
HAL Id: hal-01529326
https://inria.hal.science/hal-01529326v2

Submitted on 8 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure and Trustable Distributed Aggregation based on
Kademlia

Stéphane Grumbach, Robert Riemann

To cite this version:
Stéphane Grumbach, Robert Riemann. Secure and Trustable Distributed Aggregation based on
Kademlia. 32th IFIP International Conference on ICT Systems Security and Privacy Protection
(SEC), May 2017, Rome, Italy. pp.171-185, �10.1007/978-3-319-58469-0_12�. �hal-01529326v2�

https://inria.hal.science/hal-01529326v2
https://hal.archives-ouvertes.fr

Secure and Trustable Distributed Aggregation
based on Kademlia

Stéphane Grumbach and Robert Riemann

Inria Grenoble Rhône-Alpes
{stephane.grumbach,robert.riemann}@inria.fr

Abstract Aggregation of values that need to be kept confidential while
guaranteeing the robustness of the process and the correctness of the
result is required in an increasing number of applications. We propose an
aggregation algorithm, which supports a large spectrum of potential ap-
plications including complex voting protocols. It relies on the distributed
hash table Kademlia, used in BitTorrent, for pseudonymous communica-
tion between randomly predetermined peers to ensure a high degree of
confidentiality which does not solely relies on cryptography. The distribu-
tion of data and computation limits the potential for data breaches, and
reduces the need for institutional trust. Experimental results confirm the
complexity of O (logn) for n peers allowing for large-scale applications.

Keywords: distributed aggregation, DHT, privacy, trust

1 Introduction

An increasing number of applications require aggregation of values that should not
be revealed, for various aspects of privacy protection. They include personalized
services related to domotic, smart cities, or mobility for instance that are blooming
today, while revealing security breaches. Confidentiality protecting aggregation
is of even greater importance for online voting. We demonstrate that peer-to-
peer systems offer great promises for such aggregations, because they limit the
potential for data breaches and simplify the essential question of trust.

This paper presents Advokat, a distributed protocol for confidential aggreg-
ation of inputs produced by large sets of peers. It relies on the distributed hash
table Kademlia [1], that offers both an overlay network to organize peers, as well
as a tree structure to compute the aggregation. Kademlia is a robust and scalable
technique which is used in particular by BitTorrent [2]. The proposed protocol
integrates also techniques from Bitcoin [3] and BitBallot [4].

Voting is the main privacy preserving aggregation realized with pre-digital
technologies. Paper-based voting protocols offer an unmatched solution to satisfy
often contradicting though essential properties, such as secrecy of the ballot,
correctness of the tally and verifiability. Moreover, the possibility given to voters
to participate in the supervision on-site of both the casting and tallying procedures
ensures trust. No expert knowledge is required to understand the protocol and

2 Stéphane Grumbach and Robert Riemann

its verification procedure. Thus, no trust in organizing authorities is necessary.
Paper-based voting owes its robustness to its independence from institutional
trust. Our objective is to transfer as much as possible these properties in the
online world, while offering new properties not available in the classical setting,
such as remote participation as well as the capacity to launch a new aggregation.

The case of voting protocols is particularly interesting due to its conflicting,
but essential security requirements. On one hand, the eligibility of every voter to
cast a ballot must be ensured, while, on the other hand, no link can be established
between a given ballot and the corresponding voter. Furthermore, the final tally
must be verifiable. Distributed protocols are promising for voting since they
allow to reduce the reliance on trust and open new prospects for verification.
The various tasks are carried out collectively in a peer-to-peer manner by the
participants, much like voters in paper-based voting.

We assume the existence of an administrator trusted to certify the eligibility of
peers. Supported by a tracker, eligible peers join a Kademlia DHT that provides
a tree-like overlay network in which peers are assigned to random leaves. Peers
pull inputs, and later input aggregates, from other peers close to them in the tree
overlay, which allows to compute aggregates for all ancestor nodes up to the root.
The strategy resides on pulling versus pushing for dissemination. Cryptographic
signatures are used to authorize peers to pull in different subtrees.

Although several protocols propose a distributed aggregation over tree-like
overlay networks [5, 6, 7, 8], to the best of our knowledge, the proposed algorithm
is the first to consider eligibility, confidentiality, scalability and verifiability at
once. The DASIS protocol [9] balances the Kademlia tree by routing joining peers
to less populated subtrees. Internally, the subtree size is computed in a similar
fashion to our approach, but no security measures are introduced. A distributed,
Kademlia-based voting protocol to rank the quality of BitTorrent content has
been proposed [10]. However, confidentiality and eligibility are not addressed.

Using distributed protocols for voting is a very natural idea to avoid concen-
tration of power. Common building blocks, like blind signature schemes [11], Mix
Networks [12] or threshold decryption [13] exercise decentralization on a small
scale. Many classical online voting protocols employ already a set of authorities
[14, 15, 16] to achieve privacy. However, they assume trust in the authorities and
the aggregation is generally centralized, rendering the protocols vulnerable to
DDoS attacks and data breaches of global impact for instance.

Various efforts1 are ongoing to propose distributed online voting protocols,
based on the Bitcoin blockchain [3], that does not require trusted authorities.
Still, published results are sparse. [17] describes a protocol for a binary majority
voting to determine the receiver of a voter sponsored Bitcoin payment.

The SPP protocol [18], based on Secure Multi-Party Computation, partitions
the aggregation over a tree hierarchy of peers of which a random set of peers serves
as authorities to carry out the final decryption step. DPol [19] and its extension

1 Blockchain-based voting techniques include: http://votem.com, http://cryptovoter.com,
http://votosocial.github.io, http://followmyvote.com, http://bitcongress.org,
http://github.com/domschiener/publicvotes

http://votem.com
http://cryptovoter.com
http://votosocial.github.io
http://followmyvote.com
http://bitcongress.org
http://github.com/domschiener/publicvotes

Secure and Trustable Distributed Aggregation based on Kademlia 3

EPol [20] are similar to our protocol in that the aggregation is distributed to
all peers and for their renunciation of cryptography. However, their message
complexity does not allow for large-scale elections.

The aggregation protocol is evaluated with respect to the security properties
used for centralized voting protocols such as FOO [15], and to scalability prop-
erties used for distributed aggregation protocols such as SPP [19]. We consider
eligibility, confidentiality (secrecy), completeness and correctness, verifiability,
and complexity in terms of messages, memory and time.

The paper is organized as follows. In the next section, we present the general
setting of the protocol. The basic aggregation is shown in Section 3, while the
recursive process that takes advantage of the tree overlay of the Kademlia DHT
is shown in Section 4. Then, in Section 5, the recursive aggregation process is
extended to allow a minority of dishonest Byzantine peers. Several desirable
security and complexity properties are sketched in Section 6. The provided
confidentiality is experimentally examined in Section 7 by means of a simulation.

2 Aggregation Protocol

The protocol relies on peers, an administrator and a tracker. The administrator
is entrusted to certify the eligibility of peers. For this purpose, we assume an au-
thenticated, tamper-resistant communication channel between the administrator
and each peer, e.g. using an existing public key infrastructure.

Once certified, peers join a distributed hash table (DHT) that is mainly used
to find other peers, but allows also to retrieve and store data. We choose the
Kademlia DHT [1] whose tree-like network overlay is well-suited for aggregations.
Like in BitTorrent, a tracker is employed to provide an initial peer as an entry
point. Peers communicate via pairwise channels assumed to be confidential and
authenticated to the degree of a peer pseudonym, e.g. a public IP address.

We use the following notations adapted from [15]:

A Administrator
Pi Peer, i-th out of n
ai Initial aggregate of peer Pi

(pki, ski) public and private key pair of peer Pi

η(m) Hashing technique for message m, e.g. SHA-1
σi(m) Peer Pi’s signature scheme using (pki, ski)
σA(m) Administrator’s signature scheme
χ(m, r) Blinding technique for message m and random number r
δ(s, r) Retrieving technique of blind signature

The proposed protocol follows the following structural steps:

Preparation Peers create personal public and private key pairs and send au-
thorization requests with their blinded public key to the administrator.

4 Stéphane Grumbach and Robert Riemann

Administration Once for each peer, the administrator signs the peer’s blinded
public key without learning it and sends the signature to the peer.

Aggregation Supported by the tracker, peers join the tree-like overlay network
of Kademlia. Then, peers assign their initial aggregate to their leaf node
and compute collectively the root aggregate from all initial aggregates us-
ing the distributed aggregation algorithm. This requires the computation of
intermediate aggregates for all their ancestor nodes in the Kademlia tree.

Evaluation On fulfilment of a well-defined verification criteria, peers accept
their root aggregate as final root aggregate. The outcome (e.g. election result)
is eventually derived from the final root aggregate.

In the preparation step, each peer Pi generates on it’s own authority a public
and private key pair (pki, ski) to sign messages with σi(m). To limit the number
of valid keys to one per eligible peer, the public key must have the signature of
the administrator A [18]. As in FOO [15], a blind signature scheme [11] is used to
ensure that A cannot recognize peers after the administration step. Pi randomly
chooses a blinding factor ri, computes its blinded public key bi = χ(pki, ri) and
sends it to A using the authenticated, tamper-resistant channel.

In the administration step, A ensures to sign only a unique bi for each Pi

and responds to Pi with its signature si = σA(bi). Eventually, Pi can retrieve
the authorization token ti = δ(si, ri). A does not intervene any further once all
eligible peers have acquired their authorization or a time-out has elapsed.

During the aggregation step, all peers run the distributed aggregation al-
gorithm, that is presented hereafter in Section 3 and 4.

3 Basic Aggregation

The aggregation algorithm allows to implement various kinds of confidential
aggregations. In particular, with standard security requirements slightly weakened,
it supports a large spectrum of voting systems.

Aggregates are values to be aggregated, whether initial aggregates, constituting
inputs from peers, or intermediate aggregates obtained during the computation.
The specification of the aggregation algebra is formulated below. We then intro-
duce the aggregate container allowing to attach meta-information to aggregates
that is used to position them in the tree and ensure verifiability.

We introduce an algebra whose operation applies to aggregates, which are
aggregated during the computation of the operation. In the case of a vote,
aggregates correspond to ballot boxes filled with ballots, and the operation is the
union of sets. The data structure can be adapted to different applications with
different aggregation functions, such as average, majority voting, etc.

We consider a set A of aggregates. The aggregation operation, ⊕, combines
two child aggregates to a parent aggregate in A. Initial aggregates, corresponding
to peer inputs, are not computed, but provided by the peers. We assume that
the operation ⊕ : A× A 7→ A is commutative and associative.

Consider for illustrative purposes the algebra for the Plurality Voting (PV).
Peers, or here more precisely voters, choose one out of d options, that are

Secure and Trustable Distributed Aggregation based on Kademlia 5

modeled in the algebra with initial aggregate vectors (e1, . . . , ed) in A = Nd, with∑d
x=1 ex = 1. The operation ⊕ is simply vector addition in A. The root aggregate

aR = (n1, . . . , nd) with
∑d

x=1 nx = n indicates how many peers nx have chosen
each option. The option x with the highest nx, hence plurality, corresponds to
the vote outcome. The system can be easily extended to A = Qd

+ to support vote
splitting between two or more options. The Manhattan norm is used to ensure
the validity of initial aggregates ai with constant weight: ‖ai‖.

More complex voting systems such as for instance the Alternative Voting and
the Single Transferable Voting systems can easily be encoded. In both cases,
voters have to rank options. Every ranking of d! possible rankings in total can be
interpreted as one option in the PV algebra. The set of aggregates A consists of
vectors A = Nd!

0 and the operation is again vector addition. Note that alternative,
more compact encodings can be defined for efficiency reasons.

The aggregation algorithm relies on meta-information of an aggregate a that
is in general not directly involved in the aggregate computation, and constitutes
together with a the aggregate container of a:

h hash η(·) of the aggregate container without h
a aggregate
c counter of initial aggregates in a, c = c1 + c2

c1, c2 counter of initial aggregates of child aggregates
h1, h2 container hashes of child aggregates
Ŝ(x, d) identifier of subtree whose initial aggregates are aggregated in a

The counter c allows to detect protocol deviations and to measure the number of
initial aggregates in the root aggregate that can be compared to n [6].

The aggregate container hash h depends on its child aggregate hashes h1, h2.
As such, a chain of signatures is spanned reaching from the root or any inter-
mediate aggregate down to the initial aggregates of the peers. Also employed in
the Bitcoin blockchain, this technique ensures that the sequence of aggregate
containers is immutable.

4 Recursive Aggregation over the Kademlia Binary Tree

The aggregation protocol relies on the Kademlia DHT that establishes a binary
tree overlay network in which each peer Pi is assigned to a leaf node. Using the
aggregation operator ⊕, peers compute the intermediate aggregate for all the
parent nodes from their corresponding leaf up to the root node of the tree. The
aggregates used to compute any intermediate aggregate of a given tree node are
those of its child nodes. Hence, aggregates have to be exchanged between peers of
sibling subtrees, i.e. subtrees whose roots have the same parent. Kademlia is not
used solely to discover other peers, but its internal tree overlay also provides the
hierarchy for the aggregation algorithm [9]. We use in the following a notation
adapted from Kademlia [1].

6 Stéphane Grumbach and Robert Riemann

k maximum number of contacts per Kademlia segment (k-bucket)
x a Kademlia leaf node ID (KID) of size B
B size of a KID in bits, e.g. 160
xi KID of peer Pi

d node depth, i.e. number of edges from the node to the tree root
Ŝ(x, d) subtree whose root is at depth d which contains leaf node x
S(x, d) sibling subtree whose root is the sibling node of the root of Ŝ(x, d)

The leaf node identifiers x ∈ {0, 1}B (B bits) span the Kademlia binary tree
of height B and are denoted KID. Each peer Pi joins the Kademlia overlay
network using its KID defined as xi = η(ti) with the authorization token ti and
the hashing technique η. This way, xi depends on both Pi’s and A’s key pair,
so that xi cannot be altered unilaterally [21]. B is chosen sufficiently large, so
that hash collisions leading to identical KIDs for distinct peers are very unlikely.
Consequently, the occupation of the binary tree is very sparse.

Any node in the tree can be identified by its depth d ∈ {0, . . . , B} and any of
its descendant leaf nodes with KID x. A subtree Ŝ(x, d) is identified by the depth
d of its root node and any of its leaf nodes x. We overload the subtree notation
to designate as well the set of players assigned to leaves of the corresponding
subtree. Further, we introduce S(x, d) for the sibling subtree of Ŝ(x, d), so that
Ŝ(x, d) = Ŝ(x, d+ 1) ∪ S(x, d+ 1). The entire tree is denoted Ŝ(x, 0). We observe
that ∀d : Pi ∈ Ŝ(xi, d) and ∀d : Pi /∈ S(xi, d).

In Kademlia, the distance d(xi, xj) between two KIDs is defined as their
bit-wise XOR interpreted as an integer. In general, a peer Pi with KID xi stores
information on peers with xj that are close to xi, i.e. for small d(xi, xj). For this
purpose, Pi disposes of a set denoted k-bucket of at most k players Pj ∈ S(xi, d)
for every S(xi, d) with d > 0.2 See Fig. 1 for an example. The size of subtrees
decreases exponentially for growing depth d. Consequently, the density of known
peers of corresponding k-buckets grows exponentially.

Kademlia ensures that the routing table, that is the set of all k-buckets, is
populated by peer lookup requests for random KIDs to the closest already known
peers. Requests are responded with a set of closest, known peers from the routing
table. One lookup might require multiple, consecutive request-response cycles.

We assume that peers are either present or absent. Present peers join the
Kademlia overlay network within a given time interval and stay responsive until
their aggregation step is terminated. The aggregation is carried out in B epochs,
one tree level at a time. Epochs are loosely synchronized, because peers may
have to wait for intermediate aggregates to be computed in order to continue.

First, every peer Pi computes a container for its initial aggregate. The con-
tainer is assigned to represent the subtree Ŝ(xi, B) with only $P_i.

In each epoch for d = B, . . . , 1, every peer Pi requests from any Pj ∈ S(xi, d)
the aggregate container of subtree S(xi, d). Pj responds with the demanded
2 Note that originally [1] the common prefix length b is used to index k-buckets/sibling
subtrees while we use the depth d = b+ 1 of the root of the subtree.

Secure and Trustable Distributed Aggregation based on Kademlia 7

0

0

0

1

0

xi

Ŝ(xi,3)

0 1

0

0 1

1

1

S(xi,1) S(xi,2)S(xi,3)

k-bucket for d = 3

k-bucket for d = 2

k-bucket for d = 1

Fig. 1. Example of Kademlia k-buckets for KID xi = 100 assuming B = 3. The
sparse tree is partitioned into subtrees S(xi, d) with root node at depth d = 1, 2, 3.
The k-buckets for each d contain at most k peers Pj ∈ S(xi, d).

aggregate container. With the received container of S(xi, d) and the previously
obtained of Ŝ(xi, d), peer Pi computes the parent aggregate using the aggregation
operator ⊕. Its corresponding container is then assigned to the parent subtree
Ŝ(xi, d− 1). If S(x, d) = ∅ for any d, the container of Ŝ(x, d− 1) is computed only
with the aggregate container of Ŝ(x, d) from the previous epoch.

After B consecutive epochs, peer Pi has computed the root aggregate of the
entire tree Ŝ(xi, 0) that contains the initial aggregates of all present peers. If all
present peers are honest, the root aggregate is complete and correct.

5 Robust Aggregation

The recursive aggregation introduced in Section 4 is very vulnerable to aggregate
corruptions leading to erroneous root aggregates, and to illegitimate requests
compromising the confidentiality. Following the attack model from [18], we assume
a minority of dishonest, Byzantine peers entirely controlled by one adversary that
aims to interrupt the aggregation, manipulate root aggregates and increase its
knowledge on initial and intermediate aggregates. Byzantine peers can essentially
behave arbitrarily, but are assumed to be unable to prevent their initial integration
in the routing tables by honest peers.

To prevent Sybil attacks and arbitrary requests, all messages m between
peers are signed by the sender Pi using σi(m) [21]. For signature verification, the
public key pki and the token ti must be either published (in the DHT) or sent
along with every signature. Henceforth, a peer Pi answers aggregate requests for
Ŝ(xi, d) only for peers Pj ∈ Ŝ(xi, d) in the same subtree or Pj ∈ S(xi, d) in the
sibling subtree. Consequently, peers cannot obtain more knowledge on aggregates
than strictly necessary to compute the root aggregate.

8 Stéphane Grumbach and Robert Riemann

Further, player signatures are employed to detect deviations from the protocol.
For every computed aggregate container of Ŝ(xi, d) with hash h and counter
c, player Pi produces an aggregate container signature σi(h, d, c). A signature
σi(h, d, c) expresses the capacity of a peer Pi to compute the container identified
by its hash h and is consequently only valid for containers of Ŝ(xi, d) for any d.

In Fig. 2, we consider the steps of Pj ∈ S(xi, d) to produce for any Pi a
confirmed aggregate container of S(xi, d) backed by the signatures listed below.
Note that the necessary signatures depend on the subtree configuration that can
be explored by Pi using peer lookup requests. Like for the recursive aggregation,
Pj requests first the sibling aggregate container (1) if S(xj , d + 1) 6= ∅. For
|S(xj , d+ 1)| < k, the corresponding k-bucket is exhaustive [1] and the aggregate
counter c must not exceed its size. k-buckets are hardened against insertion of
false contacts by requiring for all Pq in lookup responses the proof of their KID
(pkq, tq). Then, the so-called container candidate for S(xi, d) is computed (2).

New is the confirmation (3 and 4) to acquire necessary signatures by
otherwise redundant requests to peers in the same subtree S(xi, d). Candidates
are exchanged solely among peers of that subtree to allow for mutual confirmation.

xi xq xj xl xp

Ŝ(xi,d) S(xi,d) =

Ŝ(xj ,d)

S(xj ,d+ 1)

S(xl,d+ 2)

S(xj ,d+ 2)

1 pull

2

compute

4

confirm
3

confirm

Fig. 2. Pj with xj produces a confirmed aggregate container of S(xi, b). This
scheme applies to all tree levels with possibly large subtrees to request from.

Pi requires from Pj the following signatures with the container for S(xi, d):

1. Pi requires the signature σj(h, d, c) on container hash and counter.
2. If c > 1, there is at least one child aggregate with hash h1 and counter c1

and σj(h1, d+ 1, c1) must be provided.
3. If c > 1 and c1 > 1, a confirmation request (3) is necessary to provide
σq(h, d, c) from Pq ∈ S(xj , d′) with the smallest d′ > d+ 1 for a non-empty
subtree, ideally in the subtree S(xj , d+ 2).

4. If c > 1 and c2 > 0, Pj provides σl(c2, d + 1, h2) acquired before (1) as
1. signature.

5. If c > 1 and c2 > 0, a confirmation request (4) is necessary to provide
σl(h, d, c) if Pl for c2 = 1, and otherwise σp(h, d, c) from Pp ∈ S(xl, d′) with
the smallest d′ > d+ 1 for a non-empty subtree, ideally in S(xl, d+ 2).

Secure and Trustable Distributed Aggregation based on Kademlia 9

The 1., 2. and 4. signature listed above are required already for candidate
containers and allow to detect dishonest peers during confirmation. The 3. and
5. signature promote a consensus in Ŝ(xj , d+ 1) respectively S(xj , d+ 1).

The requests 3 and 4 provide additional signatures, that may reveal dishonest
peers deviating from the protocol. Note that dishonest peers cannot influence
which peers are requested to avoid detection with certainty. For this, we focus on
signatures σe(h, d, c) and σe(h′, d, c) of the same peer Pe with equal counter c for
distinct containers (h 6= h′) of the same subtree. In case of c = 1, Pe derived from
the protocol with certainty, is as such detected as dishonest, and its signatures and
containers are discarded. A new candidate container without it is computed. The
same holds for c = 2, because Pe has not discarded itself two distinct containers
with c = 1 of the same peer, and alike for c = 3. Without obvious proof for c > 3,
we assume Pe to be honest. The discarded signatures form a verifiable proof that
is attached to request responses for the newly computed (candidate) container
and stored in the DHT under the key η(xe) if there was none before. Detected
dishonest peers are permanently removed from the routing table.

With all required signatures, a candidate container of S(xi, d) is confirmed
and may be requested by peers in Ŝ(xi, d). If the candidate cannot be confirmed
by a peer Pe, a proof of former deviation is looked up, and requests to other
peers continue for a limited number of tries. If Pj gathers this way a majority of
signatures for a different child container than those it has computed earlier, Pj

repeats the previous aggregation in order to correct or confirm again its child
container. If Pj gathers instead a majority of signatures for a different child
container than those it has requested, Pj repeats the current aggregation in
order to request potentially a different sibling child container to use. Requests for
containers with c = 1 are not repeated to prevent revisions of initial aggregates.

The administration step ensures that the global minority of dishonest voters
is randomly distributed over the tree. Hence, the implicit majority vote on hashes
is supposed to be decided by the local majority of honest peers in the subtree.
Note that a vote, and thus a honest majority, is not required for subtrees with
less than 4 peers, because dishonest peers are detected and removed based on
signatures on containers.

If Pj can still not acquire all signatures, e.g. due to a dishonest peer Pe blocking
the confirmation, Pj continues the aggregation nevertheless and compensates the
missing signature by both child aggregate containers with all their signatures, so
that the aggregate computation of Pj can be reproduced. The confidentiality of
Pj and Pe is diminished to the same degree.

At last, the root aggregate container is confirmed by some additional signatures
to increase the confidence that it has been adopted by the majority.

6 Protocol Properties

Common security properties of online voting protocols [16, 18] are considered
using the attack model of a dishonest minority from Section 5.

10 Stéphane Grumbach and Robert Riemann

Eligibility The administrator is trusted to sign one authorization request for
every eligible peer. Without signature, peers cannot engage in the aggregation.

Confidentiality The protocol does not ensure secrecy of the initial aggregate
due to the necessity to share it at least once over a pseudonymous channel.
However, the access to the initial aggregate is limited to randomly determined
peers that acquire mostly partial knowledge, so that confidentiality is ensured
to a high degree. The pseudonymous channel between peers augments further
the confidentiality. The DHT is ephemeral, distributes information evenly among
peers, and vanishes when peers disconnect after the aggregation. Potential data
breaches are therefore local and bounded in time.

Completeness and Correctness A local majority of dishonest peers in a subtree
Ŝ(x, d) with at least 3 peers allow for manipulations of the corresponding aggregate
container. Manipulations of its counter c require further at least k peers in Ŝ(x, d).
Hence, for a reasonably-sized global dishonest minority, the protocol ensures
that peers compute with high probability root aggregates that are with high
probability correct or almost correct.

Verifiability Using requests, Pi can determine with high probability which root
aggregate has been confirmed by most peers and verify the chain of container
hashes to the hash of its initial aggregate.

Robustness and Non-Interruptibility The aggregation step is entirely distributed
to equipotent peers. With no weakest link, the influence of a reasonably-sized dis-
honest minority is locally limited. The redundancy of the aggregate computation
increases exponentially in every epoch as aggregates become more meaningful.

The protocol complexity is mostly inherited by the properties of Kademlia, which
have been studied [22] and experimentally confirmed as part of BitTorrent.

Message Complexity For a network of n peers, a lookup requires with great
probability O (log n) request-response cycles. Joining the network requires a
limited number of lookups and is thus as well of order O (log n). With the
consideration to estimate the number of empty k-buckets from [22], the average
number of container requests for the basic aggregation is found to be O (log n).

Memory Complexity The memory required to store non-empty k-buckets is
O (log n). Further, the aggregation algorithm requires to store O (log n) received
aggregate containers for non-empty sibling subtrees and perhaps a limited number
of alternatives in case of failing confirmations. Hence, for a constant size of
aggregate containers, the total memory complexity is again O (log n).

Time Complexity Intermediate aggregates for ancestor nodes are computed in
sequence. For a constant computation time per aggregate and with an upper
limit to request and confirm aggregates, the time complexity is O (log n).

Secure and Trustable Distributed Aggregation based on Kademlia 11

7 Experimental Confidentiality Analysis

The protocol has been simulated on the basis of kad, an implementation of
Kademlia3 written in JavaScript with its extension kad-spartacus. For each
peer Pi, key pairs (pki, ski) are generated using elliptic-curves cryptography. The
KID xi of each peer Pi is derived by hashing pki first with SHA-256 and the result
again with RIPEMD-160. It is assumed that the use of pki instead of the token ti
leads to an equally random distribution of KIDs, so that the administration
step can be omitted in the simulation. A simulation parameter allows to vary
the generation of key pairs and consequently the KIDs, so that different tree
configurations can be tested.

After all n peers are instantiated, every Pi connects to the Kademlia network
using an initial contact Pi−1. According to the Kademlia protocol, peers update
their routing table using lookup requests. In our model, peers do not join or leave
during the aggregation, so that the routing table does not change hereafter. Once
all routing tables are complete, peers start the aggregation step like detailed in
Section 4. The simulation does not consider absent or dishonest peers.

If a peer receives a request for an intermediate aggregate that has not yet
been computed, the response is delayed. The aggregation steps in the simulation
use neither parallel requests nor timeouts for requests.

We consider the issue of confidentiality, and measure both the degree of leakage
of initial aggregates, and the concentration of knowledge on initial aggregates.
For that purpose, we assume that all initial aggregates are distinct.

We define the leaked information Li of a peer Pi to be the sum of the inverse
of the counters of all containers that Pi used to respond to aggregation requests.
1/c denotes the probability to correctly link the contained initial aggregate of Pi

to the pseudonym of Pi, e.g. an IP address. The leaked information Li is at
least 1, because in a non-trivial aggregation with n > 1, Pi must respond at least
once with its initial aggregate container with c = 1. In a perfectly balanced tree
with n = 2B peers, Li is strictly smaller than 2:

Li =

B−1∑
n=0

(
1

2

)n

< 2

Conversely, we define the received information Ri of Pi as the sum of 1/c
of all containers that Pi receives as responses to its requests. In a perfectly
balanced tree, Ri = Li. We further introduce relative measures li = Li/(n− 1)
and ri = Ri/(n− 1) normed by the worst case that initial aggregates of all other
n− 1 peers are leaked/received. Fig. 3 shows the distribution of Li and Ri for
a simulation run with n = 1000 peers. The simulation has been repeated with
different tree configurations without notable changes. In the examined case, the
relative leak to the network is li = 0.24(9)%. The relative received information
ri = 0.24(10)% is the same with a slightly higher standard derivation.

The worst case is given by the least balanced tree configuration in which
|S(xi, d)| = 1 for all d ∈ {B, . . . , 1}. That means for the given Pi, every sibling
3 http://kadtools.github.io/, v1.6.2 released on November 29, 2016

http://kadtools.github.io/

12 Stéphane Grumbach and Robert Riemann

0 2 4 6 8 10
0

100

200

300
#

of
pe

er
s

(a) Histogram of leaked information Li.

0 2 4 6 8 10
0

100

200

#
of

pe
er
s

(b) Histogram of received information Ri.

Fig. 3. In a simulation with n = 1000, peers leak (a), respectively receive (b),
information on initial aggregates depending on the global distribution of peers
on the binary Kademlia tree. Li peaks close to the theoretical value 2 of an
optimally balanced tree. Only few peers leak significantly more. While the mean
for Ri is the same, the distribution is slightly different.

0 10 20
0

100

200

300

400

#
of

pe
er
s

(a) Histogram of # of received responses.

0 10 20
0

50

100

150

#
of

pe
er
s

(b) Histogram of # of given responses.

Fig. 4. In a simulation with n = 1000, the number of given (b) and received (a)
responses has been recorded for every peer. While the distribution of received
responses is very sharp, the distribution for given responses is twice as broad. In
the Kademlia routing tables, some peers are more often represented than others.

subtree contains exactly one other peer. Here, Pi learns in every epoch one initial
aggregate with certainty. However, such a tree allows for only B + 1 peers and
every additional peer decreases Li.

Moreover, the load on peers measured by the number of received and given
responses has been examined. The histograms in Fig. 4 indicates that no peer
receives significantly more load than others—a property that has been shown for
Kademlia before.

Eventually, the average number of requests per peer simulated with different
numbers of peers n up to n = 1000 confirmed the theoretical message complexity
of O (log n) shown in Section 6.

Secure and Trustable Distributed Aggregation based on Kademlia 13

8 Conclusion

We considered the fundamental problem of large-scale confidential aggregation,
and proposed the distributed aggregation protocol Advokat. It prioritizes sys-
tem wide properties like scalability and robustness over perfect completeness,
correctness or full secrecy of initial aggregates.

The aggregation step is distributed to entirely equipotent peers which im-
proves the robustness in face of all sorts of attacks and reduces the reliance
on institutional trust. Peers may choose their trusted protocol implementation.
Cryptography is only employed to manage authorization and ensure integrity,
but not to ensure secrecy, which renders the protocol easier to understand and
independent of hardness-assumptions common in cryptography. Due to the even
distribution of data and the ephemeral nature of the network, the risk of global
or targeted leaks after the aggregation is eliminated. With its global message
complexity of O (n log n), it outperforms SPP with O

(
n log n3

)
[18] and DPol

with O (n
√
n) [19] which both provide instead stronger confidentiality.

We showed that the protocol offers a high level of confidentiality though at
least comparable to postal voting with trusted authorities. For large n, it is very
unlikely that the initial aggregate of a given peer is revealed, which might be
acceptable for many applications. Completeness and correctness can be compared
to paper-based voting. It is possible that few initial aggregates are manipulated
or not counted, but not at a global scale and not often. An individual verification
allows to detect manipulations.

The universal protocol algebra supports a wide range of applications, e.g. dis-
tributed lottery, aggregation of sensible healthcare data, or all sorts of reduce
operations. Turning our protocol into a solution that can be adopted in practice
will require some effort. Foremost, a formal definition of completeness and correct-
ness must be introduced so that upper limits of their manipulations depending on
the ratio of dishonest peers in the attack model from Section 5 can be formulated.
Further, the influence of churn of Byzantine peers on the routing tables must
be analysed and, if necessary, restricted to allow for Byzantine peers with no
assumptions.

Acknowledgments The authors thank Stéphane Frénot, Damien Reimert,
Aurélien Faravelon, Pascal Lafourcade and Matthieu Giraud for fruitful discus-
sions on distributed voting protocols and attack vectors.

Bibliography

1. Maymounkov, P., and Mazieres, D.: Kademlia: A peer-to-peer information system
based on the xor metric. First Intern. Workshop on Peer-to-Peer Systems (2002)

2. Cohen, B.: The BitTorrent Protocol Specification, (2008). http://bittorrent.org/
beps/bep_0003.html

3. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System, (2008). https :
//bitcoin.org/bitcoin.pdf

http://bittorrent.org/beps/bep_0003.html
http://bittorrent.org/beps/bep_0003.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

14 Stéphane Grumbach and Robert Riemann

4. Reimert, D., Frénot, S., Grumbach, S., and Meyffret, S.: ‘Machine de Vote électro-
nique et Infrastructure comportant une telle Machine’. Patent FR3037702 (FR).
2016. http://bases-brevets.inpi.fr/en/document-en/FR3037702.html.

5. Zhang, Z., Shi, S.-M., and Zhu, J.: SOMO: Self-organized metadata overlay for
resource management in P2P DHT. In: Peer-to-Peer Systems II, pp. 170–182. (2003)

6. Van Renesse, R., and Bozdog, A.: Willow: DHT, Aggregation, and Publish/Subscribe
in one Protocol. In: Peer-to-Peer Systems III, pp. 173–183. (2004)

7. Cappos, J., and Hartman, J.H.: San Fermín: aggregating large data sets using a
binomial swap forest. Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation (2008)

8. Artigas, M.S., García, P., and Skarmeta, A.F.G.: DECA: A Hierarchical Framework
for DECentralized Aggregation in DHTs. Large Scale Management of Distributed
Systems (2006)

9. Albrecht, K., Arnold, R., Gähwiler, M., and Wattenhofer, R.: Aggregating inform-
ation in peer-to-peer systems for improved join and leave. In: Proceedings - 4th
Intern. Conf. on Peer-to-Peer Computing, P2P2004, pp. 227–234. IEEE (2004)

10. Evseenko, N.: New hybrid distributed voting algorithm. CoRR abs/1305.0 (2013)
11. Chaum, D.: Blind Signatures for Untraceable Payments. In: Advances in Cryptology:

Proceedings of Crypto 82. Ed. by D. Chaum, R.L. Rivest and A.T. Sherman, pp. 199–
203. Springer US, Boston, MA(1983)

12. Chaum, D.L.: Untraceable Electronic Mail, Return Addresses, and Digital Pseud-
onyms. Communications of the ACM 24(2), 84–90 (1981)

13. Gennaro, R., Jarecki, S., Krawczyk, H., and Rabin, T.: Secure Distributed Key
Generation for Discrete-Log Based Cryptosystems. In: Advances in Cryptology —
EUROCRYPT ’99. Ed. by J. Stern, pp. 295–310. Springer Berlin Heidelberg(1999)

14. Benaloh, J.D.C., and Yung, M.: Distributing the Power of a Government to Enhance
the Privacy of Voters. In: Proc. of PODC ’86, pp. 52–62. ACM, USA (1986)

15. Fujioka, A., Okamoto, T., and Ohta, K.: A Practical Secret Voting Scheme for
Large Scale Elections. In: Seberry, J., and Zheng, Y. (eds.) Advances in Cryptology
– AUSCRYPT’92. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993)

16. Ibrahim, S., Kamat, M., Salleh, M., and Aziz, S.: Secure E-voting with blind
signature. In: Proc. of NCTT ’03, pp. 193–197 (2003)

17. Zhao, Z., and Chan, T.-H.H.: How to Vote Privately Using Bitcoin. IACR Cryptology
ePrint Archive (2015)

18. Gambs, S., Guerraoui, R., Harkous, H., Huc, F., and Kermarrec, A.-M.: Scalable
and Secure Aggregation in Distributed Networks. arXiv e-prints (2011)

19. Guerraoui, R., Huguenin, K., Kermarrec, A.M., Monod, M., and Vigfsson, Ý.: De-
centralized polling with respectable participants. Journal of Parallel and Distributed
Computing 72(1), 13–26 (2012)

20. Hoang, B.-T., and Imine, A.: Efficient and Decentralized Polling Protocol for General
Social Networks. In: Pelc, A., and Schwarzmann, A.A. (eds.) Stabilization, Safety,
and Security of Distributed Systems: 17th International Symposium, pp. 171–186.
Springer International Publishing (2015)

21. Baumgart, I., and Mies, S.: S/Kademlia: A practicable approach towards secure
key-based routing. In: Proc. of ICPADS ’07, pp. 1–8. IEEE Computer Society,
Washington, DC, USA (2007)

22. Cai, X.S., and Devroye, L.: A probabilistic analysis of Kademlia networks. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), pp. 711–721 (2013)

http://bases-brevets.inpi.fr/en/document-en/FR3037702.html

