N

N
N

HAL

open science

Transformational Design of Business Processes for SOA
Andrzej Ratkowski, Andrzej Zalewski

» To cite this version:

Andrzej Ratkowski, Andrzej Zalewski. Transformational Design of Business Processes for SOA. 3rd
Central and East European Conference on Software Engineering Techniques (CEESET), Oct 2008,

Brno, Czech Republic. pp.76-90, 10.1007/978-3-642-22386-0_6 . hal-01572550

HAL Id: hal-01572550
https://inria.hal.science/hal-01572550
Submitted on 7 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01572550
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Transformational Design of Business Processes
for SOA.

Andrzej Ratkowski and Andrzej Zalewski

Warsaw University of Technology
Department of Electronics and Information Technology
{a.ratkowski@elka.pw.edu.pl,
a.zalewski@ia.pw.edu.pl}

Abstract. By describing business processes in BPEL (Business Process
Execution Language) one can make them executable. Then a problem
arises how to assure that some non-functional requirements concerning
e.g. performance of these processes, are met. In the paper a transforma-
tional approach to design of business processes is presented. To check
equivalence of business processes resulting from the transformations, a
BPEL description is converted to Process Algebra (Lotos version) and
model-checking techniques are applied. The paper contains also an ex-
ample of applying the proposed approach in a real-life situation.

Key words: SOA, BPEL, business process design

1 Introduction

The ability to define and execute business processes seems to be one of the most
important advantages introduced by the research and commercial developments
on Service-Oriented Architectures (SOA). The two worlds of business modeling
and software systems development have never been closer to each other — it is
now possible to express software requirements and business processes in terms of
services. BPEL has become a standard for defining executable business processes.
This in turn triggered an extensive research on the modeling and verification
techniques suitable for BPEL-like notations.

The recent research is concentrated on converting BPEL processes to one
of the formal models that can be analysed with model-checking techniques. A
survey of such approaches can be found in [3]. It reveals that all the most impor-
tant formal modeling techniques developed for concurrent systems are applicable
here: Petri nets (basic model, high-level, coloured) — (see e.g. [23], [21], [28]), Pro-
cess Algebras — (see e.g. [12], [11]), Lotos — (see e.g. [9], [25]), Promela and LTL —
(see e.g. [13], [15]), Abstract State Machines — (see e.g. [7], [26]), Finite State Au-
tomata — (see e.g. [11]). These conversions make possible deadlock and livelock
detection as well as reachability analysis with automated model checkers.

The approaches presented above accompanied by appropriate verification
techniques can detect certain flows in BPEL processes. However, they are not

2 A. Ratkowski, A. Zalewski

methods of business processes design — they do not provide any guidance on
how to improve the quality attributes of designed systems like maintainability,
performance, reusability etc. This is what our approach is aimed at.

In this paper we advocate an idea of transformational design of BPEL busi-
ness processes in which specified behavior remains preserved, while quality at-
tributes get improved. There are three basic roots of our approach:

1. Software refactoring — the approach introduced by Opdyke in [20], further
developed in [17], in which the transformations of source code are defined so
as to improve its quality attributes;

2. Business process design — in the realm of SOA informal or semiformal meth-
ods dominate the research carried out so far — e.g. Service Responsibility
and Interaction Design Method (SRI-DM) [14];

3. Business process equivalence — there have already been developed several
notions of the equivalence between business processes based on Petri Nets
[16] and Process Algebras [24].

The transformations of Business Processes are in the core of our approach
and represent similar concept as popular software refactorings. In a formal Pro-
cess Algebra model of business processes there have been introduced our original
notion of business process equivalence (explained and discussed in section Be-
havioral Equivalence) and it has been proved that the defined transformations
create processes equivalent to the one being transformed. These transformed
processes are compliant in terms of their behavior, however, quality attributes
have changed.

This provides a foundation for the transformational design method in which
a starting BPEL process is subject to a series of transformations yielding as a
result behaviorally compatible model with improved non-functional properties
like modifiability, maintainability, performance, reusability etc.

The rest of the paper has been organized as follows: the section Transforma-
tional Approach describes generally concept of our transformational approach,
sections Behavioral Equivalence drills down formal aspects of our method, finally
section Process Design Erample shows practical example of the application of
the proposed approach.

2 Transformational Approach

The process of transformational design of business processes has been depicted
in figure 1.

1. The transformational desing starts from establishing reference process rep-
resenting only functionality of the process, order of the activities, relations
between them as well as exchanged data and external services invocations. In
following iterations the original process is gradually changed by refactoring
transformations [22], [17] like:

— Service split — dividing one complex services into two or more more
simple ones,

Transformational Design of Business Processes for SOA. 3

Alternatives Equwal_ent New
Reference alternatives Reference
process process
P s Fracess ";‘MQ o Process
) Process 3 c rocess 2
nE c .9 ® c
n T =] S
5 58 58
(S I3 ge 27
£ =X S G
o % chr > Q ‘g » Q
[} = 2 3
[y [}

Fig. 1. Process transformation algorithm

— Service aggregation — opposite to service split: composing two or more
services into one larger,
— Parallelization — making serial activities to run in parallel,
— Asynchronization — replacing synchronous communication protocol with
asynchronous one.
The above transformations are referred to as refactorings or transformations
and are only examples of possible refactorings.

2. A few independent refactorings or transformations executed on a given pro-
cess create a few alternative processes, which should be equivalent to the
original one or at least changes in behaviour should be known.

3. Behavioral equivalence verification step is aimed at checking behaviour preser-
vation. In this step formal methods of Process Algebra (PA) [5] are used.
The result of verification is either elimination of not-equivalent alternative or
acceptance of changes in behaviour that transformations caused. The trans-
formation changes behaviour is exactly known thanks to PA formalism.

4. After eliminating some of the alternatives or accepting all of them, alterna-
tives are evaluated against non-functional properties like:

— performance,

— safety,

— maintainability,

— availability,

— or any important property.
The measure of each property is calculated e.g. with the metrics [18], models
[8] or simulation.

5. A single alternative is selected from the set of acceptable processes. This
is based on the evaluation performed in the previous phase as well as the
predefined desing preferences.

The above steps should lead from the process, which is correct from functional
point of view, to the process that has desired non-functional quality attributes.

All steps of algorithm are guided by a human designer and supported by
automatic tools that may:

4 A. Ratkowski, A. Zalewski

— Suggest possible transformations of reference process,
— Verify behavioral equivalence,

— Compute quality metrics of alternatives,

— Point out quality attribute trade-off points.

3 Behavioral Equivalence

Behavioral equivalence verification is based on the transformation of BPEL pro-
cesses to Process Algebras [5], which is a formal model, particularly suitable for
the modeling of concurrent, loosely coupled and asynchronously communicating
systems such as BPEL business processes.

3.1 Process Algebra for Behavioral Equivalence

We use LOTOS [2] implementation of PA as a model of BPEL process. To
achieve this we have devised a mapping from BPEL to PA terms. There have
already been proposed a number of BPEL to PA mappings — e.g. [10] or [4],
however, they do not meet the needs of transformational design as they define
full semantic equivalence preserving every detail of the internal structure of the
process (i.e. the order of activities and their relation with other activities). This
strictness narrows the possibility of changing the process structure or even makes
it impossible. Therefore, we need a looser equivalence definition to assure that
enough freedom is given to the trasformation of business processes.

A separate issue is that transformations should produce simple models with
possibly smallest statespace (the mappings referred above produce rather com-
plicated models). During design procedure a few alternative process structures
are considered and the equivalence of each of them has to be verified — this in
turn should not be too time-consuming if the method is expected to be of a
practical importance.

Most important mappings of BPEL activities to PA formulas have been pre-
sented in table 1.

The mappings neither take into account data values nor condition fulfillment.
This is motivated by simplicity of the model and its more efficient verification
with a model-checker.

There has also been added an artificial mapping of activity which is not
explicit part of BPEL but is necessary for equivalence verification. This is activity
dependency mapping. Let us assume that there are two activities in BPEL
process that are not directly attached to each other (by e.g. <sequence> or
<switch>) but by shared variable, like in the following example:

<receive variable="PurchaseOrder" name="ReceivePurchase" />

<assign name="assignOrder">
<copy>
<from variable="PurchaseOrder"/>

Transformational Design of Business Processes for SOA.

Table 1. Sample mappings BPEL activities to PA formulas.

BPEL

LOTOS Process Algebra

external service invocation

<invoke

inputVariable="inputName"

outputVariable="outputName"
name="invokeName" [...]
</invoke>

process invoke_invokeName
[inputName,outputName] :=
hide tau in (
inputName;tau;outputName;ended;exit
)

endproc

receive message

<receive variable="variableName"
name="receiveName" [...]
</receive>

process receive_receiveName
[variableName] :=
hide tau in (
variableName;tau;ended;exit
)

endproc

assign variable value

<assign

name="assignName"

<copy>
<from variable="fromVar">
<from to="toVar">
</copy>
</assign>

process assign_assignName
[fromVar, toVar] :=
hide tau in (
fromVar;tau;toVar;ended;exit
)

endproc

parallel execution

<flow name="flowName">

<
<
</flow>

. name="activityA"/>
. name="activityB"/> [...]

process flow_flowName [dmmy] :=
hide ended in (
activityA |[ended]| activityB
)

endproc

sequential execution

<sequence name="segName">

< . name="activityA"/>
< . name="activityB"/>[...]
</sequence>

process sequence_seqName [dmmy] :=
activityA >> activityB >>
endproc

conditional execution

<switch name="switchName">
<case >
< ... name="activityA"/>
</case>
<case >
< . name="activityB"/>
</case>

</switch>

process switch_switchName[dmmy] :=
hide ended in (
activityA [] activityB
)

endproc

6 A. Ratkowski, A. Zalewski

<to variable="ShippingRequest"/>
</copy>
</assign>

Then activity dependency mapping will be :

process act_dependency [dummy]
receive_ReceivePurchase [PurchaseOrder]
| [PurchaseOrder] |
assign_assignOrder [PurchaseOrder, ShippingRequest]
endproc

The activity dependency expresses indirect dependency of two activities that
one needs output data from another, no matter what structural dependencies
(sequence or parallel) in the process are.

3.2 BPEL Behavioral Equivalence

The key structure of our definition of behavioral equivalence is minimal depen-
dency process (MDP). MDP is the process that is as simple as possible but still
gives the same response for given stimulation as original process. MDP is con-
structed as set of activities executed in parallel that do not interact with each
other. It is achieved by relaxing unnecessary structural activities that are in the
original process. Current section supplies theoretical basis for the construction
of MDP and the evidence that it can be used for process equivalence definition.

There are few approaches to determine behavioral equivalence (or other words
behaviour preservation) of refactored processes. In [20] author proposes definition
that two systems are equivalent when response for each request is the same from
both systems. According to [19] communication oriented systems are equivalent,
if they send messages in the same order.

In case of transformational design we assume that every service fulfills state-
less assumption. It means that when BPEL process invokes external service then
every response for some request is the same and do not depend on history. This
assumption leads to the conclusion that state of external services (and all envi-
ronment) is encapsulated inside the invoking service.

To make this assumption usable and to prove how it can be used we need
basic PA theory.

B B (1)
The above formula means that process B reaches state B’ after receiving

event (message) x
Now PA semantics is defined using inference rules that has form:
remises . i
_Premuses (sidecondition) (2)
conclusions

For example parallel execution (without synchronization) || has 2 symmetric
rules :

Transformational Design of Business Processes for SOA. 7

B1 % BY J B2 L BY
an
B1||B2 % B1||B2 B1||B2 % B1||B2

and precedes (sequential composition) >> has 2 rules :

B1 < Bl B2 < BY
— and - (4)
Bl >> B2 % Bl >> B2 Bl1>>B25 B2

where o is successful termination and 4 is unobservable (hidden) event.
If external services S is stateless then:

VyevYsL s (5)

where Y is a set of all events. This means that every event, generated externally
by the subject service, does not change the state and answer of the service.

To analyse BPEL process using PA terms, the BPEL process has to be trans-
lated into PA using the mapping mentioned above. The result of the translation
is a set of PA processes that are sequentially ordered by BPEL steering instruc-
tions — sequences, flows, switches and so on. Additionally, part of the mapping is
activity dependency process. This artifact symbolizes data dependency between
the activities (one needs data generated by the other one).

Let us denote it with dependency operator

Alz]B (6)

which means that state B can be started after A is successfully terminated and
event x is emitted (or received).

Below we illustrate the foundations of the behavioral equivalence concept. Let
us consider a process that has a set of operations connected with dependency
sequence:

(AJz]C]2] D) (7)

C waits for A result and D for C result.

Apart from the above dependency, the process has also structural sequence
defined by <sequence> instruction A -> B -> C -> D, where B is an instruc-
tion, which is not connected by activity dependency. We can relax the structural
sequence and consider the process as:

(Alz]Clz]D)|| B (®)
That means, we can treat (A]x]C]z]D) and B as two parallel, independent activ-
ities.
Proof that (8) is true for stateless services.
1. if there is no external service, (8) is true by the definition because there is

no interaction between (A]x]C]z]D) and B
2. if there is stateless external service S, then:

8 A. Ratkowski, A. Zalewski

vy(AJz]CJz1D)||S = ((Alz]C]]D))'||S (9)

and
vyS||B L S||B’ (10)

which leads to :
(AJ2]C12]D) = (AJz]C]2]D)" = (Alz]Cl2]D)||B = (Al2]Cl2]D)'[|B (1)

and
BL B = (A]z]C)2]D)||B Y, (A]z]C]z|D)||B’ (12)

Equation (12) is parallel execution inference rules (3) which is
proof of (8)
If S was statefull, then

3y(AJz]C2D)||S =+ (Alz]CJz]D)'|| 8" (13)

then
(AJ2]CJz]D)||B = (Al]Cz]D)'|| B’ (14)

this would mean that there are some interactions between (A]x]C]z]D) and
B, and that they can not be treated independently.

The above theory makes possible to break the whole BPEL process into a
set of subprocesses, which depend on each other only by data dependecies repre-
sented as activity dependencies. This technique can be related to program slicing
[1] used broadly in source code refactoring. BPEL service with defined activity
dependencies and without structured constraints (sequences, flows, conditional
and so on) is called minimal dependency process (MDP). Such a MDP becomes
a basis for verification of equivalence of transformed (refactored) process with
the requirements specified by MDP. After refactoring, new (refactored) process
has to be translated to PA and its PA image must fulfill preorder relationship
specified by MDP, therefore, refactored process has to be a subgraph of MDP'’s
states graph.

3.3 Application of PA in Refactoring

As it was mentioned in the transformational approach introduction, PA formal-
ism can help to decide if examined process is equivalent to reference one or
points changes between processes. This is done by comparing execution state
graphs of reference and refactored process. There are two possible results of this
examination:

— execution graph of refactored process is subgraph of MDP reference process
— this means that refactored process is equivalent to reference process or

Transformational Design of Business Processes for SOA. 9

— execution graph is not subgraph of MDP reference process — processes are
not equivalent, but the information that can be obtained from the compari-
sion is: what edges or nodes of execution graph are in refactored process but
does not exist in MDP graph. Those extra edges and/or nodes are related to
instructions or parts of code that makes importand diference between orig-
inal and refactored process. The human designer can then decide, if theese
differences are acceptable or not, in context of refactored process.

3.4 Algorithm and Tools for Equivalence Verification

PA
B_P.ELI XSLT minimal
original transformation dependency
process BPEL -> MDP process

CWB-NC
Process Algebra
Tool
BPEL XSLT full image of
refactored transformation BPEL process
process BPEL -> PA

Fig. 2. Structure of verification process

Algorithm of equivalence verification consist of three steps:

1. Translating BPEL process to minimal dependency process (MDP) — this step
is made only once at the beginning of refactoring process;

2. Translating BPEL process to its PA image;

3. Checking preorder relationship of PA image with minimal dependency pro-
cess.

For purposes of the test, translation BPEL to PA was made by using XSLT
[27] processor, as the PA processor Concurrency Workbench for New Century
(CWB-NC) [6] has been used. The structure of the verification system is pre-
sented in figure 2.

4 Process Design Example

Entire approach can be illustrated on a practical example of an order handling
process. During the transformations two quality attributes are taken into ac-
count: performance and reusability. First of them is measured by a response
time under given load, the latter one by a number of interfaces the whole con-
sidered system provides.

10 A. Ratkowski, A. Zalewski

4.1 Reference process

The order handling process service is composed of three basic activities: invoic-
ing, order shipping and production scheduling, which operate as follows:

1. A purchase order is received — it defines purchased product type, quantity

and desired shipping method,

2. Shipping service is requested, which returns the shipping costs,
Invoice service provides the process with an invoice,
4. Production of ordered goods is scheduled with the request to scheduling

©w

service.

All the activities are performed consecutively. The reference process with ac-
companying services is depicted in fig. 3.

®
I £ Main ‘
L& Main |
‘ @] ReceivePurchaseOrder ‘
| £ shipping
| = prepareshipping |
‘ & RequestShipping [

‘ @) ReceiveSchedule }
=

‘ £ Invoicing
| @ nitiatepricecalculation |
|§Send5h|ppingprice Wl

e |
‘ #] Receivelnvoice |
e

| 8 Scheduling)

‘@Requests::heduhng ‘ =)

0 SendShlp;;lngSchedule } -

=1

‘ @] sendPurchaseOrder |
=

|

shipping
v’ service

» invoicing

. service

.
scheduling
service

Fig. 3. Purchase order handling reference process

4.2 Process Alternatives

The designer consideres three alternatives to the reference process shown in fig.

4:

1. Alternative (1): the purchase process first makes request to the shipping

service then in parallel to scheduling and invoice services.

Transformational Design of Business Processes for SOA. 11

2. Alternative (2): the process runs parallely all three requests — to invoice,
shipping and scheduling services.

3. Alternative (3): a bit more sophisticated one — the reference service is splited
into three separate services. First of them invokes shipping service, second
one invokes invoice and scheduling services, the third one composes the other
two subservices.

4.3 Equivalence verification

Each of the three alternatives are verified whether they are behaviorally equiv-
alent to the reference process. Technique of the verification has been described
in section 4. The result of the verification is as follows:

— Alternative (1) is behaviorally equivalent unconditionally,

— Alternative (2) is not equivalent, because the request to invoicing and ship-
ping services depends on the data received from shipping service. When all
three requests start at the same time, we can not guarantee that the data
from shipping service is received before the request to scheduling and invoic-
ing services. This alternative cannot be accepted.

— Alternative (3) is behaviorally equivalent.

4.4 Alternatives Evaluation — Performance

As it was mentioned at the beginning of the section, alternatives performance
and reusability is assessed so as to chose a preferred process’ structure. Perfor-
mance is measured as a mean response time under certain load level. The web
service and connections between services can be modeled with queueing the-
ory like M/M/1//inf system [8]. It means that requests arrive to the system
independently with exponential interval distribution and response time is also
exponentially distributed. Thanks to the above assumptions, average response
time of the whole system can be estimated as a sum of average response times of
its components: services and links between them. To make evaluation simpler,
we assume that every network connection has the same average latency Ry. So
average response time of the reference process is:

RRP = RBPELRP + Rshipping + Rinvoicing + Rschsduling + 7‘RN (15)

Please note that average response times of invoicing, shipping and scheduling
are simply added, thanks to the fact that services are invoked consecutively. Let
us assume additionally that the values of appropriate parameters are as follows:

— RpprL,p = 2 ms (average time of processing of main BPEL process)
— Rshipping = 3 ms (avg. resp. time. from shipping service)

— Rinvoicing = b ms (avg. resp. time. from invoicing service)

— Rscheduting = 4 ms (avg. resp. time. from service)

A. Ratkowski, A. Zalewski

e

invoicing
service

Alternative 1

#] ReceivePurchaseOrder

g shipping

= prepareShipping
@ FRequestshipping

#] ReceiveSchedule

shipping
service

g Invoicing

& scheduling

& RequestScheduling

& sendshippingSchedule

#] ReceivePurchaseOrder

invoicing
service

& Scheduling |———

(= prepareshipping |

[@ nitiatepriceCalculation |
+

scheduling
service

[@ Requestshipping |

(¢ J

scheduling

Alternative 2

& invokeshipping
[

& InvokenvoicingScheduling

@ RecevenvoicingSchedulng

#] SendpurchaseOrder

Alternative 3

1 ? service
\A{ #] Receveinvoice | [# Receiveschedule |
3 4 [
T
kE SendPurchaseOrder
shipping
service
shipping
service

invoicing
service

scheduling
service

Fig. 4. Discussed alternatives for the reference process

Transformational Design of Business Processes for SOA. 13

— Ry = 1 ms (avg. network latency)

That gives Rrp = 21ms.
For alternative (1) average response time is:

RAl = RBPELAI + Rshipping + max(Rinvoicinga Rscheduliny) + 7RN (16)

the difference between alternative (1) and reference process is that invoice
and scheduling services are requested parallelly, so response time of parallel part
is the maximum of response times of invoicing and scheduling processes. When
we assume that RBPELAl = RBPELRP then:

Ra1 = 17Tms.

Finally alternative (3) average response time is given by:

RA3 = RBPELA31 +RBPELA32 +RBPELA33 +Rshipping+max(Rinvoicing; Rscheduling)+11RN
(17)
that yields: Ra3 = 25ms

4.5 Alternatives Evaluation — Reusability

Total number of interfaces provided by the considered system (i.e. process and
acompanying services) has been used as a reusability metric (the more inter-
faces the higher reusability). Reference process and alternative (1) deliver four
interfaces: one to the purchase process and three to the elementary services:
invoicing, shipping and scheduling. Alternative (3) delivers six interfaces: three
to the elementary services, one to the composite service (process) and two new
interfaces to two subservices.
All the above data is gathered in table 2

Table 2. Quality metrics for the reference process and its alternatives.

Reference Alternative 1 |Alternative 3
process

Average response|21 ms 17 ms 25 ms

time

Reusability 4 6

Services quantity 1 1 3

4.6 Alternatives Selection

There is a trade-off between the two considered quality attributes: systems con-
sisting of more basic services are more reusable at the expense of performance
and vice versa. The designer has to decide according to assumed design prefer-
ences: when reusability is prefered — alternative (3) should be chosen, otherwise
when performance is the most important attribute — alternative (1) should be
preferred.

14 A. Ratkowski, A. Zalewski

5 Summary

The paper presents a transformational approach to the design of electronic busi-
ness processes denoted in BPEL. The approach has been founded on a novel
concept of business processes equivalence, which makes possible to construct
business processes by their gradual transformations. Processes resulting from
those transformations can be formally verified against their specification as well
as against typical properties of concurrent systems like livenes or reachability.
The designer, who steeres the transformations by evaluating non-functional at-
tributes, is informed either that transformed process meets predefined require-
ments or which parts of process’ behaviour has changed. He can accept or reject
such a non-equivalent transformation, beeing also assisted by supporting tools.
The usefulness of our approach has been presented on a not-trivial example. The
directions for tool support development have also been provided, some of these
tools have already been implemented: e.g. BPEL to LOTOS transformation tool.

Further research can include development of predefined transformations that
have been proved to preserve a priori properties like process equivalence as well
as the development of a business process design environemnt (software tools)
integrating all the tools needed to support the presented approach. The challenge
in building such tools is to make one consistent process out of all the separated
method steps and to build an integrated development environment. Integrated
tool can be built as an extension of one of the open-source software development
environments like Eclipse or NetBeans.

References

1. David Binkley and Keith Brian Gallagher. Program slicing. Advances in Comput-
ers, 43:1-50, 1996.

2. Tommaso Bolognesi and Ed Brinksma. Introduction to the iso specification lan-
guage lotos. Comput. Netw. ISDN Syst., 14(1):25-59, 1987.

3. Koshkina M. Breugel F. Models and verification of bpel. 2006.

4. Javier Camara, Carlos Canal, Javier Cubo, and Antonio Vallecillo. Formalizing
wsbpel business processes using process algebra. FElectr. Notes Theor. Comput.
Sci., 154(1):159-173, 2006.

5. R. Cleaveland and S. Smolka. Process algebra. 1999.

6. Rance Cleaveland. Concurrency workbench of the new century,
http://www.cs.sunysb.edu/ cwb/, 2000.

7. Fahland D. and Reisig W. Asm-based semantics for bpel: The negative control
flow. In Abstract State Machines, pages 131-152, 2005.

8. Andrea D’Ambrogio and Paolo Bocciarelli. A model-driven approach to describe
and predict the performance of composite services. pages 78-89, 2007.

9. Andrea Ferrara. Web services: a process algebra approach. In ICSOC ’04: Pro-
ceedings of the 2nd international conference on Service oriented computing, pages
242-251, New York, NY, USA, 2004. ACM Press.

10. Andrea Ferrara. Web services: a process algebra approach. pages 242251, 2004.

11. Howard Foster, Jeff Kramer, Jeff Magee, and Sebastian Uchitel. Model-based
verification of web service compositions. In 18th IEEE International Conference
on Automated Software Engineering (ASE), 2003.

12.

13.

14.

15.

16.
17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

Transformational Design of Business Processes for SOA. 15

Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer, and Michael Hu. Us-
ing a rigorous approach for engineering web service compositions: A case study.
In SCC °05: Proceedings of the 2005 IEEE International Conference on Services
Computing, pages 217-224, Washington, DC, USA, 2005. IEEE Computer Society.
Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web services.
In WWW °04: Proceedings of the 13th international conference on World Wide
Web, pages 621-630, New York, NY, USA, 2004. ACM.

Ingo Hofacker and Rudolf Vetschera. Algorithmical approaches to business process
design. Computers & OR, 28(13):1253-1275, 2001.

Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual.
Addison-Wesley Professional, September 2003.

A. Martens. Simulation and equivalence between bpel process models. 2005.
Fowler Martin. Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

Seattle University Everald E. Mills. Software metrics. (SEI-CM-12-1.1), 1988.
Ivan Moore. Automatic inheritance hierarchy restructuring and method refactor-
ing. pages 235-250, 1996.

William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Urbana-
Champaign, IL, USA, 1992.

Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel, Marlon
Dumas, and Arthur H. M. ter Hofstede. Formal semantics and analysis of control
flow in ws-bpel. Sci. Comput. Program., 67(2-3):162-198, 2007.

A. Ratkowski and A. Zalewski. Performance refactoring for service oriented archi-
tecture. ISAT ’2007: Information Systems Architecture And Technology, 2007.
Hinz S., Schmidt K., and Stahl C. Transforming BPEL to Petri Nets. In Proceedings
of the BPM 2005, pages 220-235, Nancy, France, September 2005. Springer-Verlag.
Gwen Salaiin, Lucas Bordeaux, and Marco Schaerf. Describing and reasoning on
web services using process algebra. page 43, 2004.

Gwen Salaiin, Andrea Ferrara, and Antonella Chirichiello. Negotiation among web
services using lotos/cadp. In ECOWS, pages 198-212, 2004.

Reisig W. Modeling and Analysis Techniques for Web Services and Business Pro-
cesses. In FMOODS 2005, Athens, Greece, June 15-17, 2005. Proceedings, volume
3535, pages 243-258. Springer Verlag, May 2005.

W3C. Xsl transformations (xslt) version 1.0, http://www.w3.org/tr/xslt, 1999.
Yang Y., Tan T, Yu J., and Liu F. Transformation bpel to cp-nets for verifying
web services composition. In Proceedings of NWESP ’05, page 137, Washington,
DC, USA, 2005. IEEE Computer Society.

