆;Γ ` ui : Ti[ui/αi] for each i ∈ 1..n

P-msg
∆;Γ ` x〈u〉

Rule D-run shows that bindings for defined channels (∆d;Γd) are collected
and available while their scope lasts, while bindings for received channels (∆r, Γr)
are collected only where they are used, namely in the started process P .

Definitions

∆;Γ ` D :: ∆′;Γ ′

∆;Γ ` D′ :: ∆′′;Γ ′′ dv(D) ∩ dv(D′) = ∅
D-and

∆;Γ ` D ∧D′ :: ∆′, ∆′′;Γ ′, Γ ′′

∆;Γ ` �
D-top

∆;Γ ` >

∆,∆r;Γ, Γr ` J :: ∆′;Γ ′

∆,∆r;Γ, Γr ` P

∆r = ∆′ \∆d Γr = Γ ′ \ Γd
∆d = {(x ≺: o) ∈ ∆′ | x ∈ dv(J)}
Γd = {(x : T) ∈ Γ ′ | x ∈ dv(J)}

D-run
∆;Γ ` J � P :: ∆d;Γd

An implicit packing of 〈x, x〉 and 〈y, y〉 is made in rule J-def dual to the
unpacking that occurs in rule P-msg. Rule J-def also provides bindings for both
the defined channel and its formal parameters.

Join patterns

∆;Γ ` J :: ∆′;Γ ′

∆;Γ ` J ′ :: ∆′′;Γ ′′
dv(J) ∩ dv(J ′) = ∅
rv(J) ∩ rv(J ′) = ∅

J-par
∆;Γ ` J | J ′ :: ∆′, ∆′′;Γ ′, Γ ′′

∆;Γ ` x : T
T ≡ o

x〈|∃α.T |〉
∆;Γ ` yi : Ti[yi/αi] for each i ∈ 1..n

Ti ≡ oi
αi
〈|ti|〉

J-def
∆;Γ ` x〈y〉 : T :: (x ≺: o), (y ≺: o); (x : T), (y : T [y/α])

Soups

P = P1, . . . , Pn ∆;Γ ` Pi for each i = 1..n
P-elim

∆;Γ ` P

∆;Γ ` Di :: ∆′i;Γ ′i for each i = 1..n
dv(D1) ∩ . . . ∩ dv(Dn) = ∅

Γ ′ = Γ ′1, . . . , Γ
′
n

∆′ = ∆′1, . . . ,∆
′
n D-elim

∆;Γ ` D :: ∆′;Γ ′

∆,∆′;Γ, Γ ′ ` P
∆,∆′;Γ, Γ ′ ` D :: ∆′;Γ ′ dom(Γ ′) = dv(D) = dom(∆′)

Soup
∆;Γ ` D
 P

3.4 Soundness of the Type System

A type system for a concurrent language is correct whenever two standard the-
orems hold [24]. The first, subject reduction, ensures that typing is preserved
by reduction. This means no typing error arise as the computation proceeds.
The second one, no runtime errors, ensures that no error occurs as the compu-
tation progresses. An error may be sending a message with a different number
of parameters than expected or, as is specific to our type system, breaking the
owners-as-dominators property. Proofs can be found in a companion technical
report [20].

Definition 2 (Typing environment agreement _). Two typing environ-
ments agree, denoted with ∆;Γ _ ∆′;Γ ′, if the variables they have in common
have the same type.

Theorem 1 (Subject reduction for JOT). One step chemical reductions pre-
serve typings. If ∆;Γ ` D
 P and D
 P ⇀↽−→ D′
 P ′, then there exists ∆′;Γ ′
such that ∆;Γ _ ∆′;Γ ′ and ∆′;Γ ′ ` D′
 P ′.

Definition 3 (Runtime errors). Consider a soup D
 P. Say that a runtime
error occurs if any of these kind of messages occurs in the processes set P:

– a message x〈y〉 that is not defined in D, i.e. no join pattern J in D has x
in its defined variables;

– a message x〈y〉 that is defined in D but with different arity (e.g. the defined
channel x wants four parameters while we call it with three);

– a message x〈y〉 where x is not inside some of its arguments’ owners, i.e.
there is a yi owned by o such that x ≺:/ ∗o

Reduction of a well-typed soup never results in a runtime error.

Theorem 2 (No runtime errors for JOT). If ∆;Γ ` D
 P and D

P ⇀↽−→∗D′
 P ′, then no runtime error occur in D′
 P ′.

The following statement is a translation of the owners-as-dominators prop-
erty ownership types enforce in the object-oriented setting. No reference from
outside the ownership boundaries to an inner channel exists.

Theorem 3 (Owners as dominators). A channel y owned by o may be sent
over a channel x only if x is transitively inside o: ∆;Γ ` x〈y〉 ⇒ ∆;Γ ` x ≺:∗ o

Corollary 1 is a restatement of Theorem 3 from a secrecy perspective. The
point of view of Theorem 3 highlights what can be sent on a channel. Dually,
the perspective of Corollary 1 points out what cannot be sent on a channel.

Corollary 1 (Secrecy for JOT). Consider a well-typed soup D
 P that de-
fines a channel y owned by o. However the soup evolves, y is not accessible from
channels whose owner is not transitively inside o.

Example 2 (Secrecy with a typed opponent). Consider the typed process P of
Example 1. Suppose P is a private subsystem of a larger system O. Process P
defines two secrets, namely x and y, which are intended to remain private to
P . This privacy policy can be violated if, for example, a subsystem R can, after
a sequence of reduction steps, send l〈x〉, where l is a channel known to O. To
typecheck the definition of l, O should know the name o. Fortunately o is not in
the environment O uses to typecheck since o is defined in P . As the following
proof tree shows, l cannot be typed in order to send channels owned by o. This
means that the secrecy of x is preserved.

. . .

Impossible since o is unknown
∆;Γ ` l ≺:∗ o . . .

Type-ch
∆;Γ ` l : world

l 〈|∃α. oα〈||〉|〉 . . .
Chan

∆;Γ ` l〈a〉 : world
l 〈|∃α. oα〈||〉|〉 :: . . .

Example 3 (Code invariant definition). Consider the following process.

B = def mb〈pb〉 : Tm�def guard〈〉 : world
guard〈||〉�∅

∧ empty〈〉 : guard
empty〈||〉 | put〈d〉 : Tp � full〈d〉

∧ full〈c〉 : guard
full 〈|Tc|〉 | get〈r〉 : Tg � empty〈〉 | r〈c〉

in empty〈〉 | pb〈put, get〉
in . . .

Process B is a one-place buffer where typing enforces the invariant: the internal
representation of the buffer cannot be accessed except via put and get. The buffer
is spawned by sending a channel pb over mb. Primitives for buffer usage, put and
get, will be returned to the buffer creator on channel pb. Since empty and full are
owned by channel guard, there is no possibility for them to be used outside the
process boundaries, for the same reasons as Example 2. Channel guard and type
annotations are the only additions to an untyped one-place buffer [16] which are
needed to enforce the invariant. We do not fully specify all types involved in B,
focussing the attention only on the types needed to define the invariant.

4 Secrecy in the Context of an Untyped Opponent

When computation is run on a collection of machines that we cannot have access
to or simply rely on, we expect our programs to interact with code that possibly
does not conform to our type system, which could result in a malicious attempt
to access the secrets of our programs. The system must be strong enough to
prevent such attacks.

We follow the approach of Cardelli et. al. [8] and formalize the idea that a
typed process in JOT can keep a secret from any opponent it interacts with, be
it well- or ill-typed. The story reads as follows:

– consider a well-typed JOT soup D
 P that defines a secret x owned by o;
– consider an untyped soup D′
 P ′ that knows neither o nor x a priori;
– erase typing annotation from D
 P and combine its molecules with those

of D′
 P ′, the result is an untyped soup D′′
 P ′′;
– then, in any way the untyped soup D′′
 P ′′ can evolve, it does not leak the

secret x.

We work with soups instead of processes as a process P is trivially a soup ∅
 P .
The notation JUN will be used to refer to the untyped Join calculus. The

syntax for JUN [15,16] is analogous to the one presented in Figure 1, except that
typing annotations are dropped from channel definitions. The semantics of JUN
follows that of Figure 3 ignoring types.

In the next section a common framework where trusted and untrusted chan-
nels coexist is introduced. We give a precise definition of when an untyped pro-
cess preserves the secrecy of a channel x from an opponent. The most important
result presented in the paper is that the untyped process obtained by erasing
type annotations from a well-typed JOT process preserves the secrecy of x from
any opponent it interacts with.

4.1 An Auxiliary Type System: JAU

Proving the secrecy theorem in an untyped opponent context is based on an
auxiliary type system. The auxiliary type system partitions the set of chan-
nels into untrusted and trusted ones with regards to one specific channel: the
secret. The idea is that untrusted channels do not have access to the secret,
trusted channels on the other side can handle such secret. Typing enforces such
a distinction. Types have syntax: T = Un | In〈|T |〉. Untrusted channels have
type Un. Trusted channels have type In〈|T |〉, where each Ti is either trusted or
untrusted. The property enforced by the type system is that trusted channels
cannot be sent over untrusted ones. Hence an opponent knowing only untrusted
(Un) names cannot receive a trusted (In) one.

Define Γ as a list of bindings of variables to types: Γ = ∅ | Γ, (x : T). The
typing judgments that define the type system are analogous to those in Figure 4,
except that owners and environment ∆ are dropped. Typing rules for message
sending (P-msg) and channel definition (J-def) need to be replaced by rules P-
mun and P-min and by rules J-dun and J-din below, respectively. Judgments for
the JAU type system are made against untyped processes, as defined channels
in rules J-dun and J-din do not have typing annotation.

Γ ` x : Un Γ ` y : Un
J-dun

Γ ` x〈y〉 :: (x : Un), (y : Un)
Γ ` x : In〈|T |〉 Γ ` y : T

J-din
Γ ` x〈y〉 :: (x : In〈|T |〉), (y : T)

Rules P-mun and P-min state that untrusted channels cannot send anything
but untrusted ones while trusted channels can mention both kinds.

Γ ` x : Un Γ ` y : Un
P-mun

Γ ` x〈y〉
Γ ` x : In〈|T |〉 Γ ` y : T

P-min
Γ ` x〈y〉

The auxiliary type system enjoys subject reduction, as Theorem 4 shows.

Theorem 4 (Subject reduction). If Γ ` D
 P and D
 P ⇀↽−→ D′
 P ′
then there exists a Γ ′ such that Γ ′ ` D′
 P ′ and Γ _ Γ ′.

4.2 The Common Framework

The auxiliary type system is used as a meeting point for untyped and typed
soups. It serves as a common framework for testing secrecy. Assigning trusted
and untrusted types to channels makes JAU a suitable system to reason about
coexisting trusted and untrusted processes. From now on the notation `OT will
indicate a judgment in the JOT system, while `AU will indicate a judgment in
the JAU one. Firstly we must be able to typecheck any untyped opponent. The
way of doing it is provided by Proposition 1.

Proposition 1. For all untyped soups D
 P, if fv(D
 P) = {x1, . . . , xn},
then x1 : Un, . . . , xn : Un `AU D
 P.

Secondly we need a way to add elements from JOT to the common framework.
This is done by erasing all type annotations of such elements and by mapping
typing environments of JOT to JAU ones. Type annotations can be erased via
an erasure function (erase()), which is defined by structural induction on P ,
the most notable case being erase(x〈y〉:T) = x〈y〉. Translating the typechecking
environment associated with a JOT process to an JAU environment is done via
the mapping function J Ko presented below.

J∆;Γ Ko = JΓ Ko J∅Ko = ∅ JΓ, (x : T)Ko = JΓ Ko, (x : JT Ko)

The environment ∆ is dropped since it is not required. Γ is translated in an en-
vironment that contains bindings for the auxiliary type system. For any channel
o that identifies a secret, map JOT types to JAU ones as follows.

J o
′

o 〈|t|〉Ko =
{

In〈|JtKo|〉 if o ∈ fv(o′

o 〈|t|〉)
Un else

J∃α.T Ko = JT Ko

Types that do not mention the secret o are translated as untrusted: Un. All
others preserve their structure and are translated as trusted: In〈|T |〉. Note that
trusted channels are the ones transitively inside the given channel o, while un-
trusted ones are those that are outside the ownership boundaries o defines.

Proposition 2 shows how to combine the erasure and the mapping functions
to obtain a well-typed soup in JAU starting from a well-typed one in JOT . The
secret o is any channel, be it a free name in the environment, a bound name in
the soup or a fresh name.
Proposition 2. If ∆;Γ `OT D
 P then, for any o, J∆;Γ Ko `AU erase(D
 P).

Now we have all the machinery to bring together trusted and untrusted
processes in a common framework and show that the former ones cannot leak
secrets to the latter ones.

4.3 Secrecy Theorem

Before stating the secrecy results in the untyped setting we need to introduce
some related concepts.

Soup combination allows us to merge the molecules of two soups if the type-
checking environments agree. The agreement implies that names that are com-
mon to the two soups have the same degree of trust, there is no name that is
considered trusted in a soup but is untrusted in the other one.

Definition 4 (Soups combination). Consider two untyped soups D
 P and
D′
 P ′. Suppose they are well-typed in JAU , so there exist Γ, Γ ′ such that
Γ `AU D
 P and Γ `AU D′
 P ′. If Γ _ Γ ′, the molecules of the two soups
can be combined into a single one: D,D′
 P,P ′.

The definition of secret leakage we use is inspired by Abadi [1] for the untyped
spi calculus [3]. The underlying idea is attributed to Dolev and Yao [13]: a name
is kept secret from an opponent if after no series of interactions is the name
transmitted to the opponent.

Definition 5 (Secret leakage). A soup D
 P leaks secrets whenever D

P ⇀↽−→∗ D′
 P ′ and in P ′ there is an emission of a trusted channel on an
untrusted one.

The following proposition is the crux of the proof of Theorem 5: an opponent
who knows only untrusted names cannot learn any trusted one.

Proposition 3. Suppose y1 : Un, . . . , yn : Un, o : T ′, x : T `AU D
 P, where
T, T ′ 6= Un. Then, the untyped soup D
 P does not leak secrets.

Theorem 5 shows that an opponent, which does not know any trusted channel
a priori, does not learn any trusted name by interacting with a well-typed JOT
soup whose type annotations have been erased. Definition 4 allows the two soups
to have names in common and to communicate as long as the shared channels
have the same degree of trust.

Theorem 5 (Secrecy in unsafe context). Consider a well-typed JOT soup
D
 P and an untyped soup D′
 P ′ that does not know a priori any trusted
name of the typed one. Let D′′
 P ′′ be the combination of erase(D
 P) and
D′
 P ′. Then D′′
 P ′′ does not leak secrets.

5 Related Work

Ownership types have had several applications, mostly unrelated to security.
They have been combined with effects for reasoning about programs [10]. Own-
ership types were used to detect data races and deadlocks [5], to allow safe
persistent storage of objects [6] and to allow safe region-based memory manage-
ment in real time computation [7]. Preventing uncontrolled accesses to EJBs [12]
was obtained using a notion of containment similar to ownership types. Another
similar but more lightweight idea is that of confined types [23], which provide a
per-package notion of object encapsulation. To our knowledge ownership types
have never been used before as a direct way to enforce secrecy policies. Further-
more, this is the first attempt to translate them from the object-oriented setting
to a process calculus. A translation to the π-calculus appears to be straightfor-
ward. Ownership types have also been encoded into System F [19].

As stated before, types are not present in standard Join calculus [15]. Absence
of type annotations is a difference also with the typed Join calculus [17], where
typing is implicit and polymorphic. Since it loosens the constraints imposed by
typing, polymorphism is not used in the current work.

In process algebra, security has been achieved via encryption both for the
Join calculus [2] and the π-calculus [3]. The cited works require encryption and
decryption primitives while the presented work does not. The control flow anal-
ysis for the π-calculus [4] testifies that a process provides a certain encapsulation
property, on the other side our type system allows the programmer to specify
such a property.

Cardelli et al.’s Groups [8] is the closest work to the results presented here.
Groups were created for the π-calculus, a translation in the Join calculus seems

however straightforward. Groups are created with a specific operator: νG that
mimics the scope extrusion principle of channel definition νx. Channels have type
T = G[T] which indicates the group G a channel belongs to, and its parameters’
types T . T can only mention groups which are in scope when T is defined. The
notion of secrecy of Groups is thus based on scoping and there are policies that
cannot be expressed using Groups, as Example 4 shows.

Example 4 (Expressiveness). Consider a process that is supposed to match the
password provided from a client, sent on channel c, and the corresponding
database entry, sent on channel d. If the client is able to access any entry, it
can impersonate any user. Database entries must be protected from the client
but they must be accessible from the database. PG and PO specify such a policy
using Groups or using ownership types respectively.

PG = νG
def d〈a〉 : Td | c〈b〉 : Tc�R
in . . .

PO = def d〈a〉 : world
d 〈||〉 | c〈b〉 : world

c 〈||〉�R
in . . .

To design the policy using Groups we can create a group G that is supposed to
protect the database entries. In order for the database to access the entries via
channel d, the declaration of G should appear before the join pattern that starts
the password checking process, since such join pattern defines d. This would allow
the type of the client, Tc, to mention G. The client could then access the data
hidden within G via the channel c, violating the intended security policy. The
designed policy can be expressed using ownership types as PO shows. Channel c
would not be able to access the entries owned by d because c ≺:/ ∗d. On the other
side d would still be able to access the database entries since d owns them.

6 Conclusion

This paper shows how to prevent the leakage of secrets in a mobile setting using
ownership types. We provide a type system that encodes ownership types con-
cepts in the Join calculus. The type system enforces the owners-as-dominators
property and the consequent strong form of encapsulation. A typed process pro-
tects its secrets against malicious or accidental leakage. Secrecy is also preserved
even in the context of an untyped opponent.

A formal comparison between ownership types and Cardelli et al.’s Groups
remains to be done. Additionally, in order to allow a JOCaml implementation
of ownership, polymorphism and type inference need to be investigated.

References

1. Mart́ın Abadi. Security protocols and specifications. In FoSSaCS ’99, volume 1578
of LNCS, pages 1–13, London, UK, 1999. Springer-Verlag.

2. Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation of
channel abstractions. Inf. Comput., 174:37–83, April 2002.

3. Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Inf. Comput., 148(1):1–70, 1999.

4. Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Con-
trol flow analysis for the pi-calculus. In CONCUR ’98, volume 1466 of LNCS, pages
84–98, London, UK, 1998. Springer-Verlag.

5. Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Ownership types
for safe programming: preventing data races and deadlocks. In OOPSLA, pages
211–230, 2002.

6. Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for
object encapsulation. In POPL, pages 213–223, 2003.

7. Chandrasekhar Boyapati, Alexandru Salcianu, William S. Beebee, and Martin C.
Rinard. Ownership types for safe region-based memory management in real-time
java. In PLDI, pages 324–337, 2003.

8. Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Secrecy and group creation.
Inf. Comput., 196(2):127–155, 2005.

9. Dave Clarke. Object Ownership and Containment. PhD thesis, University of New
South Wales, July 2001.

10. Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjoint-
ness of type and effect. In OOPSLA, pages 292–310, 2002.

11. Dave Clarke, John Potter, and James Noble. Ownership types for flexible alias
protection. In OOPSLA, pages 48–64, 1998.

12. Dave Clarke, Michael Richmond, and James Noble. Saving the world from bad
beans: deployment-time confinement checking. In OOPSLA ’03, pages 374–387,
New York, NY, USA, 2003. ACM.

13. D. Dolev and A. C. Yao. On the security of public key protocols. In SFCS, pages
350–357, Washington, DC, USA, 1981. IEEE Computer Society.

14. Cédric Fournet, Fabrice Le Fessant, Luc Maranget, and Alan Schmitt. JoCaml:
a Language for Concurrent Distributed and Mobile Programming, pages 129–158.
LNCS. Springer-Verlag, November 2002.

15. Cédric Fournet and Georges Gonthier. The reflexive CHAM and the Join-calculus.
In POPL, pages 372–385, 1996.

16. Cédric Fournet and Georges Gonthier. The Join calculus: A language for dis-
tributed mobile programming. In APPSEM, volume 2395 of LNCS, pages 268–332,
2000.

17. Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. Implicit typing
à la ML for the Join-calculus. In CONCUR, pages 196–212, 1997.

18. Philipp Haller and Tom Van Cutsem. Implementing Joins using Extensible Pat-
tern Matching. In COORDINATION’08, volume 5052 of LNCS, pages 135–152.
Springer, 2008.

19. Neelakantan R. Krishnaswami and Jonathan Aldrich. Permission-based ownership:
encapsulating state in higher-order typed languages. In PLDI, pages 96–106, 2005.

20. Marco Patrignani, Dave Clarke, and Davide Sangiorgi. Ownership types for the
Join calculus. CW Reports CW603, Dept. of Computer Science, K.U.Leuven,
March 2011.

21. Benjamin Pierce. Types and Programming Languages. MIT Press, 2002.
22. Hubert Plociniczak and Susan Eisenbach. Jerlang: Erlang with Joins. In COOR-

DINATION, volume 6116 of LNCS, pages 61–75, 2010.
23. Jan Vitek and Boris Bokowski. Confined types. In OOPSLA ’99, pages 82–96,

New York, NY, USA, 1999. ACM.
24. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.

Inf. Comput., 115:38–94, November 1994.

	Ownership Types for the Join Calculus

