
HAL Id: hal-01572536
https://inria.hal.science/hal-01572536

Submitted on 7 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Open Work of Two-Hemisphere Model Transformation
Definition into UML Class Diagram in the Context of

MDA
Oksana Nikiforova, Natalja Pavlova

To cite this version:
Oksana Nikiforova, Natalja Pavlova. Open Work of Two-Hemisphere Model Transformation Defi-
nition into UML Class Diagram in the Context of MDA. 3rd Central and East European Confer-
ence on Software Engineering Techniques (CEESET), Oct 2008, Brno, Czech Republic. pp.118-130,
�10.1007/978-3-642-22386-0_9�. �hal-01572536�

https://inria.hal.science/hal-01572536
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Open Work of Two-Hemisphere Model
 Transformation Definition into

UML Class Diagram in the Context of MDA

Oksana Nikiforova1 and Natalja Pavlova1

1Department of Applied Computer Science, Riga Technical University, Riga, Latvia,
{oksana.nikiforova, natalja.pavlova}@rtu.lv

Abstract. Model Driven Architecture (MDA) is based on models and dis-
tinguish between a system functionality specification and this specification
realization on a given technological platform. MDA consists of four mod-
els: CIM (Computation Independent Model), PIM (Platform Independent
Model), PSM (Platform Specific Model) and code model, all these are parts
of the MDA transformation line: CIM->PIM->PSM->code. A PIM model
has to be created using a language which is able to describe a system from
various points of view, system behavior, system’s business objects, system
actors, system use cases and so on. Current paper discusses the application
of two-hemisphere model for construction of UML class diagram as a part
of PIM. Several solutions for determination of elements of class diagram
from two-hemisphere model are currently researched and described in the
paper. As well as application of the transformations by example of insur-
ance problem domain are presented in the paper.

Keywords: Business process diagram, class diagram, MDA, PIM, relation-
ships among classes.

1 Introduction

Model Driven Architecture (MDA) is a framework being built under supervision
of the Object Modeling Group (OMG) [1]. MDA separates system business as-
pects from system implementation aspects. MDA defines the approach and tool
requirements to specification of systems independently of platforms, specification
of platforms, choosing of particular platforms to the systems, and transformation
of specifications of business domains into specifications that include specific in-
formation of platforms, which have been chosen. MDA proposes a software de-
velopment process in which the key notions are models and model transformations
[2]. Software is built by constructing one or more models, and transforming them
into other models in this process. The common view on this process is as follows:
input is platform independent models and output is platform specific models. The
platform specific models can be easily transformed into an executable format [3].

2

There is a more generic view in Model Driven Architecture [4]. A difference
between platform independent models and platform specific models is not domi-
nant in this case. The key of this view is that the software development process is
implemented by an intricate sequence of transformation executions that are com-
bined in various ways. This makes system development much more open and flex-
ible [3].

The MDA idea is promising – raising the level of abstraction, on which systems
are developed. Therefore, it will be possible to develop systems that are more
complex in a qualitative way. The basic goal in recent researches in the area of
MDA is to achieve a system representation, which corresponds to business re-
quirements, at the highest level of abstraction as possible. Nowadays, MDA tools
support formalization of transformations between PIM and PSM stages, and re-
searchers try to “raise” it up as high as possible to fulfill the main statement of
MDA [5], [6]. The paper shows state of the art of two-hemisphere model applica-
tion to generation of elements of class diagram and presents several solutions
which address the problems stated above and try to “raise” up the level of trans-
formations into the transformations inside PIM.

Section 2 describes two-hemisphere model and define main components of it
suitable for generation of elements of UML class diagram. As well as structure of
source and target models is defined in Section 2. Section 3 defines all possible
transformations from elements of two-hemisphere model into elements of UML
class diagram, which is defined as a target. A practical experiment with the trans-
formations from two-hemisphere model into class diagram is processed in Section
4. Overall statements of the research are discussed in conclusions.

2 Model Transformations in Terms of Two-Hemisphere Model

Two-hemisphere model driven approach [7] proposes to use of business process
modeling and concept modeling to represent systems in the platform independent
manner and describes how to transform business process models into several ele-
ments of UML diagrams. For the first time the strategy was proposed in [8], where
the general framework for object-oriented software development had been pre-
sented and the idea about usage of two interrelated models for software system
development has been stated and discussed.

Two-hemisphere approach proposes to start software development process
based on two-hemisphere problem domain model, where one model reflects func-
tional (procedural) aspects of the business and software system, and another model
reflects corresponding concept structures. The co-existence and inter-relatedness
of models enables use of knowledge transfer from one model to another, as well as
utilization of particular knowledge completeness and consistency checks [7].

MDA introduces an approach to system specification that separates the views
on three different layers of abstraction: high level specification of what the system
is expected to do (Computation Independent Model or CIM); the specification of
system functionality (Platform Independent Model or PIM); and the specification

3

of the implementation of that functionality on a specific technology platform
(Platform Specific Model or PSM).

Currently available methods do not support formal transformation from CIM to
PIM, wherein the PIM would be sufficient for PSM generation [5]. The PIM re-
ceived from the CIM should be refined in order to get the correct transformation
into the PSM. Moreover, investigation of the PIM requires a more detailed de-
scription of it. That is why it was decided to divide the solution domain into two
above-mentioned levels: the first one closer to the CIM and the second one closer
to the PSM. As previously mentioned, the second level of the solution domain is
an application level. Because this level is closer to the PSM, models with further
automation should be represented here. A model on the application level of the so-
lution domain is class diagram. A model on the application level should be suffi-
cient for formal transformation to the Platform Specific Model. Therefore, data
structure, attributes, system functions and main algorithms should be presented in
the PIM ready to transformation into PSM [5].

CIM presents specification of the system at problem domain level and can be
transformed into elements of PIM. PIM provides formal specification of the sys-
tem structure and functions that abstracts from technical details, and thus presents
solution aspects of the system to be developed, which enables model transforma-
tion to the platform level (PSM), named implementation domain in Figure 1.

Fig. 1. Model transformation from problem domain level of knowledge representation into
implementation domain level according 2HMD approach.

The details in the right column of the table in Figure 1 correspond to the two-
hemisphere approach, which addresses the construction of information about prob-
lem domain by use of two interrelated models at problem domain level, namely,
the process model and the conceptual model. The conceptual model is used in par-
allel with process model to cross-examine software developers understanding of
procedural and semantic aspects of problem domain.

4

The main idea of MDA is to achieve formal system representation at the as
high level of abstraction as possible. One of the most important and problematic
stages in MDA realization is derivation of PIM elements from a problem domain,
and PIM construction in the form that is suitable for the PSM [5]. It is necessary to
find the way to develop PIM using formal representation, so far keeping the level
of abstraction high enough. PIM model should represent system static and dy-
namic aspects. Class diagram shows static structure of the developed system and
is the central component of PIM. But UML is a modeling language and does not
have all the possibilities to specify context and the way of modeling, which is re-
quired always to be defined in a methodology. Therefore the construction of class
diagram has to be based on well defined rules for its elements generation from the
problem domain model presented in the form suitable for that.

The MDA framework implies system development based on modeling, not on
programming activities. System development is divided into three stages accord-
ing to the level of abstraction. Every stage is denoted with a model. The model is
often presented as a combination of drawings and text [1].

A transformation tool or approach takes a model on input and creates another
model on output, see Figure 2 [4]. The two-hemisphere model has been marked as
input with mapping rules, the class diagram and transformation trace has been re-
ceived on output. Transformation trace shows the plan how an element of the two-
hemisphere model is transformed into the corresponding element of the class dia-
gram, and which parts of the mapping are used for transformation of every part of
the two-hemisphere model [1]. Figure 2 shows how a transformation tool takes in-
put – the two-hemisphere model and receives output – the class diagram.

Fig. 2. Structure of model transformation tool in the framework of MDA.

All elements of the source model are shown in Table 1. It is elements of the
business process model and concept model. A notation of the business process
model is optional, however, it must reflect the following components of business
process model: processes; performers; information flows; and information (data)
stores [7]. Real-world classes relevant to the problem domain and their relation-
ships are presented in concepts model. It is a variation of well known ER diagram
notation [9] and consists of concepts (i.e. entities or objects) and their attributes.
The notational conventions of the business process diagram give a possibility to
address concepts in concept model to information flows (e.g. events) in process
model. The elements of the source model are listed in the first column of Table 1.
The second column describes the main elements of the source model.

5

Table 1. Elements of source model.

Elements of Source model Description

Business process diagram/ Proc-
ess

process name
description
triggering condition
performer
expression
duration
start option
end option
no start option
tag
assignment

Business Process usually means a chain of tasks
that produce a result which is valuable to some
hypothetical customer. A business process is a
gradually refined description of a business activ-
ity (task) [10].

Business process diagram/Event
name
transfer name
set option
repeat option

Events are defined (as a rule) in the moment
when they are mentioned for the first time in BP
or TD diagrams. Events are an input/output ob-
ject (or more precisely - the arrival of an input
object and departure of an output object) of cer-
tain business process. These objects can be ma-
terial things or just information [10].

BP diagram/Data store
store name
comment
ER model<ER name>

The data store is a persistent (independent of the
current task) storage of data or materials. In the
case of an information system, the data store
most likely will be converted to a database with
a certain data structure (Entity Relationship
Model). On the highest levels of business mod-
els, the data store can be used to denote an ar-
chive of data or it can also be used to represent a
warehouse or stock of goods [10].

Concept model/Concept
name

Conceptual classes that are software (analysis)
class candidates in essence. A conceptual class
is an idea, thing, or object. A conceptual class
may be considered in terms of its symbols –
words or images, intensions – definitions, and
extensions – the set of examples [11].

Concept model/Attribute
name
type

An attribute is a logical data value of an object
[11].

The elements of source model are important for further system analysis and de-

sign. Information from these elements is significant, and nothing from it should
remain without any usage on the lowest levels of abstraction. Business processes

6

or tasks present system functionality, its activities and operations. If this informa-
tion is lost it is necessary to find system functions for implementing operations of
classes in description of the problem domain. Events, data stores and data objects
are parts of the data structure model. With these elements initial static structure is
presented in the two-hemisphere model, and should be transited into the class dia-
gram. Associations and attributes in the concept model are useful for definition of
relationships between objects of system static structure (classes).

The elements of the target model are listed in Table 2. Only the main elements
of the class diagram are shown there.

Table 2. Elements of target model.

Element of Source model Description
Class diagram/Class A class is the descriptor for a set of objects with

similar structure, behavior, and relationships
[11].

Class diagram/Class/Attribute
name
type

An attribute is a logical data value of an object
[11].

Class diagram/Class/Operation
name
return type
argument
precondition
postcondition

The UML formally defines operations. To quote:
"An operation is a specification of a transforma-
tion or query that an object may be called to exe-
cute" [12].

Class diagram/Relationship
type
multiplicity
role

A relationship between instances of the two
classes. There is an association between two
classes if an instance of one class must know
about the other in order to perform its work [11].

Class diagram/Class/Stereotype Stereotypes, which provide a way of extending
UML, are new kinds of model elements created
from existing kinds [11].

Class diagram/Constraint A constraint is a condition that every implemen-
tation of the design must satisfy [11].

It is necessary to find the way how source model elements can be transformed

into target model elements according to the definition of transformations in the
framework of MDA.

3 Application of Two-Hemisphere model for obtaining of
elements of class diagram

For the research the source model is two-hemisphere model, or business process
and concept diagrams, and the target model is class diagram in terms of UML
class diagram. The possible combinations of transition from two-hemisphere

7

model to class diagram will be discussed in this section. Input and output is neces-
sary for any transformation. The transformation discussed here is a transformation
inside the PIM – one of the MDA models. In other words, it is a transformation
from two-hemisphere model to class diagram.

3.1 General Schema of Transformation Abilities

The detailed transformations between models proposed for the application of two-
hemisphere model in the paper are shown in Figure 3. Two-hemisphere model
consists of business process model (graph G1 on Figure 3) and concept model
(graph G2 on Figure 3).

The notation of business process model have not a significant value, main re-
quirement to the notation of business process model is possibility to define busi-
ness processes, performers, events and data flows among business processes. For
current research is used business process model constructed with GRAPES [10]
notation. The second hemisphere is concept model. C.Larman defines concept
model as “The concept model captures real-world concepts (objects), their attrib-
utes, and the associations between these concepts.” [11].

In the case of two-hemisphere model authors avoid relations between classes in
concept model at business level (of problem domain) and the relations will be de-
fined according system realization at software level (of implementation domain).

For performing of transformation to class diagram the intermediate model
(graph G3 on Figure 3) is introduced. Intermediate model is used to simplify the
transition between business process and object interaction models, which now is
presented in the form of UML collaboration diagram (graph G4 in Figure 3). Fig-
ure 3 shows all the transformations from the business process model (G1) and
concept model (G2) into the class diagram (G5). Transformations are based on the
hypothesis that elements of the class diagram can be received from the two-
hemisphere model by applying defined techniques of graph transformation [13].

Intermediate model is generated from business process model using methods of
directed graph transformation, when arcs of one graph (G1 on Figure 3) are trans-
formed into nodes of another graph (G3 on Figure 3) and nodes of one graph (G1)
are transformed into arcs of another graph (G2) [14]. Figure 3 presents the se-
quence of transformations from two-hemisphere model to class diagram with dot-
ted arrows. Business process “perform action 1” is transformed into arc “perform
action 1” of intermediate model (graph G3 on Figure 3). The next transformation
create the method “perform action 1()” in collaboration diagram (graph G4 on
Figure 3) from the arc of intermediate model. The last transformation of this busi-
ness process defines the responsible class of this method in class diagram (graph
G5). The element “performer 1” is transformed as a node of intermediate model,
and as “actor 1” of collaboration model. This element is defined as “actor 1” in
class diagram. Data types for elements “event 1” and “event 3” is defined as “Da-
taType A” or “Concept A” of concept model.

Events are transformed into nodes of intermediate model, and then into objects
like “Event1: Class A” in collaboration diagram, which serves as a base for classes

8

of class diagram definition. All attributes for classes are determined based on at-
tributes defined in concept model.

Fig. 3. Essence of application of two-hemisphere model for generation of elements of class
diagram.

Figure 3 presents how elements of two-hemisphere model are transformed into
elements of class diagram. The ways of receiving of the following elements are
shown with arrows in Figure 3:
• Business process “perform action 1” is transformed into arc “perform action
1” of intermediate model. The next transformation create the method “perform
action 1()” in collaboration diagram from the arc of intermediate model. The
last transformation of this business process defines the responsible class of this
method in class diagram.

9

• The element “performer 1” is transformed as a node of intermediate model,
and as “actor 1” of collaboration model. This element is defined as “actor 1” in
class diagram.
• Data types for elements “event 1” and “event 3” is defined as “DataType A”
or “Concept A” of concept model. Events are transformed into nodes of inter-
mediate model, and then into objects like “Event1: Class A” in collaboration
diagram, which serves as a base for classes of class diagram definition.
• All attributes for classes are determined based on attributes defined in con-
cept model.

Summarization of mapping of source model into target of model is shown in
Figure 4.

Fig. 4. Mapping of elements of source model into elements of target model.

As it is seen in Figure 4 not all the elements of class diagram defined in Table 2
are received from two-hemisphere model: stereotype and constraint are still under
research. But the main components of class diagram are generated from different
elements or their combinations of two-hemisphere model: classes, operations,
methods and different types of relationships between classes. An illustrative ex-
ample of definition of classes and their attributes and operations is described in
Section 3.2. and transformation rules for definition of different types of relation-
ships between classes in details are discusses in [15]. And not all the elements of
two-hemisphere model are used for identification of elements of class diagram:
data stores are avoided due to it duplication by element “task” with different
meaning.

3.2 An illustrative example of class diagram generation from two-
hemisphere model

For better understanding of main idea, the example of such model transformations
is shown for a fragment of problem domain concerned with insurance activities
[16]. Figure 5 presents only fragment of transformation. There is one process “Pay
sum” which has output “policy”. Concept “policy” defines data type for the output
of process. It is transformed into fragment of intermediate model with arc “Pay
sum” and node “Policy”. Intermediate model allows to receive collaboration dia-
gram, where initial process “Pay sum” is a method of object “Policy”.

10

Concrete object “Policy” belongs to class “Policy”, which is defined with cor-
responding concept. When a collaboration of objects is defined, it is possible to
construct class diagram according to rules of object-oriented system modeling [8].

Fig. 4. An example of process and concept elements transformation into class elements.

4 Practical Experiment with the Processing of Transformations
from Two-Hemisphere Model into Class Diagram

During the investigation of receiving of class diagram from two-hemisphere mod-
el all possible combination of number and types of incoming and outgoing infor-
mation flows from nodes of processes are examined [8]. Different combinations
give a possibility to receive different relations among classes.

The tool for business process modeling GRADE (GRADE) [17] gives a possi-
bility to construct two interrelated models (business process and the concept ones)
and to generate text description of models with permanent structure, therefore it is
chosen as a tool for development of two-hemisphere model and further generation
of textual files, which defines all the elements of the model and their relations
each to other. Generated text files serve as an input information to support the
processing algorithm of the transformations among graphs defined in the Section
3. And as the result the XML file, which contains description of structure of the
class diagram generated from the source model. XML format of class specification
gives a possibility to receive visual representation of class diagram in any tool,
which support import from XML for class diagram development.

To check, that offered transformations are independent from problem domain
an experiment with two-hemisphere model of insurance is performed. The trans-
formations are applied for generation of class diagram from two-hemisphere mod-

11

model developed for insurance problem domain (shown in Figure 6) and the result
class diagram is shown in Figure 7.

As far as business process and conceptual models are the built-in demo exam-
ple for system development in GRADE the authors may suppose that the models
(e.g. source information) are correct and constructed independently from author
participation. Therefore it is possible to address the truthful verification of an ex-
periment.

Fig. 6. Initial business process and concept models for Insurance problem domain.

The class diagram in Figure 7 has undefined relations, and unrelated classes,
for which additional, detailed, business process models are required. Classes,
which are highlighted as gray in Figure 7 are defined as classes which have a re-
striction. For current level of details it is impossible to define relations of this
classes and belonging of method “manage_assets ()” without creating a sub-
process diagram for corresponding fragment of business process. After the de-

12

tailed elaboration of the process it is possible to apply transformations one more
time and receive more correct relations among classes.

According the restriction of graph transformation with multiple inputs and mul-
tiple outputs it can be possible to define processes, which requires additional de-
tailed elaboration. This feature is realized only partly with reporting of the restric-
tion places in the output text file.

Fig. 7. Class diagram for Insurance business.

The visualization with indicating of a process is not realized because the tool
developed for processing of transformations from two-hemisphere model into
class diagram does not support yet diagramming abilities, but receiving of XML
code gives a possibility to create class diagram with any tool, which support ex-
port from XML.

5 Conclusions

The elements of class diagram are received in the formal way during the transfor-
mation from the two-hemisphere model into the class diagram. For generation of
class diagram elements, elements of the business process and concept models are
used. Receiving of elements of the class diagram allows to define a class diagram
at the conceptual level. It could serve as a base for further development of the sys-
tem architecture.

Not all elements of the class diagram are received from the two-hemisphere
model on the current stage of research. Definition of such elements as operation
arguments, operation return types, stereotypes, constraints and so on is still re-
searched. There exists the probability that for definition of this attributes, an ex-
tension of the initial two-hemisphere model will be required.

13

The proposed transformations are applied for two-hemisphere model of insur-
ance and classes with attributes and different kinds of relationships are identified
based on elements of process and concept models. The ability to define all the
types of transformations in a formal way gives a possibility to automate the proc-
ess of class diagram development from correct and precise two-hemisphere model.

The title of the paper is called “Open work of …” it means that the research is
under development. Authors try to find the way to receive the rest elements of
class diagram and moreover to find the possibility of define system dynamic in a
more precise way.

Acknowledgements

The research reflected in the paper is supported by the research grant No. R7389
of Latvian Ministry of Education and Science in cooperation with Riga Technical
University “Development of tool prototype for generation of software system class
structure based on two-hemisphere model.” and by the European Social Fund
within the National Programme "Support for the carrying out doctoral study pro-
gram's and post-doctoral researches".

References

1. MDA Guide Version 1.0.1., http://www.omg.org/docs/omg/03-05-01.pdf.
2. Kent S.: Model driven engineering. In Proceedings of IFM2002, volume 2335 of

LNCS. Springer-Verlag (2002)
3. Kleppe A.: MCC: A model transformation environment. In Proceedings of the

ECMDA Springer-Verlag, pp. 173-187 (2006)
4. Kleppe A., Warmer J., Bast W.: MDA Explained: The Model Driven Architecture.

Practise and Promise, Addison Wesley, 192 pp (2003)
5. Nikiforova O., Kuzmina M., Pavlova N.: Formal Development of Platform

Independent Model in the Framework of MDA: Myth or Reality. In Scientific
Proceedings of Riga Technical University, 5th Series, Computer Science, Applied
Computer Science Vol.22. – Riga: RTU, pp.42-53 (2005)

6. Pavlova N.: Several Outlines of Graph Theory in Framework of MDA. In Advances
in Information Systems Development, New Methods and Practice for the Networked
Society, Vol. 2, Edited by Maguar G., Knapp G., Wojtkowski W., Wojtkowski W.G.,
Zupancic J., Springer Science+Business Media, LLC, pp. 25-36 (2007)

7. Nikiforova O., Kirikova M.: Two-Hemisphere Model Driven Approach: Engineering
Based Software Development. In Proceeding of the 16th International Conference
Advanced Information Systems Engineering Caise’2004. A. Persson And J. Stirna
(Eds.), Lncs 3084, Springer – Verlag Berlin Heidelberg, pp. 219 – 233 (2004)

8. Nikiforova O.: General Framework For Object-Oriented Software Development
Process. In Proceedings of Conference of Riga Technical University, Computer Sci-
ence, Applied Computer Systems, 3rd Thematic Is-sue, Riga, Latvia, pp.132-144
(2002)

14

9. Chen P.: The entity relationship model – towards a unified view of data. ACM Trans.
Database Systems, 1, 9-36 (1976)

10. GRADE Business Modeling, Language Guide. INFOLOGISTIK GmbH.- (1998)
11. Larman C.: Applying UML And Patterns: An Introduction To Object-Oriented Anal-

ysis And Design. New Jersey: Prentice Halls (2000)
12. Rumbaugh J., Jacobson, I., and Booch, G.: The unified modeling language reference

manual. Reading, MA.: Addison-Wesley, (1999)
13. Grundspenkis J.: Causal Domain Model Driven Knowledge Acquisition for Expert

Diagnosis System Development. Kaunas: Kaunas University of Technology Press,
(1997)

14. Pavlova N., Nikiforova O.: Formalization of Two-Hemisphere Model Driven Ap-
proach in the Framework of MDA. In Proceedings of the 9th Confe-rence on Infor-
mation Systems Implementation and Modeling, Czech Republic, Prerov, pp. 105-112
(2006)

15. Nikiforova O., Pavlova N.: Foundations of Generation of Relationships between
Classes Based on Initial Business Knowledge. In the Proceedings of the 17th Interna-
tional Conference on Information Systems Development (ISD2008) “Towards a Serv-
ice-Provision Society” (2008) (accepted for publication)

16. Pavlova N.: Approach for Development of Platform Independent Model in the
Framework of Model Driven Architecture, Ph.D. thesis, Riga Technical University
(2008)

17. GRADE tools, GRADE Development Group, http://www.gradetools.com/ (2006)

