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Abstract. The lack of cooperation in Peer-to-Peer (P2P) applications poses se-
rious challenges to the quality of service provided to their clients, specifically in
P2P live streaming applications given their strict real-time constraints. We here
investigate the potential of exploiting topological properties of the P2P overlay
network to predict the level of cooperation of a peer, measured by the ratio of the
upload to the download traffic during a pre-defined time window. Using data col-
lected from SopCast, we first show that centrality metrics provide good evidence
of a peer’s cooperation level in the system. We then develop a regression-based
model that is able to estimate, with reasonable accuracy, the level of cooperation
of a peer in the near future given its centrality measures in the recent past. Our
proposed strategy complements existing incentive mechanisms for cooperation in
P2P live streaming, and can be applied to detect non-cooperative peers.

Keywords: Peer-to-peer live streaming, centrality metrics, cooperation level

1 Introduction

The peer-to-peer (P2P) architecture has emerged as a cost-effective platform for live
video streaming on the Internet. Indeed, various P2P live streaming applications, such as
SopCast, PPLive, and UUSee!, have already reached the mark of millions of registered
users [9]. Such systems are composed of clients (peers) that collaborate to disseminate
the live media content by establishing partnerships and organizing themselves into an
overlay network on top of the real computer network. A peer may request (and receive)
chunks of the live media from its partners, thus releasing the central server from the
responsibility, and ultimately from the associated costs, of serving all participant clients.

Given this architecture, the proper operation of P2P applications and ultimately the
quality of service provided to the clients depend heavily on peer cooperation. However,
a number of previous studies have already detected the presence of non-cooperative
peers, also known as free riders, which download content from their partners but do not

* This work is supported by the INWeb (MCT/CNPq grant 57.3871/2008-6), and by the authors
grants from CNPq and FAPEMIG
U http://www.sopcast.com, http://www.pptv.com, and http://www.uusee.com.
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upload the received content to other peers [1]. The lack of cooperation may be caused by
both opportunistic users, who consciously choose not to upload content to others, and
by P2P protocols that induce unbalanced data exchanges among partners. The presence
of non-cooperative peers may greatly degrade the overall system performance [20],
particularly in P2P live streaming applications due to their strict time constraints [11].
For example, peers may experience video interruptions due to the lack of partners from
which to download the live content, whereas altruistic peers, i.e., peers that upload more
content than they received, thus serving multiple partners, may be overloaded with data
requests and become unsatisfied with the system. Thus, maintaining estimates of the
current level of cooperation among peers helps P2P application managers to identify
potentially non-cooperative peers as well as altruistic overloaded peers, guiding them
into future actions to guarantee the expected quality of service.

In this paper, we investigate whether the topological properties of a peer in the over-
lay network are related to its level of cooperation in P2P live streaming applications.
In particular, we assess the potential benefit of exploiting centrality metrics to dynami-
cally predict the level of cooperation of each peer. A peer’s cooperation level is defined
by the ratio of the total upload to the total download traffic the peer exchanged with
its partners. Since a peer’s cooperation level may change over time throughout the live
transmission, it should be estimated periodically, during specific time windows.

Our study relies on data collected from one of the currently most popular P2P live
applications, i.e., SopCast, using a large number of PlanetLab machines. It encompasses
two main steps. We first show that centrality metrics [7] are reasonably strongly cor-
related with the peer’s cooperation level and thus might be used to distinguish non-
cooperative peers, i.e., peers that upload less than download, from the others. More-
over, we also show that a peer’s centrality remains reasonably stable over consecutive
60-second time windows. Motivated by these findings, we then develop a regression-
based model to predict the level of cooperation of a peer in the following time windows
given its centrality measures collected in the last window. Using our collected data, we
show that our approach can produce reasonably accurate predictions.

There are various techniques for detecting non-cooperative peers [2, 8, 14] and in-
centivizing peer cooperation [4, 16, 17] in live streaming applications. Our motivation
for investigating the benefit of exploiting centrality metrics for that purposes lies in
the observation that many P2P live applications keep a centralized server (tracker) that
periodically receives control messages from each peer. In such messages, peers might
include a list of their current partners [16], based on which the tracker could reconstruct
the overlay topology and compute each peer’s centrality. Moreover, some techniques
collect the ratio of upload to download periodically from peers and use authentication
mechanisms to be robust to malicious peers, which increases communication and com-
putation overhead in the system. We believe that our strategy might be jointly applied
with such techniques by complementing them and reducing their overhead [4, 16].

The rest of the paper is as follows. Section 2 discusses related work. Our SopCast
data collection methodology is described in Section 3. The level of cooperation among
SopCast peers is analyzed Section 4, whereas its correlation with peer centrality is
discussed in Section 5. Section 6 presents our regression-based model, whereas related
practical issues are discussed in Section 7. Section 8 concludes the paper.
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2 Related Work

Low cooperation in P2P systems, or free riding, was first analyzed in the Gnutella file
sharing system [1]. Since then, various studies have addressed the problem [2,8, 15,20].
Most notably, incentive mechanisms that rely on bilateral peer contribution, such as
Bittorrent’s tit-for-tat [6] and further improvements [13,20], have been widely applied in
file sharing systems. However, tit-for-tat may not be effective in live streaming because
video segments become obsolete over time, which in turn prevents some peers from
sharing every segment received [17].

FlightPath [14] is a P2P live streaming application with an incentive mechanism
that uses tit-for-tat but also adds a relaxation parameter for the benefit of peers that
are unable to contribute in a balanced way. Silverston et al. [17] proposed a different
incentive mechanism where peers unable to serve data should answer with pointers
to other peers that are able to serve. Chatzidrossos et al. [4] argued that many non-
cooperative peers are unable to upload as much data as they download due asymmetric
DSL or HSDPA connections. To maximize the social welfare, they proposed to reserve
a fraction of server upload bandwidth to altruistic peers that upload more data than
they download. Our model could be used by such incentive mechanisms to identify
non-cooperative and altruistic peers, enabling the application to redirect traffic in its
network. More than that, in the case of the incentive mechanism proposed by Silverston
et al., our model can indicate the amount of data a peer can serve in the near future
based on its predicted cooperation level.

LiFTinG [8] is a technique for tracking free riders that consists of a series of check-
ing and cross-checking operations performed by peers to verify whether data requests
are served by their partners and whether the partners forwarded received data to their
own partners. Failed verifications decrease the score of a peer, and peers with low score
may be considered suspect and be banned from the system. Azzedin [2] proposed that
peers keep a black list of untrustworthy contributors and send information about cor-
rupted content received from their partners to monitoring peers. This information is
then used to detect free riders and content polluters (i.e., peers that inject corrupted
data in the system). Our model may be used by trust systems as an additional informa-
tion source: peers reporting cooperation levels significantly higher than what the model
predicts based on their out-degrees can be put in a list of suspect peers to check.

More related to our work is the centralized version of the Contracts incentive mech-
anism [16]. Contracts uses estimates of each peer’s cooperation level to restructure the
overlay such that altruistic peers are placed closer to the video source, thus having a
better quality of service. At each peer, Contracts collects cryptographic receipts for up-
loaded data and sends them periodically to the tracker. The tracker processes receipts
to compute each peer’s cooperation level, which incurs in high processing cost. Our
method could help reducing communication and computational overhead incurred by
Contracts, as discussed in Section 7.

3 SopCast Data Collection Methodology

Our study relies on a set of traffic logs collected from SopCast, a currently very pop-
ular P2P live streaming application. SopCast maintains a number of channels, each
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one transmitting live content over its own P2P overlay network, independent from the
others. The SopCast P2P architecture is based on a data-driven mesh network [21],
in which clients (peers) establish partnerships among themselves building a mesh like
overlay network. A server, which generates the content, splits the media into chunks and
transmits them over the network. To receive the live content, a peer explicitly requests
each needed chunk from one of its partners. SopCast keeps a list of public channels but
also allows the creation of private live channels, accessible to a restricted set of clients.

To collect data from SopCast, we used a set of PlanetLab machines [5] acting as both
regular SopCast clients and data crawlers. Our crawling strategy follows the one used
in [18], where each crawler collects and stores data regarding all packets it exchanges
with its partners, and these traces are later merged to reconstruct the overlay network.
We chose to collect data from a private channel of our own, restricting the clients to our
PlanetLab crawlers, so as to be able to collect a complete view of the overlay network
and compute exact measures of the centrality and cooperation level of each peer.

To build our private SopCast channel, we set up a server to encode and transmit a 1-
hour 280 kbps video. We performed 6 experiments in November 201 1. For each experi-
ment, all crawlers joined the SopCast channel at the same time and remained connected
through an initial 5-minute interval. Afterwards, our crawlers start mimicking the be-
havior of real peers by dynamically leaving and rejoining the channel (i.e., churn). The
churn model adopted was based on a previous characterization of the dynamic behavior
of real SopCast clients on a popular public channel [19]: each peer remains connected
in the channel for a certain period ON of time; afterwards, it leaves the system remain-
ing inactive for a period OF' F of time after which it rejoins the channel. According
to our analyses of real data collected during various transmissions, ON times are well
modeled by a Weibull distribution with parameters o = 2.032 and 8 = 0.233, whereas
OFF times follow an Exponential distribution with parameter A\ = 0.0542. While con-
nected to the channel, each crawler uses Wireshark? to collect all SopCast related traffic.
During our experiments, we used the largest number of crawlers possible, which var-
ied between 350 and 450 stable PlanetLab nodes. We also checked clock drift among
crawlers to guarantee that time differences could be neglected (less than 1 second).

Each crawler collected the timestamp (at the 1-second granularity) and the size of
each packet sent (received) to (from) other SopCast clients. As our focus is on data
packet exchanges, we only stored information for packets containing at least 1300 bytes,
a threshold selected based on previous studies of SopCast and PPLive [9, 18].

For each experiment, once the monitoring period finished, we merged the log files
created by all crawlers to reconstruct the overlay network during the experiment. We
discarded an initial 5-minute warm-up phase, analyzing only data collected afterwards
(during peer churn). We used the time information and the source and destination IP
addresses of each packet to reconstruct the SopCast overlay network as a sequence
of snapshots. More specifically, we took consecutive snapshots of the network, each
one built from data collected during a pre-defined time window with duration W. In the
following, we analyze peer cooperation level for all time windows of all 6 experiments.

% The Probability Density Functions are: px (z) = afz” —0g—aafp (0,00) () for Weibull, and
px ()= Ae™** for Exponential.
3 http://www.wireshark.org
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Fig. 1. Peer Cooperation Level (CL) for Various Window Durations (W).

4 Peer Cooperation in SopCast

To analyze peer cooperation in SopCast during our experiments, we start by defining
the cooperation level of peer i during time window ¢, denoted C'L(t,14), as the ratio
between the total number of bytes uploaded and downloaded by ¢ during ¢.

We then analyze C'L values as a function of the time window duration W. In prac-
tice, we want a duration that is neither too short nor too long, so as to smooth out great
variations at very short time scales while still capturing dynamic peer properties over
the course of a transmission. We tested with W equal to 2, 30, 60 and 90 seconds. As
an example, Figure 1(a) shows the CL values of a selected peer measured over consec-
utive windows, for W equal to 2 and 30 seconds. The peer’s CL fluctuates greatly for
W =2, whereas for W=30 the curve shows a much smoother behavior. We quantify this
variability with the coefficient of variation (CV) (i.e., the ratio of the standard deviation
to the mean) of all measured CL values. Figure 1(b) shows the distributions of CVs,
computed for each peer across all time windows in our experiments, for each duration
W. Clearly, the variability is greater for W=2, whereas for W >30, the distributions are
very close to each other. Thus, we focus on W equal to 30, 60, and 90 seconds.

We now analyze the distribution of CL values across all peers during all time win-
dows of all experiments. Figure 1(c) shows CL values with logarithmic scale on the
x-axis. Note that the distributions are very similar for W equal to 30, 60, and 90 sec-
onds. Indeed, 2% of the measured CL values are greater than 10 for all three values
of W. In general, we observe two extreme peer behaviors. On one side, there are few
altruistic peers that upload much more than they download. On the other side, there are
many non-cooperative peers that upload much less than they download. In particular,
Figure 1(c) shows that 34% of all measured CL values are below 0.1, corresponding to
very uncooperative peers which, despite downloading the complete video, forwarded
no more than one-tenth of it to their partners. These results illustrate how unbalanced
load distribution is in SopCast.

Considering as non-cooperative during time window ¢ a peer ¢ with CL(¢,4) < 1 (as
in [15]), Figure 1(c) shows that, during a time window, the SopCast network contains
around 87% of non-cooperative peers, on average. Even if we assume a stricter defini-
tion, with a non-cooperative peer ¢ being such that CL(t,¢) < 0.5 (or CL(¢,4) < 0.2),
the fraction of non-cooperative peers during a window ¢ is 79% (56%), still quite large.
These observations indicate that it is very likely that SopCast does not implement any
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load balancing mechanism among peers, as already observed for PPLive [16]. The lack
of such mechanism is a concern because cooperative peers (particularly very altruistic
peers) may find themselves discouraged to participate in the network due to the high
bandwidth consumption. Moreover, the large presence of non-cooperative peers may
lead to extra delays, stream interruptions, and ultimately system collapse [16].

S Peer Centrality and Cooperation Level

Our goal in this paper is to assess the potential benefit of using a peer’s centrality mea-
sures to predict its cooperation level in the near future. More specifically, we want to
assess the accuracy of using centrality measures of peer ¢ during window ¢ to predict its
CL value in window ¢ 4 1. This idea rely on two hypotheses: (1) a peer’s centrality is
correlated with its CL, and (2) a peer’s centrality remains roughly stable over consecu-
tive windows. We here investigate whether these hypotheses hold in our dataset.

We consider 3 commonly used centrality metrics, namely, out-degree, closeness,
and betweenness, taking normalized measures so as to make them comparable across
different time windows during which the number of clients in the network may change.
The out-degree of a peer i during window ¢, denoted by d(¢, 4), is the number of part-
ners to which ¢ uploaded media chunks during ¢. We define normalized out-degrees
as d(t,i) = d(t,3)/(|P(t)| — 1), where P(t) is the set of network peers during .
The closeness of peer @ during ¢, c(t,), is the inverse of the average shortest path
length between ¢ and all the other peers in the network during window ¢ [7]. Let
0(t,i,7) be the length of the shortest path between nodes i and j during ¢, then
c(t,i) = (IP®] — 1)/ 2 epr) 0(t. i, 7). Note that c(t,i) € (0,1] regardless of net-
work size, being already normalized. The betweenness of peer ¢ during ¢, b(t, 1), is
the fraction of all shortest paths connecting pairs of nodes in the network that pass
through 4. Let o(t, j, k) be the number of shortest paths between nodes j and k dur-
ing ¢t and o (¢, j, k,4) be the number of those paths that pass through ¢, then b(¢,4) =
Dijkep(t)izjzk Ot J, k1) /o (L, j, k). Betweenness values increase with the number
of pairs in the network, so we normalize them by the number of pairs of peers excluding
i, which gives b(t,4) = 2b(¢,4)/((|P(#)| — D)(|P(®)| — 2)) [7].

We disregard edge direction to compute closeness and betweenness, as Freeman [7].
Edge directions could partition the graph and lead to inconsistencies when computing
these 2 metrics. In particular a peer that uploads more than it downloads could become
unreachable from the majority of peers in the network, be traversed by few shortest
paths, and have low betweenness. We only consider the direction of the edge to compute
out-degree because in this case, direction captures information about the data flow.

We analyze the relationship between each centrality metric and cooperation level
using the Spearman correlation coefficient, which is a non-parametric measure of sta-
tistical dependence [12]. We compute the correlation between peer centrality and CL
for each time window. Figure 2 shows the distributions of the Spearman coefficients
for all time windows in all experiments for different values of . For all three metrics,
window duration has small impact on the correlation coefficients, which are strictly
positive and usually larger than 0.5. Thus, all three metrics may be useful to predict CL
values. However, out-degree clearly has a significantly stronger correlation.



Using Centrality Metrics to Predict Peer Cooperation 7

=<° = =°
W | © W=30sec. >|f'_ o W =30 sec. W | © W=230sec.
vV @4 W=60sec. vV @ /A W=60sec. V&4 W=60sec.
c c c
S + W =90 sec. S + W =90 sec. S + W =090 sec.
T o T o T o
° ° )
53 EZ £
o k=] oo o o
S Ou Cq
ao Qo oo
[ & [ - <]
a2l 508 o g o e | gl of
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Correlation x Correlation x Correlation x
(a) CL and Closeness (b) C'L and Betweenness (¢) C'L and Out-Degree

Fig. 2. Distributions of Spearman Correlation Between Centrality and Cooperation Level (CL)

o —~ O =)
X2 s K= RS
a Vv
& @ I Voo | D ®
8 o | c o [SR=]
o CL<05 | . 8o
®» S| - CL<10 i z° o e
[ 2 . i © =
53 CL>=10 f/ d CL<05 | 33 CL<05
S| e CL>=20 /i : ---- CL<1.0 --- CL<1.0
o0« [ # oo oo )
5o /i Soii e CL>=10| Zo < CL>=1.0
[S J7 o CL>=20 Qo4 A CL>=20
oS ——— ' oS e ool . k
0.0 0.2 04 056 08 0.00 005 040 045 0.20 0.25 0.30 00 01 02 03 04 05
Relative Closeness x Relative Betweenness x Relative Out-degree x
(a) Closeness (b) Betweenness (c) Out-degree

Fig. 3. Distributions of Centrality Metrics as a Function of Cooperation Level (CL)

We also analyze the capacity of each centrality metric to distinguish non-cooperative
peers (i.e., with C'L<1) from cooperative peers (i.e., with C L >1). Figure 3 shows the
distributions of closeness, betweenness, and out-degree for these two sets of peers over
all time windows for W=60. Results for other values of 1V are quantitatively similar,
being thus omitted. All three metrics have very distinct distributions for cooperative and
non-cooperative peers: non-cooperative peers tend to have much smaller closeness, be-
tweenness, and out-degree. Once again out-degree stands out as the most discriminative
metric. Figure 3 also shows the distributions for stricter definitions of non-cooperative
peers with C' L<0.5 and for cooperative peers with C'L>2. The same trend holds, pro-
viding further evidence that centrality metrics, in particular out-degree, may be useful
to predict, with reasonable accuracy, peer cooperation levels.

We now turn to our second hypothesis, and analyze the difference between each
peer’s centrality in two windows ¢ and ¢t + k, for positive k. We focus only on out-
degree as, according to Figures 2-3, it is the most promising metric. Figure 4 shows the
distributions of the differences of normalized out-degrees over all peers in all windows
for various values of k and W = 60s. Note that out-degrees remain reasonably stable
for small values of k (e.g., k < 8). For instance, for 80% of the peers analyzed over
pairs of windows that are 8 minutes apart from each other (k = 8), the difference in
the normalized out-degree is less than 4% of the total number of peers in the network.
Thus, peer centrality remains reasonably stable across a few successive time windows.

6 Predicting a Peer’s Cooperation Level

Given our findings in the previous section, we now study whether the centrality of a
peer measured in window ¢ can help us predict its cooperation level in window ¢ + 1.
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By visual inspection, we identified that a peer’s CL is a non-linear, monotonically
increasing function of each considered centrality metric. This led us to evaluate non-
linear regression models for computing CL. Let m(t, i) denote a (normalized) centrality
metric (out-degree, betweenness, or closeness). We evaluated polynomial and exponen-
tial models of the forms:

éz(t +1,i) = Z?:O ajm?(t,i) and E’I(t +1,i) = ag + aym(t,i) + be™ ),

In both cases, we considered functions of a single centrality metric as well as func-
tions combining multiple metrics. We computed model parameters a; and b using curvi-
linear regression [10], where one applies a linear transformation to the predictor and
response variables, i.e., m(t,¢) and CL(t,%), and then computes the parameters min-
imizing the sum of squared residual errors. The estimates are produced in successive
time windows as follows: model parameters a; and b are computed based on centrality
and CL values measured in window ¢ — 1, the model is applied using peer’s centrality
measured during window ¢, and its accuracy is evaluated by comparing, for each peer,
the predicted CL against the CL measured in the next time window ¢ + 1. We quantify
prediction accuracy using the prediction error 63(75 +1,4) — CL(t + 1,4). Negative
E’E(t + 1,4) are truncated to zero, as negative cooperation does not make sense.

In the interest of space, we present a summary of our findings in the evaluation of
the various models tested. As expected from the results in Figures 2 and 3, the models
using out-degree have higher prediction accuracy among the three centrality metrics.
Moreover, the exponential models usually have lower prediction accuracy as they sys-
tematically underestimate the cooperation level of altruistic peers, whereas cubic and
quadric models have accuracy equivalent to quadratic models. Thus, we opted for the
latter (simpler) ones. Finally, the intercept aq is usually statistically equivalent to zero,
which is intuitive, as a peer’s contribution is zero when it is not in the network (i.e.,
m(t, i)=0). Thus, we focus our following discussion in our best-performing model*:

CL(t +1,4) = ayd(t, i) + az[d(t,7)]*. (1)

* This model has the advantages of taking only a peer’s out-degree as input and requiring cali-
brating only two parameters. This reduces the computational cost, compared to, e.g., a model
that requires computing betweenness, which has complexity O(V E) for a network with V'
nodes and E edges [3], and might have limited practical deployability.
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We start analyzing the accuracy of our model by plotting, for each peer ¢ and win-
dow ¢, the measured and predicted cooperation levels. Figure 5 shows results for all
peers and windows with W=60. The trend towards linearity is clear: a Pearson correla-
tion coefficient [10] p=0.87 indicates strong positive correlation. Similarly, we obtained
p equal to 0.90 and 0.84 for W equal to 30 and 90 seconds. Despite producing errors in
a few cases, most predictions have reasonable accuracy. Indeed, Figure 6 shows the dis-
tributions of errors computed over all peers and windows, for W equal to 30, 60 and 90.
To improve readability, we group prediction errors based on the measured cooperation
level: predictions for non-cooperative peers with CL < 1, predictions for cooperative
peers with 1 < C'L < 10, and predictions for very altruistic peers with C'L > 10.

In general, the first two sets of curves show that prediction errors are very concen-
trated around zero and that the choice of W has little impact on them, although W
might impact whether the model tends to overestimate or underestimate the coopera-
tion level. For instance, considering the predictions for non-cooperative peers (C'L<1),
around 68%, 67% and 66% of the predictions are reasonably accurate, falling within
40.2 of the measured C'L values for W equal to 30, 60 and 90 seconds, respectively.
However, the fraction of predictions that underestimate the measured C'L tends to be
larger for larger W. For example, Figure 6(a) shows that the fraction of negative er-
rors (i.e., underestimates) is 84% for =90, but only 64% for W =30. Similarly, most
predictions for peers with 1 < C'L < 10 are within 2 units of the measured values.
Indeed, 76%, 71% and 66% of the model errors fall in this range for W equal to 30, 60
and 90 seconds. However, unlike observed for non-cooperative peers, the model tends
to underestimate the real C'L values more for larger W.

The predictions for the very altruistic peers are somewhat less accurate: around
55%, 48% and 43% of the errors are within 5 units of the measured CLs for W equal to
30, 60 and 90 seconds. The smaller number of very altruistic peers in the network (2%)
makes it hard to build a model that is very accurate for such peers compared to the other
two groups. We note, however, that our model is able to correctly identify most very
altruistic peers: around 85% of the predictions for these peers produced CL estimates
that fall in the expected range (i.e., 6'—2 > 10), and most remaining 6’? estimates fall
between 1 and 10. It is also able to identify most cases of non-cooperation: only 3% of
predictions for peers with C'L < 1 had CL > 1. In future work, we intend to exploit
other topological properties to improve the prediction for very altruistic peers.

So far, we have discussed the accuracy of the regression model when parameters
a; are computed at each window ¢ given the centrality measures collected during that
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Fig. 7. Distribution of Prediction Errors as Function of Model Calibration Period k£ (W = 60s)

window. We now consider the case where the model parameters are computed using
data collected at window ¢ and applied at the following k windows, i.e., t + 1, ¢ + 2,
-+, t+ k. Note that we still collect centrality measures at each window and use them to
predict cooperation levels during the next window. Our goal is to analyze the sensitivity
of the model to the frequency at which it must be calibrated (i.e., parameters must be
recomputed), where k defines the time interval between two consecutive calibrations.
Figure 7 shows the distributions of prediction errors for various values of k£ and
W=60. Once again, we show results separately for each range of measured CLs. The
impact of & on the errors can be barely noticed, particularly for CL<10 (Figures 7(a-
b)). This implies that model parameters can be computed once and applied repeatedly
for the following 16 minutes, at least. The model is a little more sensitive to long cal-
ibration periods when estimating the CL of very altruistic peers (Figure 7(c)). For this
range, the errors tend to increase slightly for £>16. This is because some very altruis-
tic peers experience frequent changes in their centrality measures. We conjecture that
such changes might be due to the policy, adopted by many current applications, of peers
randomly selecting new neighbors every so often [8,21]. Chances are that a peer that
loses some of its partners ends up creating new partnerships with such very altruistic
peers, as they are more willing to accept them. However, even for very altruistic peers,
the impact of increasing k to 16 on model accuracy is small and might be acceptable.

7 Practical Considerations

Our results in Section 6 indicate that centrality metrics, notably out-degree, may be used
to predict a peer’s cooperation level with reasonable accuracy. We now address three
factors that impact its practical deployability: how to collect inputs for model calibration
and application, processing overhead at the tracker, and robustness to malicious nodes.

To build (calibrate) and apply our model, a central participant must collect each
peer’s out-degree and cooperation level. This could be performed by the tracker which,
in many current P2P applications, already periodically receives control messages from
all peers. Indeed, we observed, during our SopCast experiments, control message ex-
changes between peers and the tracker every 2 minutes. A peer could piggyback the list
of its current partners in these control messages, which would suffice for the tracker to
compute the whole overlay topology. Such piggybacking would incur in a small band-
width overhead as peers usually have only a few tens of partners [9] (15.65 on average
in our SopCast experiments), each of which could be represented by only 4 bytes. For
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the sake of illustration, if there are 10,000 pairs in the network informing their partners
every 2 minutes, the aggregate overhead at the tracker is only SKbps.

This overhead is small given that the knowledge of the overlay topology is of interest
to system administrators, who are often concerned about the traffic between peers, and
thus is expected from a well monitored system. Indeed, in some applications [21], peers
already periodically exchange information that provide a partial view of the network. In
such systems, the partnership information could be collected by a few monitoring peers
(as in [2]) which jointly could reconstruct the complete network.

The second required input, each peer’s cooperation level, could be sent to the tracker
by the peer itself, at the cost of extra 4 bytes, or, alternatively, peers could send their
upload to each partner, which induces an overhead equivalent to that of the list of part-
ners. However, note that, this could be performed at longer intervals, since, according to
Figure 7, model calibration at each 16 minutes still yields reasonably accurate results.

Calibrating the prediction model at the tracker requires few computational resources,
as the out-degree requires no extra computation once the topology is available, and the
regression algorithms to compute parameters a1 and as are efficient [10]. For example,
we can calibrate our model in GNU R for one million of peers in about 3 seconds.

Regarding malicious peers, we note that one peer alone would not be able to deceive
the system, as a partnership must be reported by both communicating peers. Moreover,
as discussed in [16], a collusion attack by peers trying to appear as more cooperative
than they really are could be detected as these peers would appear as a cluster in the
overlay. A collusion of peers to promote a single peer is harder to detect. One approach
is to analyze the history of partnerships of a peer to identify bias, as proposed by Guer-
raoui [8]. Another approach against malicious peers is to use cryptographically-signed
messages, like in Contracts [16], to allow the server to verify partnerships and coop-
eration levels reported by peers. In this case, our model could be used jointly with
Contracts, reducing the volume of cryptographic receipts and thus computational and
communication costs. Instead of collecting cryptographic receipts for each sequence of
packets exchanged, as originally proposed, the tracker could infer the authenticity of
the out-degree collected from each peer by first checking the reports of communicating
peers, and requesting cryptographic receipts only to audit lying or omissive peers.

Finally, one question that may arise is why not simply send the measured C'L val-
ues directly to the tracker instead of relying on centrality measures to predict them. The
main reasons for not doing that are: (1) partnership information is already available or
could be easily obtained by the tracker in most current applications, and (2) frequently
sending measured C'L values, either aggregate values (as used here) or per-partner val-
ues, would possibly incur in extra communication overhead, if authentication mecha-
nisms are applied (as in [16]), or be less resilient to lies and collusion attacks, otherwise.

8 Conclusions and Future Work

We investigated the correlation between a peer’s cooperation level C'L and its centrality
in the overlay network of a P2P live streaming application. Using data collected from
SopCast, we first showed that three centrality metrics, namely out-degree, closeness,
and betweenness, are significantly correlated with C'L, although the former presents
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stronger correlations and is able to better discriminate non-cooperative and cooperative
peers. We then proposed a non-linear regression model that uses previous measures
of out-degree to predict the peer’s C'L value in the near future. Our model produces
reasonably accurate estimates in most cases, being able to correctly identify 97% of
the non-cooperative peers and 85% of the very altruistic peers. Thus, it can be applied
jointly with existing techniques, providing evidence to help identify such peers and to
drive incentive mechanisms that rely on estimates of peer cooperation [4, 16].

Future directions include analyzing our model under approximate inputs, larger and
dynamic client populations, and collusion attacks.
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