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Abstract. Event-B is a tool-supported specification language that can
be used e.g. for modelling of concurrent programs. This calls for code
generation and a means of executing the resulting code. One approach is
to preserve the original event-based nature of the model and use a run-
time scheduler and message passing to execute the translated events on
different computational nodes. In this paper, we consider the efficiency of
such a solution when applied to a compute-intensive model. In order to
mitigate overhead, we also use a method allowing computational nodes to
repeat event execution without the involvement of the scheduler. To find
out under what circumstances the approach performs most efficiently, we
perform an empirical study with different parameters.

1 Introduction

Event-B [1] is a formal modelling language based on set transformers and the
stepwise refinement approach. While designed for full-system modelling, it can
also be used for correct-by-construction software development. Event-B also has
a parallel interpretation, which allows for modelling of concurrent systems. Tool
support for Event-B has been achieved through the open-source Rodin platform
[2], to which further functionality can be added in the form of plug-ins. Code gen-
eration from Event-B can be achieved in a number of different ways. A straight
forward approach that preserves the event nature has been proposed in [3,5], for
which a preliminary plug-in has been developed. In this approach, the model is
translated into a C++ class, where events are directly translated into methods.
The methods are invoked by using a run-time scheduler, which in turn deploys
the MPI (Message Passing Interface) [7] library to achieve parallel execution on
a multi-core/multi-processor system, or even on a cluster. This solution has the
advantage that code execution very closely reflects the operating mechanisms of
the Event-B model. It also does not require the developer to take a stand on
specific schedules and prove that they are compatible with the original model.
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However, a potentially serious drawback is the amount of overhead introduced
by the scheduler and the MPI communication. Due to the practical nature of
communication overhead, we recognise that it is difficult to evaluate the impact
from a strictly mathematical-logical perspective. The purpose of this paper is,
instead, to evaluate the viability of the scheduling approach by performing an
empirical study. Since preliminary tests indicate that the overhead is unaccept-
ably large, we propose a means of repeating execution of events without involving
the scheduler. The repetitive approach is implemented as part of the scheduling
platform, and we use a factorisation model as a testbed for benchmarking.

2 Event-B and Code Generation

Event-B models consist of static and dynamic parts, denoted contexts and ma-
chines, respectively. Contexts may contain e.g. constants, carrier sets and az-
ioms, and can be used by one or several machines. Machines, in turn, contain
elements such as variables, events and invariants. The variables v form the state
space of the model, whereas events model atomic state updates. There is also a
special initialisation event that gives initial values to the variables.

Each event, except for the initialisation, contains a guard G(v) and an action
v :| A(v,v"). The guard contains a condition that must hold in order for the
event to be allowed to take place, whereby the event is said to be enabled. The
action describes how the state space is to be updated once the event is enabled
and triggered. An event can be expressed in the following general form [6]:

E 2 when G(v) then v :| A(v,v’) end

Here, v and v’ represent the variables before and after the event has taken place,
respectively. The operator :| represents non-deterministic assignment, whereby
v :| A(v,v’) intuitively means that the variables v are updated in such a way that
the before-after predicate A(v,v") holds. A special case of the non-deterministic
assignment operator is the deterministic assignment, :=, which closely resembles
the assignment operator in standard programming languages. Note that the
initialisation is an exception in that it contains no guard and does not depend
on a previous state. After initialisation, enabled events are non-deterministically
chosen for execution until all events are disabled.

Event-B does not specify how to generate executable code from models, and
the Rodin tool in its basic form cannot translate models into a programming lan-
guage without the use of extensions. However, a number of different approaches
have been proposed. In [9], a code generator plug-in was developed. It was mainly
intended for use as part of a virtual machine project, and supported translation
of the most important Event-B constructs. This approach was taken a step fur-
ther towards a more general-purpose tool, albeit an experimental one, in [3,5].
The model first has to be refined according to the Event-B refinement rules (e.g.
using the Rodin tool) until the events only contain concrete constructs that have
direct equivalents in C++. The guard of the event is translated into a method



returning a boolean value reflecting enabledness, whereas the action results in
a separate method containing the C++ equivalent of its assignments. The idea
was that the resulting methods could be invoked by an accompanying scheduler.
The testbed model (see Sect. 4) we benchmark in this paper (Sect. 5) is based
upon a model originally used in [3,5], and the translated code thereof. The model
has, however, been amended in ways that could not be handled by the transla-
tion plug-in, and the code used for in this paper has, to a certain degree, been
translated manually.

3 Scheduling

When an Event-B model has been translated into C++ code, a means of schedul-
ing the resulting code is required. For the evaluations performed in this paper,
we use a scheduler from [3,5] that allows for execution on a multi-core/multi-
processor computer. However, we have improved it further in a number of ways,
e.g. to handle 64-bit integers and to support repetition of events as presented
later in this section. The scheduler code, which is written in C++, technically
runs as part of both the scheduling process and a number of slave processes.
The processes are mapped to physical processors or cores by the MPI frame-
work, which the scheduling software uses for all inter-process communication.
Communication takes place according to a star topology with the scheduling
process in the centre, delegating event execution to the slaves. The scheduling
process keeps track of the state space of the model, and when delegating an
event for execution, it submits the current values of the variables involved to the
slave. When the slave has executed the event, it returns the updated values of
the variables to the scheduling process. To avoid conflicts, events that have vari-
ables in common must not be scheduled in parallel. It is also the responsibility
of the scheduler to verify that events are enabled prior to delegating them. A
more detailed description of the scheduling algorithm can be found in [3,5].

To reduce overhead, we have amended the above scheduling approach so
that the slave processes may execute an event several times on their own. Before
the scheduling process first delegates an event, it verifies the enabledness and
passes on the values of the variables to the slave process as previously described.
However, after execution, the slave checks whether the event is still enabled. If
that is the case, it may run it again without any involvement of the scheduling
process. This procedure may take place several times, until the event has been
executed at most REPEAT times (including the initial execution delegated by
the scheduling process), after which the updated variable values are reported to
the central scheduler. The constant REPEAT can be seen as a parameter of the
scheduling platform, and it applies to all slaves processes and, in principle, to
all events. However, since events may disable themselves even after only one or
a few consecutive executions, REPEAT is to be seen as an upper limit. Also
note that an event does not automatically become disabled after being executed
REPEAT times, but to continue running it, it must once again be chosen for
execution by the scheduling process.



4 Testbed model

We use a trial division based integer factorisation model as our testbed. While
trial division is not particularly efficient, we are not primarily interested of eval-
uating the performance of the algorithm per se, but rather that of the scheduling
method as compared to a sequential program. The model has its roots in [3,5],
but we have revised it e.g. so that it can make use of the automatic repetition of
events. The goal of the model is to find a factor of a given integer n, such that
it is >2 and <n. However, if n is a prime number, the result reported is n itself.

At the core of the model are the factorisation events processi, process2, etc.,
up till the number of computational, or slave, processes. This typically corre-
sponds to the number of hardware computational nodes (processors or cores)
to be used for slave computations. The Event-B notation of the factorisation
events, in a model designed for two computational processes, is given in Fig. 1.
Note that we use separate events instead of parametrisation, since we want the
factorisation events to be separate from each other.

result_1:=mnmodi_1
i_1:=4i_1+ STEP
continue_ 1 := continue 1 —1

processl £ process2 =

when when
continue_1 >0 continue_2 >0
result_1#0 result 2 #0
i_1<n/2 i_2<mn/2

then then

result _2:=nmodi_2
i_2:=1i_2+ STEP
continue 2 := continue_2 — 1

end end

Fig. 1. Factorisation events for two computational processes.

There are variables ¢ 1,7 2, etc., associated with the respective factorisation
events. Variable ¢ 1 is initialised to the value 2 (i.e. 14+1), ¢ _ 2 to the value 3 (i.e.
2+1), etc., and each time a factorisation event m is executed, it checks whether
the constant n is divisible by the current value of its associated variable i _m. If
that is the case, a factor has been found. To distribute the work evenly among
the processes, i _m is after each trial division incremented by a constant STEP
containing the number of factorisation events. Each factorisation event m is
also associated with a counter continue m. Initially set according to a constant
CONTINUES, it is decreased by 1 after every trial division. By checking that
continue _m > 0 as part of the guard, the number of consecutive executions of
each factorisation event is limited to CONTINUES.

Since the factorisation events must not have any variables in common, they
cannot directly check whether another event has found a factor. This is where a
synchronisation event newround comes into play. After the factorisation events
have been executed for a maximum of CONTINUES times, they disable them-



selves, and can only be re-enabled by newround, given that none of them has
already found a factor. The listing for newround is given to the left in Fig. 2.
Note that newround is disabled if the value of all variables i _m is greater than
n/2. Each of the m factorisation events also disables itself if the corresponding
i_m exceeds n/2. This is because a factor (less than n itself) cannot exist be-
yond this threshold. It would actually be enough to check numbers up till \/n,
but since Event-B does not support square root, we use n/2 as the limit.

newround = found0 =

when when
result_1# 0 Aresult_2#0 result _1# 0
—(i_1>n/2ANi_2>n/2) result _2 #0
continue_1 < CONTINUES result = —1

Vcontinue_2 < CONTINUES i_1>n/2

then i_2>mn/2
continue_1:= CONTINUES then
continue_ 2 := CONTINUES result :=n

end end

Fig. 2. Events for re-enabling the factorisation events (left) and for finalising when it
becomes clear that the number is prime (right).

In the case that no factorisation event finds a factor, and all i m exceed n/2,
event found(0 becomes enabled. This event is shown to the right in Fig. 2, and
simply sets a variable result, storing the final result, to n. There are also events
foundl, found?2, etc., related to the factorisation events process1, process2, etc.,
respectively. These events, as shown in Fig. 3, set the result variable to the value
found by their associated factorisation events.

foundl £ found2 £
when when

result 1 =0A result = —1 result 2 =0 A result = —1
then then

result :=i_1— STEP result :=1_2 — STEP
end end

Fig. 3. Events for finalising when process 1 (left) or process 2 (right) has found a factor.

When benchmarking the model, in the following section, we also compare
execution times to that of a sequential C++ program. Though designed to be as
closely as possible a sequential version of the algorithm above, there are a few
differences. For example, it obviously contains no synchronisation mechanisms,
and it always finds the lowest factor that is >2, whereas the Event-B model may
find a greater factor depending on the relative progress of the processes.



5 Benchmarking

Performance of the scheduling approach discussed in previous sections has been
evaluated by scheduling the testbed model on a multi-core/multi-processor sys-
tem using different parameters. The scheduler was compiled together with the
C++ translation of the model using the GNU Compiler Collection (GCC) [4]
with the maximum (03) level of optimisation. Since some parameters were part
of the model and could not be changed afterwards, we technically compiled differ-
ent models with minor changes from each other. To facilitate scripting for bench-
marking purposes, we also slightly modified the scheduler as well as the model
code to support additional parametrisation. We do not expect these changes to
have disrupted test results by having any relevant impact on performance. The
system used for the test runs consists of two Xeon E5430 (2.66 GHz) processors,
each of which has four computational cores, running a GNU/Linux operating
system and the MPICH2 [8] implementation of MPIL.

From the perspective of the scheduling platform, there are especially two
parameters of interest: the number of slave processes and the value of REPEAT
used in the scheduler. Important parameters related to the model are n, i.e. the
number to factorise, and the value of the constant CONTINUES. Even though we
will not mention it explicitly, the number of slave processes also has implications
on the model in that the number of factorisation events has to match, and
the value of STEP must be set accordingly. To keep the repeat cycles of the
scheduler and the model synchronised, we decided to let the values of REPEAT
and CONTINUES be bound to each other, and we will from now on refer to
the value of REPEAT = CONTINUES as c. For each set of parameters, we
performed eight timed test runs. The initial one was disregarded, since it may
not be comparable should subsequent executions have any caching benefits. The
timings of the subsequent seven runs (numbered 1-7) were recorded, and the
mean value was computed. The time unit used was seconds and fractions thereof.

Our first set of runs was performed with the parameter n = 2,147,483, 647
with three slave processes. An additional process was used for the scheduler,
so technically, the execution involved four processes. Note that we chose n to
be a prime number in order to achieve benchmarking times long enough to
draw conclusions. We ran several subsequent test sets, with the values of ¢ =
REPEAT = CONTINUES being 102, 103, ..., 10°, respectively. With the c value
set to 100 (i.e. 102), the execution times are several times higher than that of
the sequential program with a mean value of 13.36 seconds for the sequential
version versus 89.08 seconds for the parallel one. However, if ¢ is set to 1000,
timings approach those of the sequential model, and with a ¢ value of 10000,
the parallel model is faster at 10.09 seconds on average. Values of ¢ beyond 10°
do not seem to provide further gains, and execution times level out at about
9 to 9.5 seconds, which constitutes approximately 70% of the running time of
the sequential version. However, we also realise that execution times of only a
few seconds may not necessarily be representative of performance in general.
For example, the time taken to initialise the scheduling platform may have an
unduly large impact. Therefore, we performed a new set of test runs with the



same parameters, except for setting the value of n to 68,720,001,023, which is
also a prime number. We present the results in Table 1.

l HRunl[Run?[RunS[Run4[Run5[Runﬁ[Run?“ Mean ‘

Sequential || 498.63 | 427.11 | 549.03 | 448.51 | 555.63 | 567.38 | 516.91 || 509.03
Par. ¢ = 107([2844.53(2883.50[2850.31|2802.62[2846.89(2840.90(2864.31[[2847.58
Par. ¢ = 10°]| 544.07 | 555.74 | 542.31 | 560.58 | 557.56 | 552.23 | 550.53 || 551.86
Par. ¢ = 107 320.24 | 320.19 | 319.80 | 320.67 | 320.69 | 317.67 | 318.21 || 319.64
Par. ¢ = 10°(] 292.76 | 293.95 | 293.61 | 293.13 | 294.09 | 292.09 | 292.34 || 293.14
Par. ¢ = 10°]| 288.50 | 290.00 | 290.34 | 288.24 | 290.16 | 290.23 | 288.50 || 289.42
Par. ¢ = 107|| 288.32 | 286.88 | 288.05 | 288.52 | 289.86 | 296.57 | 288.13 || 289.48
Par. ¢ = 10%]] 289.03 | 287.51 | 289.40 | 288.18 | 287.32 | 286.79 | 287.81 || 288.01
Par. ¢ = 10°(| 288.06 | 288.29 | 287.24 | 288.24 | 287.97 | 288.34 | 287.68 || 287.97

Table 1. Test runs with 3+1 processes, n = 68,720,001,023.

The general pattern turned out to be the same as for the lower value of n.
For a c value of 100, execution times are poor in this case, as well, but from
¢ = 10000 and beyond, we see performance gains. While they also level out
for higher values of ¢, executions times are around 50%-60% as compared to
the corresponding sequential program. This it better than in the previous case.
However, we were also interested in testing how the framework scales when the
number of processes increases. Therefore, we did yet another set of test runs.
We kept the value of n at 68,720,001,023, but increased the number of slave
processes to six, in addition to the scheduling process, which is always present.
The results are given in Table 2. Note that the sequential test runs used for
comparison were not redone, since the value of n remained unchanged.

l HRunl‘Run2‘Run3‘Run4‘Run5‘RunG‘Run?H Mean ‘
Sequential || 498.63 | 427.11 | 549.03 | 448.51 | 555.63 | 567.38 | 516.91 || 509.03
Par. ¢ = 102(|2574.73|2074.18(2609.96]2647.20|2494.59(2577.472632.28][2515.77
Par. ¢ = 10°]| 338.11 | 319.87 | 347.55 | 335.40 | 324.07 | 348.34 | 346.58 || 337.13
Par. ¢ = 107 159.96 | 137.46 | 165.59 | 141.58 | 160.85 | 158.15 | 153.70 || 153.90
Par. ¢ = 10°(| 147.62 | 146.77 | 147.72 | 147.02 | 121.49 | 148.72 | 146.45 || 143.68
Par. ¢ = 10°]| 113.44 | 144.23 [ 136.24 | 145.56 | 145.35 | 145.51 | 145.68 || 139.43
Par. ¢ = 107|| 145.03 | 145.50 | 134.56 | 146.20 | 129.59 | 145.29 | 146.63 || 141.83
Par. ¢ = 10%(| 119.44 | 146.29 | 144.89 | 134.04 | 145.75 | 139.15 | 130.20 || 137.11
Par. ¢ = 10°(| 140.61 | 120.94 [ 139.71 | 138.91 | 140.97 | 142.09 | 141.35 || 137.80
Table 2. Test runs with 6+1 processes, n = 68,720,001,023.

While we see the same pattern as before, execution times are considerably
shorter. The scenario where ¢ = 100 is still highly inefficient, but it is nonetheless
slightly faster than with three slave processes. We also note that for a value



of ¢ = 1000, performance is now better than for the sequential comparison,
whereas it was a bit slower than sequential in the 341 set-up. At ¢ = 10000, and
especially from ¢ = 10°, where the levelling out seems to start, performance is
greatly increased as compared to using three slave processes. For such values of
¢, execution times in the 6-+1 process set-up are around half of those in the 3+1
setting, indicating a good scalability of the scheduling approach.

6 Conclusions

In this paper, we have performed an empirical study on the efficiency of MPI-
based parallel scheduling of compute-intensive code translated from an Event-B
model. The purpose was to evaluate whether an on-the-fly scheduling approach
taken is feasible from a practical perspective. We used an integer factorisation
model as a testbed for the study. To mitigate excessive overhead due to the
fine-grained nature of events in Event-B, we introduced an optimisation in the
form of repeated event execution without the involvement of the scheduler. To
benefit from this strategy, the model should be designed so that computational
events are enabled a large number of times in a row.

We performed a number of test runs on a multi-core/multi-processor system
to evaluate the performance of the testbed factorisation model when using the
optimisation. The tests involved different numbers of processor cores in use,
and different limits on how many times events can be executed consecutively
without involving the scheduling process. The runs showed that given a large
enough number of repetitions, the performance increased to a degree where the
program clearly benefits from parallel execution, as compared to a corresponding
sequential program. We also found that when increasing the cores in use from
3 slave processes + 1 scheduler, to a 6-+1 configuration, performance increased
considerably, indicating good scalability of the approach.
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