
HAL Id: hal-01572541
https://inria.hal.science/hal-01572541

Submitted on 7 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Testing of Heuristic Methods: A Case Study of Greedy
Algorithm

A. C. Barus, T. Y. Chen, D. Grant, F. -C. Kuo, M. F. Lau

To cite this version:
A. C. Barus, T. Y. Chen, D. Grant, F. -C. Kuo, M. F. Lau. Testing of Heuristic Methods: A Case
Study of Greedy Algorithm. 3rd Central and East European Conference on Software Engineering
Techniques (CEESET), Oct 2008, Brno, Czech Republic. pp.246-260, �10.1007/978-3-642-22386-0_19�.
�hal-01572541�

https://inria.hal.science/hal-01572541
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Testing of Heuristic Methods: A Case Study of
Greedy Algorithm

A. C. Barus??, T. Y. Chen, D. Grant, F.-C. Kuo, and M. F. Lau

Faculty of Information and Communication Technologies,
Swinburne University of Technology
John St., Hawthorn 3122 Australia

{abarus,tchen,dgrant,dkuo,elau}@ict.swin.edu.au

http://www.swin.edu.au/ict/

Abstract. Algorithms which seek global optima are computationally
expensive. Alternatively, heuristic methods have been proposed to find
approximate solutions. Because heuristic algorithms do not always de-
liver exact solutions it is difficult to verify the computed solutions. Such
a problem is known as the oracle problem. In this paper, we propose
to apply Metamorphic Testing (MT) in such situations because MT
is designed to alleviate the oracle problem and can be automated. We
demonstrate the failure detection capability of MT on testing a heuris-
tic method, called the Greedy Algorithm (GA), applied to solve the set
covering problem (SCP). The experimental results show that MT is an
effective method to test GA.
Key words: heuristic method, greedy algorithm, metamorphic testing

1 Introduction

Normally algorithms which deliver global optima are computationally expensive.
Alternatively, heuristic methods have been proposed to provide approximate
optima. These heuristic algorithms may be based on educated guesses, intuitive
judgement, or simply common sense to seek answers which are hopefully close to
the global optima. Such algorithms may deliver solutions that are global optima,
close to global optima, local optima or close to local optima. In other words,
there are uncertainties in the solutions delivered by these methods. Examples
of heuristic methods include algorithms proposed by Johnson for combinatorial
problems [1], by Bodorik et al. for distributed query processing [2], and by Cheng
et al. for real-time data aggregation in wireless sensor networks [3].

When such algorithms are implemented as software, it is important to en-
sure the correctness of the implementation. The availability of a test oracle — a
mechanism to verify the output of software — is necessary to determine whether
the software passes the test undertaken. Heuristic methods may not give exact
solutions for the computed problems. Therefore, it is difficult to verify outputs
of the corresponding software, which is known as the test oracle problem (or,

?? Corresponding author

2 Testing of Heuristic Methods: A Case Study of Greedy Algorithm

simply the oracle problem) in Software Testing. Metamorphic testing (MT) was
developed to deal with the oracle problem[4]. MT can be used to validate com-
puted outputs automatically without the presence of a test oracle. It uses some
properties of the computed problem, which are known as metamorphic relations
(MRs), to help validate the correctness of the computed outputs.

In this study we propose to apply MT to software implementing the greedy
algorithm (GA), which is a simple and straightforward heuristic method, to solve
the set covering problem (SCP) [1]. Particularly, we conduct a case study aimed
at demonstrating the failure detection capability of MT.

This paper is organized as follows: Section 2 presents the definition of MT,
Section 3 explains GA on SCP, and Section 4 describes the metamorphic rela-
tions (MRs) identified in this study. Details of experimental work, results and
discussions are presented in Section 5, and Section 6 concludes the paper.

2 The Metamorphic Testing (MT)

A test oracle is a mechanism that can be used by testers to verify the correct-
ness of computed outputs of a program [5]. We encounter the test oracle problem
when (i) there is no such oracle or (ii) the application of such an oracle becomes
too expensive. To alleviate this problem, Chen et al. [4] have developed the meta-
morphic testing (MT) approach which has been successfully applied in various
application domains ([7], [8], [9], [10], [11], [12]).

MT is a property-based testing method. We use the sine function to illustrate
the idea of MT. Suppose P is a program that computes the sine function. We
assume that we do not have an oracle for this problem - i.e., we do not know
exactly what is the value of the sine of an arbitrary input. Let 0.49 (radians)
be a test input of P. After executing P with 0.49, the corresponding output is
P(0.49). Due to the lack of an oracle, P(0.49) may be correct but we have no
way to verify it. The key idea of MT is to use a relationship called a test case
relation to generate some follow-up test cases, whose behaviour is predictable
from the original test case. If the predicted behaviour is not exhibited, then this
is indicative of an error in P. In the case of the sine function, we might choose
2π+0.49 and 4π+0.49 as follow-up test cases, as the sine function ought to yield
the same value for these as for 0.49. The test case of 0.49 is referred to as the
source test case in order to distinguish it from the follow-up test cases. As noted,
for the sine function, we expect that sin(0.49) = sin(2π+0.49) = sin(4π+0.49).
This relationship is referred to as the test result relation. After executing P with
2π+0.49 and 4π+0.49, we can then check whether the following equalities hold:
P(0.49) = P(2π + 0.49) = P(4π + 0.49). If either one of the equalities does not
hold, we know that P contains error. As exemplified by the sine function, a test
case relation may involve the output of the source test case. The success of MT
relies on the existence of a metamorphic relation (MR) which comprises of the
two interrelated relations: the test case relation and the test result relation. Once
an MR is defined, the generation of the follow-up test cases from the source test
case and the verification of the test result relationship can be automated.

Testing of Heuristic Methods: A Case Study of Greedy Algorithm 3

The following are formal definitions of MR and the procedure of MT [13]:
Definition MR Suppose a function f has inputs, I1 = {x1, x2, ..., xi} where
i ≥ 1 and let O1 = {f(x1), f(x2), ..., f(xi)} be the corresponding outputs. Let
S= {f(xs1), f(xs2), ..., f(xsk

)} denote a subset of O1 where S may be empty.
Let I2 = {xi+1, xi+2, ..., xj} be other inputs to f where j ≥ i + 1 and O2 =
{f(xi+1), f(xi+2), ..., f(xj)} be the corresponding outputs. Suppose there exists
a relation R1 among I1, S and I2, and another relation R2 among I1, I2, O1 and
O2 such that R2 must be satisfied whenever R1 is satisfied. Then, a metamorphic
relation MR can be defined as:
MR ={ (x1, x2, ..., xj , f(x1), f(x2), ..., f(xj))| R1(x1, x2, ..., xi, f(xs1), f(xs2), ...,
f(xsk

), xi+1, xi+2, ..., xj) → R2(x1, x2, ..., xj , f(x1), f(x2), ..., f(xj))}
Elements of I1 and I2 are referred to as source test cases and follow-up test
cases, respectively. Relations R1 and R2 are referred to as the test case relation
and the test result relation, respectively.
Procedure MT Suppose the function f is implemented by a program P . The
procedure of MT using the MR described in the above definition consists of the
following steps:

1. Run P using a series of test cases I1 as source test cases and get the corre-
sponding outputs O1.

2. Use R1, I1, and O1 to generate follow-up test cases I2.
3. Run P using I2 as inputs to get the corresponding outputs O2.
4. Check the relation R2: if R2 does not hold then a failure is revealed.

As program failures may be sensitive to different MRs, it is recommended to
identify more than one MR when applying MT. For our sine function example,
other possible MR is as follow. For any inputs x1 and x2 where π/2 < x1 <
x2 < 3π/2, sin(x1) must be greater than sin(x2). Formally speaking, MRsin2 :
π/2 < x1 < x2 < 3π/2→ sin(x1) > sin(x2)

3 Greedy Algorithm on Set Covering Problem

The set covering problem (SCP) is one of the NP-complete problems [14] that
has been well studied in computer science and complexity theory. Given a set of
objects O and a set of requirements R that can be collectively satisfied by objects
in O, SCP is to find the smallest subset of O that satisfies all requirements in
R. For ease of discussion, in this paper, we use a key to represent an object in O
and a lock to represent a requirement in R. SCP can be rephrased as a key-lock
problem (KLP). Given a set K of keys that can collectively open a set L of locks,
find a set of keys in K of smallest size that can open all locks in L.

In this study, we focus on the greedy algorithm (GA) as one of many heuristic
solutions to solve SCP. We refer to the expression of GA in [15] that can be
translated to pseudocode presented in the Appendix. GA consists of a series of
search steps. In each step, it looks for a local optimum which is a key that opens
the largest number of locks that cannot be opened by previously selected keys.
In general, the set of keys selected by GA may not be a global optimum.

4 Testing of Heuristic Methods: A Case Study of Greedy Algorithm

Formally, suppose there are a set of keys, K = {k1, k2, ..., kx} and a set of
locks, L = {l1, l2, ..., ly} where x, y > 0. For every pair (km, ln) ∈ (K × L), we
define r(m,n) as a relationship between key km and lock ln such that r(m,n) = 1
if km opens lock ln and r(m,n) = 0, otherwise. Initially, the relationship r(m,n)
is stored in the (m,n)th element of matrix M , ∀m, 1 ≤ m ≤ x, ∀n, 1 ≤ n ≤ y.
However, M consists of (x+1) rows and (y+1) columns. The additional column
contains all identifiers for the keys in K and the additional row contains all iden-
tifiers for the locks in L. Each M [m][n] corresponds to r(m,n), the relationship
between key km and lock ln where the key identifier km is stored in M [m][y+1],
∀m, 1 ≤ m ≤ x and the lock identifier ln is stored in M [x+1][n], ∀n, 1 ≤ n ≤ y.
Intuitively speaking, M [m][] (the mth row), ∀m, 1 ≤ m ≤ x corresponds to key
km and M [][n] (the nth column), ∀n, 1 ≤ n ≤ y corresponds to lock ln. Note
that after GA in the Appendix selects the first key, its corresponding rows and
columns (representing locks opened by the key) will be removed. Hence, we need
the extra row and column to identify the remaining keys and locks in M . Matrix
M can be presented as follows:

M =


r(1, 1) r(1, 2) . . . r(1, y) k1

r(2, 1) r(2, 2) . . . r(2, y) k2

.

.
r(x, 1) r(x, 2) . . . r(x, y) kx

l1 l2 . . . ly


Given a set of keys K, a set of locks L, and their relationship stored in a

matrix M , GA considers the number of locks in L that can be opened by each
key in K (in other words, the total number of “1”s appearing in each row of M)
in order to make a series of decisions regarding the local optimum. As all key
identifiers of K and all lock identifiers of L have been embedded in M , GA will
merely analyse M to guide its search process. Basically, GA’s search consists of
iterations of the following steps.

1. For each row of M , count the number of locks opened by the key correspond-
ing to the row. Note: hereafter, the number of locks opened by a key k is
referred as numOpenL(k).

2. Select a key (say kx) in M such that kx can open the most locks in M . In
other words, numOpenL(kx) is the largest among all numOpenL(k) for all
keys k in M . In case of a tie, select the key with the smallest row index.

3. Append the selected key kx to O, an array storing output elements of GA.
4. Remove columns in M corresponding to all locks that can be opened by kx.
5. Remove the row in M corresponding to kx.
6. Repeat steps 1 to 5 until M has one column left.

At the end of the search, M only contains a column storing the identifiers of
unselected keys. However, if all keys are selected into O, this column is empty.
The output of GA is O which contains all keys selected in the search process.

A test oracle for GA can be obtained manually only when the size of M is
small. Even when M is moderate in size (say, with 30 or more rows and columns),
there is an oracle problem for testing the implementation of GA. Therefore, in

Testing of Heuristic Methods: A Case Study of Greedy Algorithm 5

this study we propose to use Metamorphic Testing (MT) to verify the imple-
mentation of GA.

As mentioned, GA uses and manipulates M to determine the local optima
based on the largest numOpenL(km), for each km in M . Details of the algorithm
are presented in the Appendix.

We illustrate GA in an instance of KLP, namely KL-example.
KL-example. Suppose there is a set of keys, {k1, k2, ..., k5}, a set of locks,
{l1, l2, ..., l9}, and the associated input matrix MKL to GA is as follows:

MKL =


1 0 1 0 0 0 1 0 0 k1

1 0 0 1 0 1 0 0 0 k2

0 1 0 0 0 0 1 1 0 k3

1 0 1 0 0 0 1 1 0 k4

0 0 1 0 1 0 0 0 1 k5

l1 l2 l3 l4 l5 l6 l7 l8 l9


Since k4 opens the most number of locks in MKL (that is four locks: l1, l3,

l7 and l8), GA selects k4 as a local optimum and appends k4 to O so that now O
= [k4]. The row corresponding to k4 and the columns corresponding to l1, l3, l7
and l8 are deleted from the matrix. As a result, the matrix is updated as follows:

0 0 0 0 0 k1

0 1 0 1 0 k2

1 0 0 0 0 k3

0 0 1 0 1 k5

l2 l4 l5 l6 l9


In the second round of search, both k2 and k5 open the most number of

remaining locks. However, because the row index of k2 is smaller than the row
index of k5, GA selects k2 so that now O = [k4, k2]. The row corresponding to k2

and columns corresponding to locks opened by k2 (that is, l4 and l6) are deleted
from the matrix. As a result, the matrix is updated as follows:

0 0 0 k1

1 0 0 k3

0 1 1 k5

l2 l5 l9


Using the same procedure, in the third round, k5 is picked as the local opti-

mum so that now O = [k4, k2, k5]. Then the matrix is updated as follows: 0 k1

1 k3

l2


Finally, GA selects k3 so that now O = [k4, k2, k5, k3] and deletes all columns

and rows associated with k3. Then, the matrix is updated as follows:(
k1

)
At this point, the matrix contains only one column. Hence, GA stops the

search process and returns its output O = [k4, k2, k5, k3]. However, in this exam-
ple, we can see that the global minimum solution is [k2, k3, k5]. So how can we
know whether the implementation of GA is correct? (We emphasise that we refer

6 Testing of Heuristic Methods: A Case Study of Greedy Algorithm

to our implementation of GA. We do not know what the output of GA should
be. We do have the output of our program. How do we check it is correct?)

4 Metamorphic Relation (MR)

Identification of MRs is an essential step in conducting MT. In this study, we
propose nine MRs, MR1 to MR9, in applying MT on GA to solve SCP. We use
M and M ′ to denote a source test case and the follow-up test case respectively in
describing the MRs. To illustrate those MRs further, we reuse the KL-example
with MKL as the source test case, as discussed in the previous section. The
follow-up test case generated using a particular MR, say MR-i, is denoted as
M ′(MR-i). In the following discussion, the highlighted cells of M ′(MR-i) indicate
cells modified after applying MR-i. We also use O and O′ to denote the output
of the source and follow-up test cases, respectively and numO to denote the size
(the number of elements) of O. Note that unlike the initial MKL specified in
Section 3, the follow-up test cases M ′(MR-i) in this section may have the mth

row corresponding to a key other than km in K and the nth column to a lock
other than ln in L. We now discuss the nine MRs.
1. MR1 (Interchanging columns related to the key-lock relationship).

If we generate the follow-up test case M ′ by interchanging two columns of
the source test case M which are related to the key-lock relationship, then
O′ = O. (This corresponds to re-labelling two locks, and has no effect on the
keys chosen by GA) For example, if we apply MR1 by interchanging columns
related to l2 and l4 in MKL,

M ′(MR1) =


1 0 1 0 0 0 1 0 0 k1

1 1 0 0 0 1 0 0 0 k2

0 0 0 1 0 0 1 1 0 k3

1 0 1 0 0 0 1 1 0 k4

0 0 1 0 1 0 0 0 1 k5

l1 l4 l3 l2 l5 l6 l7 l8 l9


then we have O′ = O = [k4, k2, k5, k3]

2. MR2 (Adding a useless key row). A key is said to be useless if it cannot
open any locks. If M ′ is obtained from M by adding a row corresponding
to a useless key, then O′ = O. For example, if we apply MR2 to generate
M ′(MR2) by adding a row corresponding to the useless key k6 in MKL,

M ′(MR2) =



1 0 1 0 0 0 1 0 0 k1

1 0 0 1 0 1 0 0 0 k2

0 1 0 0 0 0 1 1 0 k3

1 0 1 0 0 0 1 1 0 k4

0 0 1 0 1 0 0 0 1 k5

0 0 0 0 0 0 0 0 0 k6

l1 l2 l3 l4 l5 l6 l7 l8 l9


then we have O′ = O = [k4, k2, k5, k3]

3. MR3 (Adding an insecure lock column). A lock is insecure if it can be
opened by any key. If M ′ is obtained from M by adding a column corre-
sponding to an insecure lock, then O′ = O. For example, if we apply MR3 to

Testing of Heuristic Methods: A Case Study of Greedy Algorithm 7

generate a follow-up test case M ′(MR3) by adding a column corresponding
to the insecure lock l10 in MKL,

M ′(MR3) =


1 0 1 0 0 0 1 0 0 1 k1

1 0 0 1 0 1 0 0 0 1 k2

0 1 0 0 0 0 1 1 0 1 k3

1 0 1 0 0 0 1 1 0 1 k4

0 0 1 0 1 0 0 0 1 1 k5

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10


then we have O′ = O = [k4, k2, k5, k3]

4. MR4 (Rearranging rows corresponding to the selected keys on top
while preserving their order). M ′ is obtained from M by rearranging 1)
the rows of the selected keys to be the top rows of M ′ while preserving their
selected order and 2) those rows related to unselected keys all placed below
the rows of selected keys, in any order. Then, we have O′ = O. We want to
preserve the ordering so that the checking of the test result relation (O′ = O)
can be implemented in linear time when O is stored as a 1-dimensional array.
For example, if we apply MR4 to generate a follow-up test case M ′(MR4)
from MKL,

M ′(MR4) =


1 0 1 0 0 0 1 1 0 k4

1 0 0 1 0 1 0 0 0 k2

0 0 1 0 1 0 0 0 1 k5

0 1 0 0 0 0 1 1 0 k3

1 0 1 0 0 0 1 0 0 k1

l1 l2 l3 l4 l5 l6 l7 l8 l9


then we have O′ = O = [k4, k2, k5, k3]

5. MR5 (Adding a combined key of two consecutively selected keys).
If two keys are combined together as one key, the resulting key can open
all locks that can be opened by any individual key. The resulting key is
referred to as a combined key of the two individual keys. In applying MR5,
M ′ is obtained from M by appending a row corresponding to a key, say
kx, which combines two selected keys. To simplify the discussion, we restrict
our discussion to the second and third selected keys, namely ko2 and ko3 ,
respectively. In fact, this can be generalized to any two consecutive selected
keys. To generate the follow-up test case, there are two interrelated steps:

(a) (Adding a combined key) Append a row corresponding to kx — the
combined key of ko2 and ko3 . In other words, the relationship between
kx and each lock ln in M can be defined as follow: r(x, n) = 1 if either
r(o2, n) = 1 or r(o3, n) = 1.

(b) (Preserving the ordering) Since the combined key kx may open more
locks than the first selected key ko1 , we need to add N extra locks that
can only be opened by ko1 so that ko1 is selected before kx in the new
solution. By doing so, we can preserve the ordering of the selected keys
so that the test result relation of this MR is simple and easily verified.
If numOpenL(kx) > numOpenL(ko1), then the number of extra locks
needed for ko1 is numOpenL(kx) - numOpenL(ko1). Otherwise, no extra

8 Testing of Heuristic Methods: A Case Study of Greedy Algorithm

locks are needed. Note: a lock that can be opened by one and only one
key kx is referred to as an exclusive lock for kx.

Then, we have kx in the second selected key in O′ and O′ - kx = (O - ko2) -
ko3 . Note that the minus (-) operator here (and also in the rest of the paper)
denotes that the right operand, in this case a key, is deleted from the left
operand, in this case an array of keys. For example, if we apply MR5 to
generate a follow-up test case M ′(MR5) by appending k6 — a combined key
of k2 and k5 — in MKL and then appending two exclusive locks to k4 (l10
and l11) because numOpenL(k4) - numOpenL(k6) = 6− 4 = 2),

M ′(MR5) =



1 0 1 0 0 0 1 0 0 0 0 k1

1 0 0 1 0 1 0 0 0 0 0 k2

0 1 0 0 0 0 1 1 0 0 0 k3

1 0 1 0 0 0 1 1 0 1 1 k4

0 0 1 0 1 0 0 0 1 0 0 k5

1 0 1 1 1 1 0 0 1 0 0 k6

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11


then we have k6 = O′[2] and O′ - k6 = (O - k2) - k5. In this example, O′ =
[k4, k6, k3].

6. MR6 (Excluding a selected key other than the first selected key
while preserving the order of the remaining selected keys). By ex-
cluding a selected key other than the first selected key, say kx, so that it
will not be selected in the next output, we need to reset the selected keys
preceding kx in the original output, so that they can open the locks that can
be opened by the excluded key. In order to preserve the ordering of the re-
maining selected keys for ease of checking the two solutions, we need to take
some precautions. First, we cannot simply reset the selected key preceding
kx in O to be able to open all locks opened by kx. This is because the total
number of locks opened by the key will increase and hence, it is possible
that that key would then be selected earlier. Second, we cannot simply reset
the first selected key ko1 to open all these locks as well. This is because it
is possible that the selection order of the remaining keys might be upset, as
shown in the following example.

M =


1 1 1 1 1 0 0 0 0 0 0 0 0 0 k1

0 0 0 0 0 1 1 1 1 0 0 0 0 0 k2

0 0 0 0 0 0 0 0 1 1 1 0 0 0 k3

0 0 0 0 0 0 0 0 0 0 0 1 1 0 k4

0 0 0 0 0 1 1 0 0 0 0 0 0 1 k5

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14


In this case, we have O = [k1, k2, k3, k4, k5]. Suppose we would like to exclude
k5 in the next output by resetting the first selected key k1 as follows:

M ′ =


1 1 1 1 1 1 1 0 0 0 0 0 0 1 k1

0 0 0 0 0 1 1 1 1 0 0 0 0 0 k2

0 0 0 0 0 0 0 0 1 1 1 0 0 0 k3

0 0 0 0 0 0 0 0 0 0 0 1 1 0 k4

0 0 0 0 0 1 1 0 0 0 0 0 0 1 k5

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14



Testing of Heuristic Methods: A Case Study of Greedy Algorithm 9

Then O′ = [k1, k3, k2, k4] and, hence, the ordering of these previously se-
lected keys is different from that in O. Therefore, in applying MR6, M ′ is
obtained from M by resetting the first selected key ko1 so that it can only
open those locks that can be opened by kx (say kx is O[i], 2 ≤ i ≤ numO)
but not by any key ky where ky = O[j], 2 ≤ j < i. In other words, when
r(x, n) = 1 and r(y, n) = 0 then r(o1, n) is updated to “1”, for all ln in M .
Then, we have O′ = O - kx. For example, suppose we want to apply MR6
to generate M ′(MR6) by excluding k5 of MKL in O′. The first selected key
in O, k4 is reset so that it can open l5 and l9, which are locks that can be
opened by k5 but not by the other selected key preceding k5, which is k2.
The follow-up test case is given by

M ′(MR6) =


1 0 1 0 0 0 1 0 0 k1

1 0 0 1 0 1 0 0 0 k2

0 1 0 0 0 0 1 1 0 k3

1 0 1 0 1 0 1 1 1 k4

0 0 1 0 1 0 0 0 1 k5

l1 l2 l3 l4 l5 l6 l7 l8 l9


and we then have O′ = O - k5. In this example, O′ = [k4, k2, k3].

7. MR7 (Deleting a selected key while preserving the order of the
remaining selected keys). This MR is different from MR6 because the
row corresponding to a selected key say, kx, is deleted from M . All columns
related to locks opened by kx are also deleted from M . However, in order
to preserve the order of the remaining selected keys, we have to add extra
columns corresponding to exclusive locks to each of the selected keys preced-
ing kx in O. In more detail, M ′ is obtained from M in the following manner:
(a) The row corresponding to kx is deleted from M ′.
(b) All locks that can be opened by kx are deleted from M ′.
(c) For each ky, a selected key preceding kx in O, N exclusive locks to ky

are appended to M ′ where N is the number of locks that can be opened
by both kx and ky. Note: a lock that can be opened by both kx and ky

is referred to as share lock of kx and ky. The checking of the share locks
is according to the order of the selected keys preceding kx in O. Once a
lock has been considered as a share lock of any pair of keys, it cannot be
used as a share lock of other pairs.

Then, we have O′ = O - kx. For example, if we apply MR7 to generate a
follow-up test case M ′(MR7) by deleting k3 in MKL, the row corresponding
to k3 and all columns corresponding to locks opened by k3 are deleted. For
the keys preceding k3 in O (that is k4, k2, and k5), we find that k3 and k4

have two share locks; k3 and k2 have no share locks; and k3 and k5 also have
no share locks. Accordingly, we need to add two locks, l10 and l11, that are
exclusive to k4. Hence, the follow-up test case is:

M ′(MR7) =


1 0 1 0 0 0 1 0 0 0 0 k1

1 0 0 1 0 1 0 0 0 0 0 k2

0 1 0 0 0 0 1 1 0 0 0 k3

1 0 1 0 0 0 1 1 0 1 1 k4

0 0 1 0 1 0 0 0 1 0 0 k5

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11



10 Testing of Heuristic Methods: A Case Study of Greedy Algorithm

Note that the darker highlighted cells will be deleted. Then, we have O′ =
O - k3. In this example, O′ = [k4, k2, k5].

8. MR8 (Adding an exclusive lock to an unselected key). If M ′ is ob-
tained from M by adding an extra column that corresponds to an exclusive
lock to a particular unselected key, then we expect that the unselected key
will be in the new solution. Since the unselected key may open other exist-
ing locks, some previously selected key may be excluded from the solution.
However, we cannot pre-determine which key will be excluded. For example,
if we apply MR8 to generate a follow-up test case M ′(MR8) by adding an
exclusive lock l10 to k1 — a key which is unselected in O, then

M ′(MR8) =


1 0 1 0 0 0 1 0 0 1 k1

1 0 0 1 0 1 0 0 0 0 k2

0 1 0 0 0 0 1 1 0 0 k3

1 0 1 0 0 0 1 1 0 0 k4

0 0 1 0 1 0 0 0 1 0 k5

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10


and we have k1 in O′. In this example, O′ = [k1, k2, k3, k5]. Please note that
the key k4 (originally in O) is not in O′ .

9. MR9 (Adding an exclusive lock to an unselected key while preserv-
ing the order of the previously selected keys). This MR is different
from MR8 because the order of the previously selected keys is preserved. In
more details, the follow-up test case M ′ of this MR is obtained as follows:
Add an extra column that corresponds to an exclusive lock to a particular
unselected key and reset the unselected key so that it can open and only
open that exclusive lock. Then, we are guaranteed that the order of the pre-
viously selected keys in both solutions are the same. In other words, we have
O′ - kx = O. For example, if we apply MR9 to generate a follow-up test case
M ′(MR9) by adding an exclusive lock l10 to k1 and resetting k1 such that it
can open and only open l10, then

M ′(MR9) =


0 0 0 0 0 0 0 0 0 1 k1

1 0 0 1 0 1 0 0 0 0 k2

0 1 0 0 0 0 1 1 0 0 k3

1 0 1 0 0 0 1 1 0 0 k4

0 0 1 0 1 0 0 0 1 0 k5

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10


Then, we have O′ - k1 = O. In this example, O′ = [k4, k2, k1, k3, k5]

5 Results and Observation

We applied MT to test a program implementing the algorithm in the Appendix.
It was written in Java and the testing was conducted in a Linux environment. We
applied the fault seeding technique — which is widely used in software testing
experiments ([9], [16])— to create five faulty versions of the program. We inserted
one bug into each faulty version. The bug insertion process used mutant operators
introduced by Agrawal et al. [17]. The mutant operators were chosen randomly

Testing of Heuristic Methods: A Case Study of Greedy Algorithm 11

and independently. Faults resulted from those mutant operators are detailed in
Table 1

Faulty Program Line# Original Statement Faulty Statement

V 1 8 i = 1 i = 2
V 2 11 M [i][j] = 1 M [i][j] 6= 1
V 3 14 noOLocks > maxOLocks noOLocks ≥ maxOLocks
V 4 15 maxOLocks := noOLocks maxOLocks := i
V 5 23 i = 1 i = 2

Table 1. Faults in faulty programs V1 to V5 based on pseudocode in the Appendix

Source test cases were generated in matrix format with random sizes of rows
and columns in the range between 1 and 100 (there were no empty matrix
inputs). The content of matrixes (K, L and their relationship) were also generated
randomly, subject to the constraint that every row had at least one “1” and every
column had at least one “1” (in other words, every key can open at least one lock
and every lock can be opened by at least one key). We generated a test suite
of one hundred test cases. These test cases were used as source test cases for
testing faulty programs V1 to V5 using the nine MRs introduced in Section 4.
The results are presented in Table 2.

From Table 2, we observe that most of the MRs contributed to reveal failure
in at least one faulty version, except MR1, which did not reveal any failures.
This is reasonable because we cannot guarantee that every MR can reveal any
failure. Such a case simply exhibits the general limitation of software testing,
that is, there is no guarantee that a certain fault will be exposed.

MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8 MR9

V1 0 6 0 93 0 0 0 18 11
V2 0 100 0 2 100 100 69 0 0
V3 0 0 0 100 95 0 0 0 0
V4 0 30 43 100 80 4 25 0 8
V5 0 10 31 56 67 31 31 0 0

Table 2. Percentage of tests revealing failures in the faulty versions by MRs

We consider an entry in Table 2 as the execution of a faulty version using
one hundred pairs of source test cases and follow-up test cases corresponding
to a specific MR. Therefore, we have 9 x 5 = 45 entries in our experiments
of which 24 entries are non-zero. If all pairs of source test cases and follow-up
test cases are considered (a total of 4500 pairs), there are 1210 pairs (26.9 %)
which reveal failures. Given that there is no way to verify the correctness of
the computed outputs, and that MT could be fully automated once the MRs
have been defined, a failure detection effectiveness of 26.9 % is in fact very
encouraging. It should also be noted that to apply MT in generating test cases,
the software test engineers only require minimal programming skills and the
relevant problem domain knowledge.

Different failures in our experiments can be detected by different MRs be-
cause of their different characteristics. For example, the faulty version V2 selects
the key that opens the least number of locks instead of the maximum. Hence,
MR2 can reveal this failure because it adds a useless key (a key that cannot

12 Testing of Heuristic Methods: A Case Study of Greedy Algorithm

open any lock) in the follow-up test case - a key that will be chosen in the faulty
program but not in a correct program. On the contrary, MR3 cannot reveal this
failure because it adds an insecure lock (a lock that can be opened by every key)
in the follow-up test case, and such a key will never be chosen in V2.

As our experiments show that some MRs, say MR4, can reveal more failures
than the others, the selection of good MRs is crucial. Obviously, all MRs could
potentially be used in MT. However, due to resource limitations — in industrial
examples, running test cases even on powerful computers may take many hours
— it is essential to identify which MRs should be given higher priority. Chen et al.
have conducted some case studies on the selection of useful MRs in MT[9]. One
of their general conclusions is that the bigger the differences between program
executions on the source and follow-up test cases, the better are the MRs.

6 Conclusion

Heuristic methods do not deliver exact answers. Accordingly, software imple-
menting these methods are subject to the oracle problem. We propose to apply
metamorphic testing (MT) — an automated property-based testing method —
to test such software. In this study, we investigated the application of MT on
the greedy algorithm (GA) applied to the set covering problem. We identified
nine MRs to apply MT on GA and conducted testing on five faulty versions of
a program implementing GA. Based on the experimental results, we found that
MT reveals at least one failure in each of the faulty versions under investigation.
It demonstrates the fault detection capability of MT in automatically testing
heuristic programs such as GA.

The experimental results report that some MRs can contribute in revealing
more failures than others. This is due to the different characteristics of the MRs.
Hence, it is crucial to select good MRs particularly when the resources are limited
for conducting testing.

Our study is limited by the following threats. (1) Threat to internal validity
(e.g. experimental setup). We have carefully examined the processes to make
sure that no such threat exists. (2) Threat to construct validity (e.g. evaluation
method). The failure detection effectiveness of MT is only studied based on the
percentage of pairs of source and follow-up test cases which revealed failures.
It is worthwhile to examine the effectiveness of MT in other measurements, as
part of the future work. (3) Threat to external validity (e.g. number and size of
subjects in the case study). We only applied MT to one simple program of GA in
the case study. In the future work, it is interesting to investigate the effectiveness
of MT using more and bigger sized programs.

In the future, we also propose to study a new approach for defining MRs.
In the new approach, prior to defining MRs, we will attempt to use knowledge
of possible faults in the software under test, (whereas our current approach is
ad-hoc, defining the MRs independently from the possible faults or in this study,
independently from the mutant generation). The faults can be identified at either
high level (specification-based) or lower level (source code-based). Afterwards,

Testing of Heuristic Methods: A Case Study of Greedy Algorithm 13

we will attempt to define MRs for targeting such faults. We expect that this
approach may contribute a more effective set of MRs than our current approach.

Acknowledgment We would like to acknowledge the support given to this
project by an Australian Research Council Discovery Grant (ARC DP0771733)

References

1. Johnson, D.S.: Application of algorithms for combinatorial problems. Journal of
Computer and System Science 9(3) (Dec 1974) 256–278

2. Bodorik, P., Riordon, J.S.: Heuristic algorithms for distributed query processing.
In: Proceedings of the first International Symposium on Databases in Parallel and
Distributed Systems DPDS’88, IEEE Computer Society Press (January 2000)

3. Cheng, H., Liu, Q., Jia, X.: Heuristic algorithms for real-time data aggregation in
wireless sensor networks. In: Proceedings of the 2006 International Conference on
Wireless Communication and Mobile Computing. (2006) 1123–1128

4. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing : a new approach for
generating next test cases. Technical Report HKUST-CS98-01, Department of
Computer Science, Hong Kong University of Science and Technology, Hong Kong
(1998)

5. Weyuker, E.J.: On testing non-testable programs. The Computer Journal 25(4)
(1982) 465–470

6. Chan, W.K., Cheung, S.C., Leung, K.R.P.H.: Towards a metamorphic testing
methodology for service-oriented software applications. In: Proceedings of the
5th International Conference on Quality Software(QSIC 2005), IEEE Computer
Society Press, Los Alamitos, California (2005) 470–476

7. Chan, W.K., Cheung, S.C., Leung, K.R.P.H.: A metamorphic testing approach for
online testing of service-oriented software applications. a Special Issue on Service
Engineering of International Journal of Web Services Research 4(2) (2007) 60–80

8. Chen, T.Y., Feng, J., Tse, T.H.: Metamorphic testing of programs on partial dif-
ferential equations: a case study. In: Proceedings of the 26th Annual International
Computer Software and Applications Conference (COMPSAC), IEEE Computer
Society Press, Los Alamitos, California (2002) 327–333

9. Chen, T.Y., Huang, D., Tse, T.H., Zhou, Z.Q.: Case studies on the selection of
useful relations in metamorphic testing. In: Proceedings of the 4th Ibero-American
Symposium on Software Engineering and Knowledge Engineering (JIISIC), Poly-
technic University of Madrid (2004) 569–583

10. Chen, T.Y., Tse, T.H., Zhou, Z.Q.: Semi-proving: an integrated method based on
global symbolic evaluation and metamorphic testing. In: Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA),
ACM Press, New York (2002) 191–195

11. Chen, T.Y., Tse, T.H., Zhou, Z.Q.: Fault-based testing without the need of oracles.
Information and Software Technology 45(2) (2003) 1–9

12. Gotlieb, A.: Exploiting symmetries to test programs. In: Proceedings of the 14th
International Symposium on Software Reliability Engineering (ISSRE). (2003)

13. Chan, W.K., Chen, T.Y., Lu, H., Tse, T.H., Yau, S.S.: Integration testing of
context-sensitive middleware-based applications: a metamorphic approach. Inter-
national Journal of Software Engineering and Knowledge Engineering 16(5) (2006)
677–703

14 Testing of Heuristic Methods: A Case Study of Greedy Algorithm

14. Garey, M.R., Johnson, D.S.: Computers and Interactibility: A Guide to the Theory
of NP-Completeness. Freeman, W. H (1979)

15. Cormen, T.H., Leisevsen, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press. (1990)

16. Do, H., Rothermel, G., Kinneer, A. : Prioritizing JUnit Test Cases: An Empiri-
cal Assessment and Cost-Benefits Analysis. Empirical Software Engineering, An
International Journal 11(1) (2006) 33–70

17. Agrawal, H., DeMillo, R.A., Hathaway, R., Hsu, W., Hsu, W., Krauser, E.W.,
Martin, R.J., Mathur, A.P., Spafford, E.H.: Design of mutant operators for the C
programming language. Technical Report SERC-TR-41-P, Software Engineering
Research Center, Purdue University, West Lafayette, Indiana, USA (March 1989)

Appendix: Greedy Algorithm on the Key-Lock Problem

1 INPUT M, where M is a matrix with (x + 1) rows and (y + 1) columns.

2 O := [], an empty array to store the selected keys as GA’s output

3 numO := 0, a variable to count the number of selected keys

4 WHILE (x > 1), DO BEGIN

5 maxOLocks := 0
6 bestRowIndex := 0
7 bestKeyID := 0
8 FOR i = 1 to y, DO BEGIN

9 nOLocks := 0
10 FOR j = 1 to y, DO BEGIN

11 IF M [i][j] = 1, THEN BEGIN

12 nOLocks := nOLocks + 1
13 END

14 IF nOLocks > maxOLocks, THEN BEGIN

15 maxOLocks := nOLocks
16 bestRowIndex := i
17 bestKeyID := M [bestRowIndex][y + 1]
18 END

19 END

20 arrOpenedLocks := []
21 FOR j = 1 to y, DO BEGIN

22 IF M [bestRowIndex][j] = 1 THEN

23 FOR i := 1 to x +1, DO BEGIN

24 append M [i][j] to arrOpenedLocks
25 END

26 END

27 Remove arrOpenedLocks from matrix M
28 Remove M [bestRowIndex][] from matrix M
29 x := x− 1
30 y := y −maxOLocks
31 O[numO] := bestKeyID
32 numO = numO + 1
33 END

34 OUTPUT O

