
HAL Id: hal-01556816
https://inria.hal.science/hal-01556816

Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Methods towards API Usability: A Structural Analysis
of Usability Problem Categories

Thomas Grill, Ondrej Polacek, Manfred Tscheligi

To cite this version:
Thomas Grill, Ondrej Polacek, Manfred Tscheligi. Methods towards API Usability: A Structural
Analysis of Usability Problem Categories. 4th International Conference on Human-Centered Software
Engineering (HCSE), Oct 2012, Toulouse, France. pp.164-180, �10.1007/978-3-642-34347-6_10�. �hal-
01556816�

https://inria.hal.science/hal-01556816
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Methods Towards API Usability: A Structural
Analysis of Usability Problem Categories

Thomas Grill, Ondrej Polacek, Manfred Tscheligi

ICT&S Center, University of Salzburg
Salzburg, Austria

[firstname.secondname]@sbg.ac.at

Abstract. The usability of Application Programming Interfaces (APIs)
is one of the main factors defining the success of a software based frame-
work. Research in the area of human computer interaction (HCI) cur-
rently mainly focuses on end-user usability and only little research has
been done regarding the usability of APIs. In this paper, we present a
methodology on how to use and combine HCI methods with the goal to
evaluate the usability of APIs. The methodology consist of three phases –
a heuristic evaluation, a developer workshop and interviews. We setup a
case-study according to the methodology, in which we are evaluating the
usability of a service-oriented framework API. The goal was to explore
different HCI methods and compare the applicability of such methods
to find usability problems in an API. The case-study combined qualita-
tive and quantitative methods in order to investigate the usability and
intuitiveness of the API itself. It allowed us to identify relevant problem
areas for usability related issues that could be mapped to specific types
of HCI methods. Examples for this are e.g. structural problems, which
are identified mainly in inspection methods, while problems regarding
errors and exception handling are mainly identified during the hands-on
example part of the developer workshops conducted. The resulting prob-
lem areas allow us to develop a first classification of API related usability
problems that are making the relevancy of usability issues for APIs more
explicit and applicable.

Keywords: API, Usability, Contextual Interaction Framework, HCI.

1 Introduction

Research in Human Computer Interaction (HCI) focuses mainly on the usabil-
ity and user experience of hardware and software user interfaces. Little research
has been done in methods and tools for software developers, especially when it
comes to complex frameworks based on a service-oriented architecture (SOA).
The developers use Application Programming Interfaces (APIs) to build rich ap-
plications with various functionalities. API is a set of reusable components such
as objects, routines, or variables that provides a specific functionality. When it
comes to measuring usability of an API existing methods from cognitive sciences



2 Thomas Grill, Ondrej Polacek, Manfred Tscheligi

are usually applied. Such methods are typical user tests where an end-user has
to conduct a specific task or inspection methods, where experts evaluate sys-
tems based on given heuristics. Regarding the usability of APIs a number of
guidelines and heuristics exist that can be used for heuristic evaluations. Such
guidelines are for example elaborated by Joshua Bloch, a software engineer at
Google. In his paper ”How to Design a Good API and Why it Matters” he dis-
cusses insights into requirements of a good and usable API [1]. Other guidelines
are given by Scaffidi [2] where he discusses a number of challenges regarding the
usability of APIs. All these guidelines have been used and applied in evaluation
methods stemming from the area of human computer interaction (HCI). The
existing guidelines can be mapped to specific usability attributes. For example,
learnability can be linked to documentation, intuitiveness to structure, or user
satisfaction to future reuse. This leads to the fact that not only heuristics but
also concrete measurable evaluation criteria can be extracted. We address this
in the form of a workshop that combines a tutorial or course-like setup with an
evaluation approach. This evaluation approach uses methods like questionnaires,
think-aloud protocol, video-taking, and interviews. This results in a combined
methodology providing us with deeper insight about the usability problems of an
API while investigating the applicability of our approach to a SOA-based API.
The findings obtained during the study allowed us to do a categorization of the
problems based on the problem area targeted by the finding. It also allowed us
to map the resulting outputs to particular usability methods applied in our case
study in order to highlight appropriate method for different problem areas and
to show how the case study covers these areas.

2 Related Work

In the last decade a huge effort has been made to distill common usability flaws
within an API. Conducting expert evaluation and user studies have led to devel-
opment of several design guidelines as well as methodologies for API evaluation.
The current methodologies for API evaluation can be divided into two groups
according to involvement of users: user studies and expert evaluations.

Empirical studies with real users provide a deep understanding of usability flaws
in an API. However, they are hardly suitable for testing large APIs with hundreds
of elements because of their high costs. According to Farooq et al. [3] other
limitations are difficult recruitment of the users with specific domain knowledge,
time demands, and rather slow feedback. One of the first of API user studies was
conducted by McLellan et al. [4]. In this study an application example (approx.
2.300 lines) containing the studied API calls was shown to the participants, who
were asked to go through it and understand it. The participants were allowed to
ask questions. After the test the API was redesigned based on these questions.
A quantitative approach was used in the work by Robillard [5]. A questionnaire-
based survey with 83 developers identified 11 categories of API learning obstacles



Methods Towards API Usability 3

that can be divided into five groups: Resources, Structure, Background, Technical
environment, and Process.

The three studies described in the following paragraph focus on general patterns
in API design. A study aiming on use of constructor parameters by Stylos et al
[6] showed that developers are more effective when no constructor parameters
are required. In the next study Stylos et al [7] found a large usability impact
on a method placement. Ellis et al. [8] argued that the factory pattern [9] is
confusing, difficult to use and should be avoided. A case study of improving an
API is described by Stylos et al. [10]. They used the aforementioned general
patterns as well as input from interviews with developers.

Expert evaluation methods, sometimes referred to as discount usability methods,
are not as time demanding as studies with the users. In the methods an expert or
evaluator analyzes the API and checks whether it is compliant with predefined set
of recommendations or guidelines. The first design principles for a programming
language design called “Cognitive Dimensions of Notations” was published by
Green and Petre [11] in 1989. The cognitive dimensions have been successfully
used for evaluating visual programming [12] as well as API design [13]. Bore and
Bore [14] proposed a set of simplified API profile dimensions, namely Specificity,
Simplicity, and Clarity. De Souza and Bentolila [15] focused only on complexity
of APIs by automatic counting primitive elements exposed to the users. They
also proposed a visualization of complexity of different parts of an API. Watson
[16] proposed a heuristic to check consistency in naming conventions in a large
API consisting of hundreds of elements.

An effective method for API usability testing is called API Usability Peer Re-
views published by Farooq et al. [3]. They define four roles in the process: Feature
owner, who determine the goals of API peer review, Feature area manager, who
fill any knowledge gaps and record feedback, Usability engineer, who is respon-
sible for evaluating the usability, and Reviewers, who are not fully familiar with
the API but have some knowledge the domain. The method was compared to
traditional usability test and it was found that API peer reviews are faster and
less expensive, but identify lesser usability flaws and are less sensitive.

The API usability studies and personal experience with API design led to devel-
opment of many API design guidelines. For example, Bloch [1] lists 39 detailed
design guidelines for an API design. Scaffidi [2], on the other hand, gives 4 gen-
eral challenges of API usability and discusses strategies that designers and users
developed to overcome these challenges. Henning [17] gives an detailed example
of poorly designed API and discusses costs of dealing with it. He also describes
and discusses 8 guidelines for a good API design. Zibran [18] gives a summary
of existing design guidelines and results from studies with users. In [19] Zibran
et al. identify relative significance of the design guidelines by studying usability-
related bug posts across five different bug repositories.

Currently the research on usability of service-oriented architecture (SOA) fo-
cuses exclusively on usability of web services. Beaton et al. [20] identify usability



4 Thomas Grill, Ondrej Polacek, Manfred Tscheligi

challenges for large SOA APIs. They also list HCI methods that can be used for
evaluating SOA APIs – think-aloud protocol, expert evaluation using cognitive
dimensions, and cognitive walkthrough. In Beaton et al. [21] a qualitative user
study with six participants was conducted in which eight errors often made by
the participants were observed. Jeong et al. [22] focused on improving documen-
tation for an API of multiple web services. They provide 18 design guidelines for
documentation of the API.

3 Methodology

Our methodological approach for evaluating API usability combines several us-
ability evaluation methods. Each method has different strengths and weaknesses.
It combines several methods in order to take full advantage of the strengths of
each method. This combination provides an opportunity to get a big picture of
the usability of the evaluated API. These may be not only problems and flaws
in the code, but also conceptual and run-time problems as well as findings re-
lated to user experience. The methodology is the first step towards defining a
structured process to achieve these goals.

3.1 Roles

Following roles are present in our methodological approach: Expert, Developer,
and Evaluator.

(1) Experts are persons knowledgeable in the application domain with experience
in the programming language of the evaluated API. They should not be fully
familiar with the API. The experts are used in the first phase of the evaluation
process – the heuristic evaluation.

(2) Developers are persons with experience in software development. They should
be familiar with the programming language of the evaluated API, but they do
not need to be familiar with the application domain. Developers are recruited to
participate in the developer workshop (2nd phase of the evaluation process) and
semi-structured interviews (3rd phase). The number of developers depends on
the expected outcome of the evaluation. With low amount of developers mainly
qualitative data can be obtained. With higher numbers we can gain quantitative
data as well.

(3) Evaluators are persons who collect and analyze findings in each phase of
the evaluation. They actively participate in the developer workshop and they
also conduct the semi-structured interviews. The number of evaluators can vary
between one to three depending on the number of developers and amount of
work to be responsible for.



Methods Towards API Usability 5

3.2 Process Overview

Figure 1 depicts the process of our evaluation approach addressing the elabo-
ration of API distinct usability problems. Further it allows us to elaborate on
an API-centric classification of usability problems as described in Section 4.
The process consists of five phases: (1) planning, (2) heuristic evaluation, (3)
workshop with developers, where the questions, problems, and potentials are
evaluated, (4) interviews with developers and (5) the final analysis. The three
different evaluation methods are conducted independently and the interviews
with the developers are done right after the workshop to avoid the repetition of
an introduction part to the evaluated API.

Discussion

Workshop with developers

Heuristic 
Evaluation Tutorial Hands On 

Example
Semi-structured 

Interviews
Questionnaires

Audio/Video 
recording

Analysis of 
Heuristic 

Evaluation 
Results

Analysis of the questionnaires and the recordings done during 
the workshop

Analysis of the 
recordings of 
the interviews

PlanningPhase 1

Phase 2-4

Phase 5

Fig. 1. Methodological Approach

Phase 1: Planning. In the planning stage the evaluators define a number of
experts and developers involved in the evaluation process and start recruiting
them. Evaluators also decide the objectives and identify relevant parts of the
API to be evaluated. They also decide logistics of the latter stages – they plan
time slot for heuristic evaluation, date and place of the developer workshop and
time slots for the subsequent interviews.

Phase 2: The heuristic evaluation takes place approximately 2-4 days before
the user workshop is conducted as it can reveal potentially problematic parts
of the API. The developer workshop should then focus on these parts to clarify
the problems. Experts are recruited and briefed about the API to evaluate by
evaluators. Each expert receives a list of heuristics used to find, analyze, and
categorize problems identified with the API. The outcome of the heuristic evalu-
ation consists of a list of problems identified with the API while the problems are
categorized according to the heuristics defined before. After the evaluation the
findings of all experts are collected and analyzed according to the occurrence,
the severity, and the addressed usability problem.



6 Thomas Grill, Ondrej Polacek, Manfred Tscheligi

Phase 3: The developer workshop consists of three parts – introduction, tutorials,
and hands-on example. In the introduction, the application domain of the API
is presented as well as the API itself. A simple “Hello world” example is shown
in tutorials. After that the developers are asked to implement a component
defined by evaluators using the API. When the scope of the API is too vast
to be covered within one task, we suggest to provide different tasks for each
developer in order to cover as much of the API as possible. The developers
are also asked to note problems they struggle with in a prepared questionnaire.
Besides the developers, evaluators are also present during the hands-on example.
Their role is to observe developers, log usability problems, and provide help when
they struggle with a problem for too long. Video and audio is recorded during
the workshop for future analysis. Demographic questionnaire, informed consent,
and non-disclosure agreement forms have to be signed by the developers at the
beginning of the workshop.

Phase 4: Post-workshop interviews with developers are held right after the work-
shop to debrief individual experience of workshop participants. An interview is
not longer than half an hour. The total length of this phase depends on the num-
ber of participants. Using multiple evaluators can accelerate this process as they
can work in parallel. For example, having eight participants and two evaluators,
interviews can last only two hours in total. The last interview should be taken
no more than two days after the workshop as the developers may forget some
important facts. An interview is recorded to allow future analysis.

Phase 5: Discussion. After collecting all materials, evaluators analyze notes, logs,
questionnaires, audio, and video recordings. They identify and summarize usabil-
ity problems and rank them according to severity. The output of the methodology
is a list of recommendations for improving the evaluated API.

4 Case Study – The API of the Contextual Interaction
Framework

The Contextual Interaction Framework (CIF) is an OSGi1 based framework de-
veloped at the ICT&S Center, University of Salzburg . The framework was built
with the goal to support the engineer during the development of contextual
study setups. The characteristics of such setups are twofold. Contextual study
setups are setups that use information from the environment. Such information
is obtained through external sources like sensors and actuators, which provide
information about the study environment, the users, and the tasks users are
doing during a contextual study. The second approach is to regard to contex-
tual studies simply by defining the environment the study shall take place. The
CIF provides functionality to support rapid prototyping by providing the de-
veloper a set of functionalities tailored for the rapid prototyping of contextual

1 http://www.osgi.org

http://www.osgi.org


Methods Towards API Usability 7

study setups. The second functionality is to not only simplify the development
of such study setups for programmers, but provide tools that allow usability en-
gineers to configure and conduct simple contextual study setups using existing
functionality.

Fig. 2. Graphical user interface of the CIF in which bundles providing various
functionality can be connected by creating directed wires.

Figure 2 depicts the main graphical interface of the CIF for usability engineers
to setup studies and for developers to test their functionality to be developed.
The CIF implements a plug-in architecture allowing the engineer to apply and
extend its functionality. Such functionality encapsulated in bundles may be e.g.
retrieving data from a sensor, logging to a database, etc. Bundles are depicted
as rectangles with a title in the GUI. A bundle contains services that are capable
of producing or consuming data. The services are displayed as triangles (pins)
attached to the left side of the bundle (consuming data), or to the right side
(producing data). The services can be linked together by wires to ensure the
data exchange. The GUI provides graphical means to dynamically load, unload,
start, and stop bundles and the services within bundles. In the example shown
in the Figure 2, the Data Engine bundle is used to produce random data which
is then displayed on a configurable Dashboard and at the same time logged to a
database using the Logger bundle.

The setup defined by the CIF represents a data-centric approach where the
engineer defines the data-flow between the available bundles, similar to a flow-
diagram used during the specification phase of a system. The advantage is that
the developer can immediately try out and thus verify the specific data-flow
occurring in the system.



8 Thomas Grill, Ondrej Polacek, Manfred Tscheligi

In order to address usability problems as well as the user experience of developers
with the developed application programming interface (API), we setup a study
that focuses in comparison to existing work (see Section 2) on the combination
of multiple evaluation methods as described in Section 3.

4.1 Study Setup

Following the methodology described in Section 3 we setup a study to obtain
results stemming from the different evaluation methods. Three different types of
methods have been applied. We conducted a heuristic evaluation (see Section 3
– Phase 2 ) to obtain findings identified by experts. A one-day workshop for
developer (see Section 3 – Phase 3 ) has been conducted with the intention to
get in-depth information about the actual usability of the API. In addition we
interviewed each workshop participant individually (see Section 3 – Phase 4 ) to
be able to identify qualitative data about the usability of the CIF API.

The heuristic evaluation was conducted before the workshop for developers
with the goal to identify usability problems of the API of the Contextual In-
teraction Framework. We selected 16 heuristics based on API design guidelines
identified by Zibran [18] and used them to categorize the problem areas occur-
ring when evaluating an API. These heuristics were selected as they summarize
existing guidelines available in related work. Table 1 gives a short description
of each heuristic based on [18]. The matter of analysis addressed by the experts
has been the framework together with the documentation of the CIF, which we
made available to the experts through a browser-based interface. The heuristic
evaluation was conducted with four experts that were asked to analyze the API
of the CIF itself together with the accompanying documentation. The experts
were selected according to their experience in software engineering and API de-
sign. The number of experts is based on the studies of Nielsen and Molich [23]
where 3-5 experts find 60–75% of existing usability problems of an interface.
For usability of API this was also approved by Farooq et al. [3], who found that
approximately 60% of API usability problems are identified with three to five ex-
perts in an API usability expert review. A higher number of experts is resulting
in more precise results (see Cockton and Woolrych [24]) and shall be addressed
in future studies. The findings were collected by evaluators. The severity of find-
ings was rated in agreement between the evaluators on a scale from one to five
where five is related to highest severity.

Table 1: Selected heuristics for the CIF evaluation

Name Description

Complexity An API should not be too complex. Complexity and flexibil-
ity should be balanced. Use abstraction.

Naming Names should be self-documenting and used consistently.
Caller’s perspective Make the code readable, e.g. makeTV(Color) is better than

makeTV(true).



Methods Towards API Usability 9

Documentation Provide documentation and examples.
Consistency and Con-
ventions

Design consistent APIs (order of parameters, call semantics)
and obey conventions (get/set mehods).

Conceptual correctness Help programmers to use an API properly by using correct
elements.

Method parameters and
return type

Do not use many parameters. Return values should indicate
result of the method. Use exceptions when exceptional pro-
cessing is demanded.

Parametrized construc-
tor

Always provide default constructor and setters rather than
constructor with multiple parameters.

Factory pattern Use factory pattern only when inevitable.
Data types Choose correct data types. Do not force users to use casting.

Avoid using strings if better type exists.
Concurrency Anticipate concurrent access in mind.
Error handling and Ex-
ceptions

Define class members as public only when necessary. Excep-
tions should be handled near from where it occurred. Error
message should convey sufficient information.

Leftovers for client code Make the user type as few code as possible.
Multiple ways to do one Do not provide multiple ways to achieve one thing.
Long chain of References Do not use long complex inheritance hierarchies.
Implementation vs. In-
terface

Interface dependencies should be preferred as they are more
flexible.

The developer workshop had the primary goal to tutor the developers on
the CIF. The workshop started with a setup session that had the purpose to
show the developers how the CIF can be setup and explain them the particular
requirements. In the course of this session, they obtained all the resources neces-
sary to develop with the CIF and also got an introduction to the documentation
of the CIF, which should help them to setup the framework. In addition they
were given a demographic questionnaire that focuses on the programming expe-
rience of the developers as well as a questionnaire in the form of a categorized
notebook. The categorizations have been elaborated based on the guidelines for
the semi-structured interviews so that we could use the notes that the developers
took during the whole workshop as a basis for adapting the interview questions
based on the experiences of the particular developers.

The setup session was followed by a presentation about SOA and OSGi and
an in-depth presentation providing the developers with insights about the func-
tional parts of the CIF as well as the API that the CIF provides to be able
to extend its available functionality. This was done in the form of a slideshow
presentation. After the theoretical introduction the developers were given exam-
ples that show how to use the framework. Also the different available bundles
have been discussed and the developers obtained an introduction to the tem-
plates provided by the framework, which act as a starting point to develop an
own CIF bundle. The examples were first presented in a slideshow and then ex-
plained hands-on using the Eclipse development environment and the CIF. After



10 Thomas Grill, Ondrej Polacek, Manfred Tscheligi

this the developers were asked to start developing their own hands-on example
bundle. They were provided with ideas of useful bundles that they could easily
implement. Optionally, they also had the possibility to bring in their own ideas,
but none of them did so. The developers were asked to use the documentation
and templates available and to note all the problems, misunderstandings, poten-
tial bugs, and errors they identified. These notes were collected and provided us
with information regarding the semi-structured interviews conducted after the
workshop. In addition the workshop was recorded using audio and video which
provided us with additional means of clarifying problems that occurred during
the workshop.

The workshop was held at the ICT&S Center, University of Salzburg where 8
developers (all men, mean age 29, st. dev. 3.1) participated in a one-day work-
shop. Pre-conditions for the developers participating have been defined through
required knowledge in programming Java and the Eclipse programming environ-
ment. Seven of them had a university degree, one was a university student. Five
of them had at least four years of developing experience, while the experience of
the rest varied from one to two years. Their Java experience varied from half a
year to nine years.

Post-workshop interviews have been done right after the developer workshop
on the same day and on the day after. Semi-structured interview guidelines were
defined to obtain comparable qualitative results. The guidelines covered API
usability issues based on Table 1 as well as usability factors of the API that have
been defined based on Bloch’s guidelines [1]. The factors cover the parameters
of learnability, rememberability, efficiency, misconceptions, errors, perception of
the API, and self-documenting structure and naming. Further parameters of
the documentation in terms of completeness, understandability, and helpfulness
have been addressed during the interviews. The notes that have been taken by
the developers during the workshop act as a basis for the interviews as they are
structured the same way as the guidelines.

4.2 Analysis

In this section we present the results of the in-depth analysis of the three different
parts of the evaluation of the API of the CIF.

Heuristic Evaluation. Four experts participated in the heuristic evaluation of
the API. All four experts were familiar with the application domain and they
had already known some parts of the API. They inspected total of 110 classes
and 30 interfaces in 29 packages. The length of one inspection varied between
three to six hours.

The findings were analyzed and clustered after collecting from experts. A total of
127 unique usability problems were identified by the experts with mean severity
of 3.1 (1 – the least severe problem, 5 – the most severe problem) and standard
deviation of 1.06. The distribution of the usability problems over heuristics is



Methods Towards API Usability 11

0
5
10
15
20
25
30
35
40

Fig. 3. Distribution of findings in heuristic evaluation

depicted in Figure 3. Most problems were in missing, incorrect, or incomplete
documentation (35), unnecessary complexity (26), e.g. some classes or methods
should be removed or redesigned to decrease complexity of the API. Many prob-
lems were also in obscure or wrong naming (13), and consistency and conventions
(13), e.g. a setter method was missing for its getter counterpart. Heuristic eval-
uation explore all parts of API equally. Due to inspection-like methodology, the
experts could only evaluate definition of classes, methods, interfaces etc., but
were not able to analyze run-time behavior.

Developer Workshop. During the developer workshop different types of ma-
terials have been collected. The evaluators took notes, the workshop sessions
have been recorded on video for post-analysis, and notes have been taken by the
participants of the workshop. The collected material provided us with insights
into understanding problems of the presentation and the tutorial as well as us-
ability problems of the API and the documentation. During the whole workshop
44 usability relevant issues with the API have been identified. We first separated
the findings according to the different parts of the workshop – (a) introduction,
(b) presentation, (c) examples, which included a tutorial, and (d) hands-on. Fig-
ure 4(b) describes this distribution where the findings are categorized based on
the defined heuristics and on the part of the workshop. During the introduc-
tion and the setup phase (Intro), where the whole system was setup based on a
tutorial provided in the documentation, no API relevant usability issues could
be detected. During the presentation phase, 15.91% of API usability relevant
issues were detected. During the presentation and elaboration of the examples
the biggest part of the usability problems was found (54.55%) while during the
hands-on examples phase of the workshop, where the developers had to use the
API and develop an own bundle 29.55% of the Usability problems have been
identified (see Figure 4(a)).



12 Thomas Grill, Ondrej Polacek, Manfred Tscheligi

0 

5 

10 

15 

20 

25 

30 

Intro Presentation Examples Hands-On 

Workshop findings of API 
related usability problems 

(a) Distribution of findings between the
applied methods

0 

2 

4 

6 

8 

10 

12 

14 

Com
ple

xit
y 

Nam
ing

 

Call
er'

s p
ers

pe
cti

ve
 

Doc
um

en
tat

ion
 

Con
sis

ten
cy

 an
d C

ov
en

tio
ns

 

Con
ce

ptu
al 

co
rre

ctn
es

s 

Meth
od

 pa
ram

ete
rs 

an
d r

etu
rn 

typ
e 

Para
metr

ize
d c

on
str

uc
tor

 

Fac
tor

y p
att

ern
 

Data
 ty

pe
s 

Con
cu

rre
nc

y 

Erro
r h

an
dli

ng
 an

d E
xc

ep
tio

ns
 

Le
fto

ve
rs 

for
 cl

ien
t c

od
e 

Mult
ipl

e w
ay

s t
o d

o o
ne

 

Lo
ng

 ch
ain

 of
 R

efe
ren

ce
s 

Im
ple

men
tat

ion
 vs

. In
ter

fac
e 

Hands-On 

Examples 

Presentation 

Intro 

(b) API relevant usability findings

Fig. 4. Workshop findings

The issues identified in the workshop have been split based on the categoriza-
tion of the heuristics (see Table 1). Figure 4(b) shows this distribution. The most
of the problems are related to the documentation issues (27,27%), to the con-
cept in terms of conceptual correctness (15,91%), and to the caller’s perspective
problems (13,64%). An interesting outcome is that during the tutorial when the
examples have been elaborated and tutored only 33.3% of the documentation
problems were found but 58.3% of these problems could be identified during the
hands-on part where developers worked directly with the API. Concluding the
API is used in more depth during the real application than during the phase of
learning the concept. This conclusion is also supported by the fact that 60% of
the identified problems regarding the complexity of the system occurred during
the example phase, while only 20% of the complexity related problems emerged
during the hands-on phase.

Post-Workshop Interviews. The interviews with developers were conducted
within the next two days after the workshop. A total of eight developers, who
participated in the workshop, took part in the interviews. The interviews iden-
tified 15 unique usability problems, which developers struggled with during the
workshop. Classification of these problems according to heuristics is depicted in
Figure 5. The mean severity of the problems was 3.2 (sd = 1.14) on a five-point
Likert scale. Again, the largest number of problems was related to documenta-
tion (5). Participants also mentioned three naming problems and three concep-
tual correctness problems. Interviews allowed us to gain valuable insights into
the biggest problems that the developers struggled with. These problems are the
most crucial to be corrected as they represent obstacles, which the developer has
to overcome during the very first use. Such obstacles can then easily discourage
a novice CIF developer from using our framework.

Besides usability problems, interviews revealed the subjective attitude of the de-
velopers to CIF. Three participants liked the structure of the API, four partici-



Methods Towards API Usability 13

Fig. 5. Distribution of findings from interviews with developers

pants positively commented learnability and five rememberability. Even though
most usability flaws were found in the documentation, three participants stated
that the documentation is complete and very helpful. Five participants found
naming of methods, classes and interfaces self documenting. The participants
were also asked to comment on the idea of CIF. Five participants liked the idea,
but three of them stated that it is important to have a library of bundles. In the
current state, the library of bundles is rather limited, which caused two neutral
attitudes. One participant did not see any added value in the CIF as he is not
developing relevant applications.

Fig. 6. Distribution of findings

4.3 Discussion

The evaluation revealed a total of 168 usability problems in our API, 157 of them
were unique. 109 problems were found in heuristic evaluation, 44 in developer
workshop and 15 in the interview. 9 problems were found in both, developer



14 Thomas Grill, Ondrej Polacek, Manfred Tscheligi

workshop and interviews. In the interviews these problems were addressed in
more detail. Only two overlapping problems regarding missing documentation
were found in the heuristic evaluation and developer workshop. The distribu-
tion of the problems is depicted in Figure 6. Surprisingly, no other overlapping
problem was found.

The findings and their structure were different from each part of the methodol-
ogy. Altogether, they compose a transparent picture of the whole API with focus
on its most important parts. An excerpt of the findings is shown in Table 2.
While findings from heuristic evaluation are formal and detailed descriptions of
problems in the API, findings from the workshop focus on usability problems
regarding concept and structure of the API. During the workshop we could re-
veal more run-time problems that are not obvious and thus cannot be found in
the heuristic evaluation. Interviews not only provided deeper understanding of
these problems, but also revealed their attitude towards the CIF.

Table 2. Findings example, HE = Heuristic evaluation, W = workshop, I =
interviews

Finding Phase

. . .
class: ServiceMetaData
finding : no default constructor, constructors have 4-8 parameters
heuristics: parametrized constructor

HE

class: ServiceMetaData
finding : no setter counterpart for getDate() method
heuristics: consistency and coventions

HE

Data types produced and consumed are stored in a configuration. The
configuration is created when the bundle is run for the first time. But if
the types are changed after the configuration was saved, it always loads
the types from the first saved configuration. The configuration has to be
deleted manually and that confused four workshop participants.

W

I was not able to run my bundle for a long time, because the system
allowed to instantiate only bundles with specific prefix and I was not
aware of it.

I

I am not happy with names consumer, producer. From the point of view
of the input device is it actually vice-versa.

I

. . .

The data collected during the workshop resembled usability testing. The reason
why the workshop was used instead of standard usability testing was that the
participants had to acquire some basic knowledge about SOA and about the
idea of the CIF before taking part in the evaluation. The workshop allowed us
to make a presentation of CIF and examples for all participants together in



Methods Towards API Usability 15

order to save time. Moreover, the presentation during the workshop initiated
discussions, from which we could gain valuable insights and comments. During
the workshop the developers got familiar with concept of CIF and its API and
thus can be subjects for future studies without necessity of the time consuming
introduction.

The severity of problems identified during the evaluation was also taken into
account. The problems were rated on a five-point Likert scale where five is the
most severe problem and one is only a minor problem. Table 3 shows the dis-
tribution of the degree of severity among each phase of evaluation and among
the different methods applied during the workshop. In order to ensure validity
and consistency of the rating, the same group of people (evaluators) assigned
the severity for the findings in each phase.

Table 3. Severity of API usability problems for each phase

Phase Mean SD

Heuristic evaluation 3.1 1.06

Workshop
Presentation 2.0 0.89
Examples 2.8 1.30
Hands-On 3.7 1.38

Interviews 3.2 1.14

The highest mean severity of the usability problems found is for the hands-on
part of the workshop. This indicates that the severity of usability problems of
an API increases the more the developers are involved in actual using the API.
A more abstract engagement in the API (like in the case of the presentation and
tutorial) results in the identification of less severe problems.

Results collected from all phases of the evaluation are divided into 16 fine-grained
heuristics. As the heuristics do not cover especially user experience factors we
developed a classification that provides another categorization of the findings
based on the characteristics of the findings rather than on the applied method-
ology. The classification consists of the following four categories:

1. Documentation. This category contains all findings related to documentation
– source code documentation, online documentation, tutorials, FAQs, etc. It
is mainly covered by the heuristic “Documentation” already used in the
evaluation.

2. Runtime. Findings that can be only revealed when working with the API
during at runtime. An example of such finding can be a misuse of the API
that results to a runtime exception.



16 Thomas Grill, Ondrej Polacek, Manfred Tscheligi

30

40

50

60

70

80

90

100

Documentation

Runtime

Structure

0

10

20

30

Heuristic
evaluation

Developer
workshop

Interview

Structure

User experience

Fig. 7. Classification of the findings.

3. Structure. Findings related to structure include low-level problems such as
naming or complexity of the API, but also higher-level problems, e.g. prob-
lems related to API concept and actual perception of the API.

4. User experience. This category contains subjective findings related to all
aspects of the experience when working with the API. This includes all
usability parameters such as ease of use or efficiency, etc., as well as typical
user experience attributes like attractiveness, emotions, perceived utility,
perceived effeciency, etc.

The classification has been applied to the findings and the result is depicted in
Figure 7. The findings from heuristic evaluation are classified either as documen-
tation or structure problems. Neither runtime nor user experience findings were
revealed in this phase as no developer was involved. This shows that heuristic
evaluations are mainly applicable in order to identify problems related to the
structure and also the documentation of the API. The problems identified are
of formal nature and do not cover usability aspects. During the developer work-
shop we could identify in addition to documentation and structural findings also
runtime related findings and a low number of user experience issues. During
the interviews a lower number of runtime related problems, structural, or doc-
umentation issues were found. The strength of this method lies in finding user
experience problems. This results in a categorization of identifiable problems
regarding their characteristics.

Each applied method has its strengths and weaknesses and focuses on different
areas of problems. A combination of the selected methods resulted in a more
complete view about the overall usability covering not only static but also dy-
namic aspects appearing through the hands-on workshop. Combining such spe-
cific methods thus allows to simultaneously address related usability problems
with an API in an appropriate way. Anyway, further combinations of methods



Methods Towards API Usability 17

and variations of the methodologies still need to be compared to identify good
combinations of methods to evaluate the usability of APIs.

5 Conclusion and Future Work

To study the appropriateness of HCI methods for evaluating the usability of
the API of the Contextual Interaction Framework a methodology based on a
mixed methodical approach focusing on the mutual pollination of the contribut-
ing methods has been developed. Mixing the HCI methods is important as it
allows us to get a big picture of problems covering all areas of API usability.
We applied this method in a case-study and were able to identify the applica-
bility of different methods for different types of results. Based on the results we
could elaborate a classification that provides a mapping between usability find-
ings and HCI methods to be applied. The identified categories reflect structural,
run-time related, documentation related, and user experience related usability
findings of APIs. The applied methodology generated insights based on an in-
spection method, a user test, and interviews. They represent a first step towards
the classification of the applicability of HCI methods to identify specific usability
issues in a software development process. Current limitations of our work mostly
exist regarding the generalizability of the approach. In future studies, we will
address this by comparing combinations of other usability methods like cognitive
walkthroughs, focus groups, API reviews, etc. By doing this, we expect to obtain
a more fine-grain classification of the potential methods reflecting relevant areas
of usability findings in APIs. Additionally we will evaluate the applicability of
user experience methodologies like questionnaires targeting user experience fac-
tors like acceptance, attitude, or emotions with respect to the usability and user
experience of APIs.

6 Acknowledgements

The financial support by the Federal Ministry of Economy, Family and Youth and
the National Foundation for Research, Technology and Development is gratefully
acknowledged. The work described in this paper was supported by the Christian
Doppler Laboratory for “Contextual Interfaces” and the COMET K-Project
“AIR – Advanced Interface Research”. Further we want to thank our colleague
Michael Humer who supported us throughout the conception of the work and
the user study described in this paper.

References

1. Bloch, J.: How to design a good API and why it matters. In: Companion to
the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, ACM (2006) 506–507



18 Thomas Grill, Ondrej Polacek, Manfred Tscheligi

2. Scaffidi, C.: Why are APIs difficult to learn and use? Crossroads 12(4) (2006) 4–4
3. Farooq, U., Zirkler, D.: API peer reviews: a method for evaluating usability of

application programming interfaces. In: Proc. of CSCW ’10, New York, NY, USA,
ACM (2010) 207–210

4. McLellan, S.G., Roesler, A.W., Tempest, J.T., Spinuzzi, C.I.: Building More Usable
APIs. IEEE Softw. 15(3) (1998) 78–86

5. Robillard, M.P.: What Makes APIs Hard to Learn? Answers from Developers.
IEEE Software 26(6) (2009) 27–34

6. Stylos, J.: Informing API Design through Usability Studies of API Design Choices:
A Research Abstract. In: Proc. of IEEE Symp. VL/HCC ’06. (2006) 246–247

7. Stylos, J., Myers, B.A.: The implications of method placement on API learnability.
In: Proc. of ACM SIGSOFT ’08/FSE-16, New York, USA, ACM (2008) 105–112

8. Ellis, B., Stylos, J., Myers, B.: The Factory Pattern in API Design: A Usability
Evaluation. In: Proc. of ICSE ’07, IEEE Computer Society (2007) 302–312

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: The Abstract Factory Pattern. In:
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
(1995)

10. Stylos, J., Graf, B., Busse, D.K., Ziegler, C., Ehret, R., Karstens, J.: A case study
of API redesign for improved usability. In: Proc. of IEEE Symp. VL/HCC ’08,
Washington, DC, USA, IEEE Computer Society (2008) 189–192

11. Green, T.R.G.: Cognitive dimensions of notations. In: Proc. of the 5th Conf. of
the British Computer Society, HCI Specialist Group on People and Computers V,
New York, NY, USA, Cambridge University Press (1989) 443–460

12. Green, T.R.G., Petre, M.: Usability Analysis of Visual Programming Environ-
ments: a ‘cognitive dimensions’ framework. Journal of Visual languages and com-
puting 7(2) (1996) 131–174

13. Clarke, S.: Measuring API usability. Doctor Dobbs Journal 29(5) (2004) 1–5
14. Bore, C., Bore, S.: Profiling software API usability for consumer electronics. In:

Proc. of ICCE ’05. (2005) 155–156
15. de Souza, C., Bentolila, D.: Automatic evaluation of API usability using complexity

metrics and visualizations. In: Proc. of ICSE-Companion ’09. (2009) 299–302
16. Watson, R.: Improving software API usability through text analysis: A case study.

In: Proc. of IEEE Conf. IPCC ’09. (2009) 1–7
17. Henning, M.: API Design Matters. Queue 5(4) (2007) 24–36
18. Zibran, M.: What Makes APIs Difficult to Use? IJCSNS International Journal of

Computer Science and Network Security 8(4) (2008) 255
19. Zibran, M., Eishita, F., Roy, C.: Useful, But Usable? Factors Affecting the Usability

of APIs. In: Proc. of WCRE ’11. (2011) 151–155
20. Beaton, J.K., Myers, B.A., Stylos, J., Jeong, S.Y.S., Xie, Y.C.: Usability evaluation

for enterprise SOA APIs. In: Proc. of SDSOA ’08, New York, NY, USA, ACM
(2008) 29–34

21. Beaton, J., Jeong, S.Y., Xie, Y., Stylos, J., Myers, B.A.: Usability challenges for
enterprise service-oriented architecture apis. In: Proc. of IEE Symp. VLHCC ’08,
Washington, DC, USA, IEEE Computer Society (2008) 193–196

22. Jeong, S.Y., Xie, Y., Beaton, J., Myers, B.A., Stylos, J., Ehret, R., Karstens, J.,
Efeoglu, A., Busse, D.K.: Improving Documentation for eSOA APIs through User
Studies. In: Proc. of IS-EUD ’09, Berlin, Heidelberg, Springer-Verlag (2009) 86–105

23. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proc. of ACM
SIGCHI ’90, New York, NY, USA, ACM (1990) 249–256

24. Cockton, G., Woolrych, A.: Sale must end: should discount methods be cleared off
HCI’s shelves? interactions 9(5) (2002) 13–18


	Methods Towards API Usability: A Structural Analysis of Usability Problem Categories
	Thomas Grill, Ondrej Polacek, Manfred Tscheligi
	Introduction
	Related Work
	Methodology
	Roles
	Process Overview

	Case Study – The API of the Contextual Interaction Framework
	Study Setup
	Analysis
	Discussion

	Conclusion and Future Work
	Acknowledgements





