
HAL Id: hal-01571354
https://inria.hal.science/hal-01571354

Submitted on 2 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Two Different Approaches of Feature Extraction for
Classifying the EEG Signals

Pari Jahankhani, Juan A. Lara, Aurora Pérez, Juan P. Valente

To cite this version:
Pari Jahankhani, Juan A. Lara, Aurora Pérez, Juan P. Valente. Two Different Approaches of Feature
Extraction for Classifying the EEG Signals. 12th Engineering Applications of Neural Networks (EANN
2011) and 7th Artificial Intelligence Applications and Innovations (AIAI), Sep 2011, Corfu, Greece.
pp.229-239, �10.1007/978-3-642-23957-1_26�. �hal-01571354�

https://inria.hal.science/hal-01571354
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Two different approaches of feature extraction for classifying the EEG 

Signals 

Pari Jahankhani
1
, Juan A. Lara

2
, Aurora Pérez

2
, Juan P. Valente

2 

1University of East London, School of Computing, Information Technology and Electronic, London E16 2RD, 

United Kingdom, pari@uel.ac.uk 
2Technical University of Madrid, School of Computer Science, Campus de Montegancedo,28660, Boadilla del 

Monte, Madrid, Spain j.lara.torralbo@upm.es,{aurora, jpvalente}@fi.upm.es 

 

 

Abstract. The electroencephalograph (EEG) signal is one of the most widely used signals in the 

biomedicine field due to its rich information about human tasks. This research study describes a new 

approach based on i)  build reference models from a set of time series, based on the analysis of the 

events that they contain, is suitable for domains where the relevant information is concentrated in 

specific regions of the time series, known as events. In order to deal with events, each event is 

characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract 

temporal information in the form of changes in the frequency domain over time- that is they are able 

to extract non-stationary signals embedded in the noisy background of the human brain. 

The performance of the model was evaluated in terms of training performance and classification 

accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG 

signals. 
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1  Introduction 

The electroencephalograph (EEG) signal is one of the most widely signal used in the biomedicine field 

due to its rich information about human tasks.. In practical applications of pattern recognition, there are 

often diverse features extracted from raw data which needs recognising. Time series modelling has many 

applications like, for example, feature identification across a group of time series, or model comparison 

measuring the likeness among groups of time series, or the evolution of one and the same group over 

time. In actual fact, in many domains, like medicine, the mere observation of the model by the expert can 

turn out to be very useful in the decision-making process. 

The relation of EEG signals to the human movements and behaviour has been extensively studied in past 

decades [1]. 

A key data mining problem is the construction of feature models from set of time series. 

In the field of time series data mining, there are well-established methods for comparing two time series, 

finding subsequence that are repeated several times throughout the same time series and techniques that 

try to determine whether a time series contains a particular sequence. Also there are techniques that try to 

generate a representative reference model from a set of time series [2], [3], [4], [5]. 

A powerful method was proposed in the late 1980s to perform time-scale analysis of signals: the wavelet 

transforms (WT). This method provides a unified framework for different techniques that have been 

developed for various applications. 

Nevertheless, in many cases only particular regions of the series contain relevant knowledge and 

the data mining techniques should focus on these regions (known as events) [6]. This applies to domains 

like seismography, the stock market or medicine. In seismography, for example, the only moments of 

interest are when the time series indicates an earthquake, volcanic activity leading up to the quake, or 

replications. The lengthy periods between these events provide hardly any information. Figure 1 shows an 

example of an EEG time series, highlighting an event corresponding to the electrical activity generated by 

the nervous system in response to a stimulus.  
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Fig. 1. Example of an EEG time series. 

 
Detecting patterns in EEG produced from the normal mental states has some problems, due to 

the fact that EEG signals which are recorded by surface electrodes can contain noise as a result of 

electrical interference and movement of the electrodes on the scalp or EEG can be corrupted by eye blinks 

and other muscular activity that produce signals of greater magnitude than produced by cortical activity. 

In this work, two different methods are applied for feature extraction and classification.  

 

1) Build reference models from a set of time series, based on the analysis of the events that they 

contain, is suitable for domains where the relevant information is concentrated in specific 

regions of the time series, known as events. The method enables to define regions of interest 

according to the knowledge extracted from the domain experts, which is a plus compared with 

other methods addressing the time series as a whole without taking into account that certain 

regions can be irrelevant in the domain in question. 

 

2) Discrete Wavelet Transform (DWT) has been applied for the time–frequency analysis of EEG 

signals and an Adaptive Fuzzy Inference Neural Network System (AFINN) [7], [8], [9] scheme 

for the classification using wavelet coefficients.  

2 Method 1: Feature extraction of events 

Electroencephalographic devices generate time series that record scalp electrical activity (voltage) 

generated by brain structures. EEG signals contain a series of waves characterised by their frequency and 

amplitude. In EEG time series it is possible to find certain types of special waves that are characteristic of 

some neurological pathologies, like epilepsy. Those waves are known as paroxysmal abnormalities and 

can be considered as events. 

During this research we have taken into account three kinds of events: 

 Spike Wave: It is a wave whose amplitude is relatively higher than the rest of waves in the 

signal. It has a period of between 20 and 70 millisecond. 

 Sharp Wave: It is a wave whose amplitude is relatively higher than the rest of waves in the 

signal. It has a period of between 70 and 200 millisecond. Figure 2 shows an example of a sharp 

wave event. 

 Spicule: It is a sharp wave with an abrupt change of polarity. 

 

 

Fig. 2. Sharp wave event. 

 



The features characterising these events are as follows: 

 Duration of the wave. 

 Amplitude of the wave. 

To identify the EEG events and determine their features, the proposed method calculates the point 

where the polarity of the signal changes as shown in figure 3. The method identifies points where there is 

a local maximum or minimum whose distance to the polarity change value is higher than a certain 

threshold (∂). That distance is the amplitude of the event. The duration of the wave is then calculated by 

analysing the two intersections between the time series and the polarity change value line. Depending on 

the duration, the event is classified as a spike or a sharp wave, according to the experts‟ criteria. Finally, 

those sharp waves that have an abrupt change of polarity are classified as spicules. 

 

 

 
 

Fig. 3. Event taken from an EEG time series. 

2.1  Model Generation Method 

The model generation method presented here is suited for domains where important information is only 

confined to certain regions while the remaining of the time series hardly provides any information. 

In order to deal with events, each event is characterized by a set of attributes. 

The model generation method receives a set of time series S = {S1, S2, ..., Sn}, each containing a 

particular number of events, and generates a reference model M that represents this set of time series. The 

model M is built on the basis of the most characteristic events. The most characteristic events of S are 

those events that appear in the highest number of timer series of S. 

To find out whether a particular event in a time series Si also appears in another time series Sj (j ≠ 

i), the event has to be characterized with an attribute vector and compared with the other events of the 

other series. To speed up this process, all the events present in the time series are clustered, so similar 

events belong to the same cluster. On the one hand, the clustering process is useful to know the different 

groups of events. On the other hand, it facilitates the extraction of the most characteristic events. Once we 

have a set of clusters, the objective is to find those clusters containing events that appear in the highest 

number of time series, that is, characteristic events. Having located those groups with similar events, an 

exhaustive cluster analysis is run in order to extract the event representative of each of these groups. This 

will be described later (steps 5 to 9 of the algorithm). These extracted representative events are the 

characteristic events of S and will be part of the final model. 

Let S = {S1, S2, ..., Sn} be a set of n time series and m the typical number of events that appear in 

the time series of S. The algorithm for generating a reference model M representing the set S is as detailed 

below (with the purpose of making the algorithm more legible key decisions are justified at the end of the 

algorithm): 

 

 

1. Initialize the model. 

M = Ø. 

2. Identify events. 

Extract all the events Ev from the series of S and use an attribute vector to characterize each 

event. This vector covers what the expert considers to be the key features for each type of 



domain event. This step is domain dependent, as the event characterization will depend on the 

time series type. To extract the events, the time series is examined in search of regions that 

meet the conditions identifying each event type defined according to the knowledge extracted 

from the expert. 

   

3. Determine the typical number of events m. 

m is the typical number of events in each time series of S. At the end of the algorithm it will 

be discussed how to determine this value. 

  

4. Cluster events. 

Cluster all the events extracted in step 2. Bottom-up hierarchical clustering techniques have 

been used. Taking into account that the proposal described here should be a general-purpose 

method and there is no a priori information for specifying the optimum number of clusters in 

each domain, bottom-up hierarchical clustering is a good option, as it is not necessary to 

specify the number of clusters k beforehand. We have used Hierarchical Clustering 

  

Repeat steps 5 to 9 m times 

 

5. Get the most significant cluster Ck. 

Determine which cluster Ck of all the clusters output in step 4 is the most significant. Cluster 

significance is measured using Equation (1). 
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That is, cluster significance is given by the number of time series that have events in that 

cluster over the total number of time series n. Events that have already been examined (step 8 

and 9) are not taken into account to calculate the numerator. 

 

6. Extract the event Ec that best represents the cluster. 

Extract the event that is most representative of the cluster Ck, that is, the event Ec that 

minimizes the distance to the other events in the cluster. Let Sj be the time series in which the 

event Ec was found.  

  

7. Add the event Ec to the model. 

M = M  Ec. 

  

8. Mark event Ec as examined. 

  

9. Mark the most similar events to Ec as examined. 

From the cluster Ck obtain, for each time series Si ≠ Sj, the event Ep from Si that is the most 

similar to the representative event (Ec) output in step 6. Each Ep will be represented in the 

model by the event Ec and therefore these Ep events will also be discarded in order not to be 

considered in later iterations. 

  

10. Return M as a model of the set S. 

 

The most significant clusters, that is, those clusters that contain events present in the highest number of 

time series were analysed to output the events that are part of the model. To do this, the process of 

identifying the most significant cluster is repeated m times, outputting a representative and marking as 

examined both this representative and similar events in each time series. With regard to the algorithm, 

note that: 

a) The identification of events is domain dependent because the criteria to define events in each 

domain are required. The rest of the algorithm is domain independent and it can be applied to any 

domain without any change. Figure 4 shows the overall structure of the proposed method that 

receives a set of time series S and generates a model M that represents it. 

b) After the representative event of the most significant cluster has been output, it should not be 

taken into account again for the next iteration, and it is marked as an already examined event. 

c) A cluster may contain not just one but several events from each time series. For this reason, even 

if a cluster is selected as the most significant, the cluster in question is not omitted in later 



iterations. The events already processed are marked as examined and will not be taken into 

account in future iterations. 

 

Fig. 4. Overall structure of the proposed method. 

Another important issue is the number of events making up the model. In this case, we have 

chosen the mode (m) of the number of events of the time series of S. This decision is based on the fact 

that if the original time series have a typical number of events m, it makes sense for the model that 

represents them to have the same number of events m. The typical number of events in the time series of S 

may not be unimodally distributed. This could happen especially if there are not many time series in the 

set S. For non-unimodal distributions, we have opted to take the integer value closest to the mean of the 

number of events. 

A last point to be considered is the distance between events that has been used in the algorithm 

for clustering, representative event selection and discarding similar events. The city block distance is 

used. Given two vectors, the city block distance calculates the sum of the absolute value of the difference 

of each of the coordinates of the above vectors: 
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In Equation (2), x and y are the vectors (that is, the event descriptors) for comparison and p is the 

number of coordinates (dimension). Other distance measures have been studied, but the city block 

distance was finally chosen. The main reason for this choice is that the clustering algorithm uses the mean 

distance per attribute as the threshold for determining whether or not two elements are similar enough to 

belong to the same cluster. This mean distance per attribute is obtained simply by dividing the total city 

block distance d(x,y) by the number of attributes p. The use of the city block distance then saves time as it 

obviates additional transformations that would make the clustering process more complex to develop and 

more computationally intensive. 

Figure 5 shows an example of the application of the proposed method to a set S = {S1, S2, S3, S4} 

of 4 time series (n=4). In this case, S1 contains 2 events (E11 and E12), S2 contains 2 events (E21 and E22), 

S3 contains 3 events (E31, E32 and E33) and finally S4 contains 2 events (E41 and E42). Therefore, the typical 

number of events is 2 (m=2). Once the events are extracted, they are clustered into three different clusters 

(C1, C2 and C3). Then, the most significant cluster is obtained. To do that, it is necessary to calculate the 

significance of each cluster according to Equation (EQ). In this case, cluster C1 have events present in 3 

out of the 4 time series, cluster C2 have events that appear in 1 out of the 4 time series and cluster C3 have 

events present in 4 out of the 4 time series of S. Then, the significance of C1 is SIGNF(C1) =
3

4
= 0.75, the 



significance of C2 is SIGNF(C2) =
1

4
= 0.25 and the significance of C3 is SIGNF(C3) =

4

4
= 1. Therefore, 

the most significant cluster is C3. In the next step, the event E12 is extracted as the representative event of 

the cluster C3 because E12 is the event in C3 that minimizes the distance to the other events in that cluster. 

Thus, the event E12 is a characteristic event of S and will be part of the final model M. This process has to 

be repeated twice (because m=2) to build the final model that consists of the events E12 and E32. 

 

 

 

 

Fig. 5. Example of the application of the proposed method 

3 Method 2: Feature Extraction using wavelet Transform 

The extracted wavelet coefficients provide a compact representation that shows the energy distribution of 

the EEG signal in time and frequency. 

In order to reduce the dimensionality of the extracted feature vectors, statistics over the set of wavelet 

coefficients were used. The following statistical features were used to represent the time-frequency 

distribution of the EEG signals: 

 

1. Maximum of the wavelet coefficients in each sub-band 

2. Minimum of the wavelet coefficients in each sub-band. 

3. Mean of the wavelet coefficients in each sub-band. 

4. Standard deviation of the wavelet coefficients in each sub-band.  

 

Extracted features for the EEG recorded class A and E shown in table 1. For each of these sub-bands, 

we extracted four measures of dispersion, yielding a total of 20 attributes for sample window. 

The complete data set consists of two sets denoted by A and E each containing 100 signal-channel EEG 

segments. The training and test sets of the AFINN classifier were formed by 3200 vectors (1600 vectors 

from each class). The extracted wavelet coefficients provided a compact representation that shows the 

energy distribution of the EEG signal in time and frequency. For each of wavelet sub-bands, we have 



extracted four measures of dispersion, yielding a total of 20 attributes per sample window. Those 

extracted features for two recorded classes A and E are shown in Table 1. 

 

 

 
Table 1: The extracted features of two windows from A & E classes 

 

4  Evaluation/ Conclusion 

A system implementing the described method has been developed. The system has been evaluated by 

running a battery of experiments using a 10-fold cross validation approach. These experiments were done 

on time series generated by electroencephalographic devices. 

During this research, we have used publicly available datasets described in [10]. The complete 

data set consists of five sets (denoted A-E) each containing 100 single-channel (100 electrodes) EEG 

recordings of 5 separate patient classes. For this study, we focused on sets labelled A (healthy patients) 

and E (epileptic seizure session recordings). 

The ultimate aim of the evaluation is to measure how good the model generation method is. For 

the evaluation of the proposed method, two models were created for each class (Mhealthy and Mepileptic).  

The first model (Mhealthy) was created from a training set composed of 90 of the 100 healthy patients (set 

A). The other 10 patients constituted the test set. The second model (Mepileptic) was generated from a 

training set composed of 90 of the 100 epileptic patients (set E). The other 10 patients were used as test 

set. The patients in the test set were chosen at random. 

Once the models have been created, they have been evaluated by checking whether the Mhealthy 

model properly represents the group of healthy patients and whether the Mepileptic model is representative 

of the group of epileptic patients. To do that, we have classified the 20 individuals in the test group 

according to their similarity to the two created models (that similarity was determined using the time 

series comparison method proposed in [11]). This process was repeated ten times changing the training 

set and the test set. 

The training data set was used to train the AFINN model for classification of the two classes of 

EEG signals. The proposed system was trained and tested with the extracted features using discrete 

wavelet transform of the EEG signals. The simulation results reveal a perfect performance compared to a 

classic MLP neural network.  

The results of the proposed classifier, using 2 different training sets are shown in Table 2. 

 

Table 2: Comparison of the three methods 

 

Class Reference Model AFINN MLP 

A 92% 98.12% 94.98% 

E 96% 97.96% 95.86% 

 
 



5  References 

1. Zoubir, M., Bosshssh,B: Seizure detection of newborn EEG using a model approach, IEEE Transactions on 

Biomedical Engineering 45, 673-685 (1998) 

2. Philip K. Chan and Matthew V. Mahoney, „Modeling multiple time series for anomaly detection‟, in ICDM 

‟05: Proceedings of the Fifth IEEE International Conference on Data Mining, PP. 90–97,  Washington, DC, 

USA, (2005). IEEE Computer Society. 

3. Juan P. Caraça-Valente and Ignacio López-Chavarrías, „Discovering similar patterns in time series‟, in 

KDD ‟00: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and 

data mining, pp. 497–505, New York, NY, USA, (2000). ACM. 

4. Zhuo Chen, Bing ru Yang, Fa guo Zhou, Lin na Li, and Yun feng Zhao, „A new model for multiple time 

series based on data mining‟, Knowledge acquisition  and Modeling, International Symposium on, 0, 39–

43, (2008).  

5. Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos, „Streaming pattern  discovery in multiple time-

series‟, in VLDB ‟05: Proceedings of the 31st international conference on Very large data bases, pp. 697– 

708. VLDB Endowment, (2005). 

6. Richard J. Povinelli, „Using genetic algorithms to find temporal patterns indicative of time series events‟, in 

in GECCO 2000 Workshop: Data Mining with Evolutionary Algorithms, pp. 80–84, (2000). 

7. R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger,    

„Indications of nonlinear deterministic and finitedimensional structures in time  

series of brain electrical activity: dependence on recording region and brain state.‟, Physical review. E, 

Statistical, nonlinear, and soft matter physics, 64,  (December 2001).  

8. Jahankhani P., Kenneth Revett, Vassils Kodogiannis, “Classification   Using    

Adaptive Fuzzy Inference Neural Network” Proceedings of the Twelfth IASTED International Conference 

Artificial Intelligence and Soft Computing (ASC 2008), September 1-3, 2008 Palma de Mallorca, Spain, 

ISBN 978-0-88986-756-7.    

9. Jahankhani P., Kenneth Revett, Vassilis Kodogiannis , “Data Mining an EEG Dataset With an Emphasis on 

Dimensionality Reduction” IEEE Symposium on      

Computational Intelligence and Data Mining  (CIDM) April 1-5, 2007. 

10.  Jahankhani P., Kenneth Revett, Vassilis Kodogiannis, “EEG Signal ClassificationUsing Wavelet Feature 

Extraction and Neural Networks” , Sofia, Bulgaria, October 3-6, 2006,pp 120-125  IEEE John Vincent 

Atanasoff 2006 International Symposium on Modern Computing.   

11.  J.A. Lara, G. Moreno, A. Perez, J.P. Valente, and A. López-Illescas, „Comparing     

posturographic time series through events detection‟, in Computer-Based Medical Systems, 2008. CBMS 

‟08. 21st IEEE International Symposium on, pp. 293–295, (June 2008). 


