N

HAL

open science

Slead: Low-Memory, Steady Distributed Systems Slicing

Francisco Maia, Miguel Matos, Etienne Riviere, Rui Oliveira

» To cite this version:

Francisco Maia, Miguel Matos, Etienne Riviere, Rui Oliveira. Slead: Low-Memory, Steady Distributed
Systems Slicing. 12th International Conference on Distributed Applications and Interoperable Systems

(DAIS), Jun 2012, Stockholm, Sweden. pp.1-15, 10.1007/978-3-642-30823-9_1 . hal-01527638

HAL Id: hal-01527638
https://inria.hal.science/hal-01527638

Submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01527638
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Slead: low-memory, steady
distributed systems slicing

Francisco Maia!, Miguel Matos!, Etienne Riviere?, and Rui Oliveira! *

! High-Assurance Software Laboratory, INESC TEC & University of Minho, Portugal
{fmaia,miguelmatos,rco}@di.uminho.pt
2 Université de Neuchatel, Switzerland.
etienne.riviere@unine.ch

Abstract. Slicing a large-scale distributed system is the process of au-
tonomously partitioning its nodes into k£ groups, named slices. Slicing is
associated to an order on node-specific criteria, such as available storage,
uptime, or bandwidth. Each slice corresponds to the nodes between two
quantiles in a virtual ranking according to the criteria.

For instance, a system can be split in three groups, one with nodes with
the lowest uptimes, one with nodes with the highest uptimes, and one
in the middle. Such a partitioning can be used by applications to assign
different tasks to different groups of nodes, e.g., assigning critical tasks to
the more powerful or stable nodes and less critical tasks to other slices.
Assigning a slice to each node in a large-scale distributed system, where
no global knowledge of nodes’ criteria exists, is not trivial. Recently,
much research effort was dedicated to guaranteeing a fast and correct
convergence in comparison to a global sort of the nodes.

Unfortunately, state-of-the-art slicing protocols exhibit flaws that pre-
clude their application in real scenarios, in particular with respect to cost
and stability. In this paper, we identify steadiness issues where nodes in a
slice border constantly exchange slice and large memory requirements for
adequate convergence, and provide practical solutions for the two. Our
solutions are generic and can be applied to two different state-of-the-art
slicing protocols with little effort and while preserving the desirable prop-
erties of each. The effectiveness of the proposed solutions is extensively
studied in several simulated experiments.

1 Introduction

Current information systems are being deluged by sheer amounts of data that
need to be processed and managed [7]. At the same time, processors are not
getting faster at the same rate of previous years but instead it is possible to
have more of them [16] making it possible to consider thousands of machines,

* This work is financed by National Funds through the FCT Fundagio para a Ciéncia
e a Tecnologia (Portuguese Foundation for Science and Technology) within project
Stratus - A Layered Approach to Data Management in the Cloud (PTDC/EIA-
CCO/115570/2009) and EU FP7 project CumuloNimbo: Highly Scalable Transac-
tional Multi-Tier PaaS (FP7-257993).

each with hundreds of processors, in alternative to more expensive and central-
ized architectures. Taking advantage of such massive scale deployments requires
the design of suitable protocols. In particular, epidemic or gossip-based protocols
have been successfully used to address a multitude of problems from data dissem-
ination, decentralized management, data aggregation or publish/subscribe [15].

A typical epidemic protocol operates as follows. Each node has some locally
produced/gathered knowledge and a set of neighbors, called its view. The pro-
tocol progresses by having each node periodically and continuously exchange
knowledge with one or several of its neighbors, each partner of the exchange
then updating its local state.

Large-scale systems are usually composed of highly heterogeneous nodes, ac-
cording to their capacity, stability or any other application-specific requirements.
The ability to distinguish between groups of nodes based on a discrete metric
reflecting a criteria, allows to dynamically provision nodes to certain tasks ac-
cording to their desirability. For instance, nodes with a higher uptime tend to
be more stable for a given additional period than those with a small uptime [2].
Partitioning the set of nodes into k several groups of increasing uptime, allows
to assign critical services to more stable nodes, and less critical services to less
stable ones. Examples include assigning privileged roles to more stable nodes to
improve the quality of a streaming application [18], or allocating a data partition
to a group of nodes in a key-value store [11]. The operation of partitioning in k
groups according to node-specific criteria is called distributed slicing [6,9, 13].

Slicing is an autonomous process by which each node in the system shall
decide to which slice it belongs. The decision is intuitively based on a virtual
global ranking of all nodes according to the criteria: based on its rank, it is
straightforward for a node to decide to which of the k slices it belongs. Obviously,
given the scale and dynamics of the systems we consider, it is intractable to
locally gather all nodes’ characteristics and perform the ranking in one place. The
decision needs to be made by each node individually in a completely decentralized
manner, based on the knowledge of its own value, the values of (some) other
nodes, and the slicing parameter k. Of course, such a decentralized protocol
operating on a large-scale dynamic system is based on compromises between
accuracy and convergence speed, reactivity to population changes and costs.

Unfortunately, despite the usefulness of slicing, state-of-the-art protocols still
exhibit flaws that preclude, in our opinion, their immediate applicability as build-
ing blocks for large-scale applications. In this paper, we analyze these state-of-
the-art protocols and focus on three previously disregarded metrics: steadiness,
slice variance and memory complezity.

Steadiness is the ability of the protocol to take slice changes decisions only
when necessary. It is the opposite of slice instability, measured by the distribution
of the number of slice changes per second. A slice change can be legitimate, e.g.,
if the value of the nodes’ attributes and thus the virtual ranking change, or
if the size of the system changes. However, a slice change typically implies a
considerable load for the overlying applications, as it requires reconfiguring the
node for its new role, and often reconfiguring other nodes to take over its previous

responsibilities. Undesired slice changes or oscillations between two slices tend
to appear more frequently for nodes that lie at the “borders” of slices, that is,
at the boundary of slices in the wvirtual ranking of all attributes. For instance,
in the key-value store application mentioned above [11], a slice change results
in discarding a potentially large fraction of hard state for the current slice and
getting the new state from nodes of the new slice, which can be costly.

Slice variance is a metric that reflects the correctness of the nodes allocation
to slices, and in particular, the size distribution of the slices. It is important to
notice that this metric significantly differs from the slice disorder metric used in
previous work [9]. Slice variance does not distinguish whether a specific node is
in the correct slice all the time but instead if the overall distribution of nodes
into slices is close to the expected one, i.e., each slice is close in size to % as
possible (N is the size of the system). The slice variance is defined as the variance
measured between the observed distribution of slices and %

Finally, we consider the memory complexity imposed on nodes for deciding
on their slice. This is a fundamental metric to assess scalability. A linear com-
plexity requires keeping information in the order of the size of the system, and
to maintain it through the system’s dynamics, leading to poor performance and
high costs.

We conducted experiments with two state-of-the-art protocols for distributed
slicing [6, 8]. These protocols exhibit reasonable slice variance but suffer from
serious steadiness and memory complexrity problems. We address the two is-
sues without impairing the original protocols performance w.r.t. other metrics.
Our proposal, which we named SLEAD, is a novel distributed slicing protocol
whose design principles are generic enough to be adapted to other protocols
such as [6,8]. We address both issues with a hysteresis mechanism that signif-
icantly enhances steadiness. It is coupled with a bounded-memory state man-
agement mechanism based on Bloom filters [3] that allows us to control memory
complezity with a very limited impact on convergence and accuracy.

The remainder of the paper is structured as follows. In Section 2, we present
current state-of-the-art protocols and their evaluation according to the metrics
above. Section 3 presents our contribution, SLEAD. We conclude and highlight
some future work guidelines in Section 4.

2 Distributed Slicing: State-of-the-Art

In this section we present, analyze and discuss two protocols, Ranking [6] and
Sliver [8] that to the best of our knowledge represent the state-of-the-art for
distributed slicing. A complementary review and comparison of these protocols
and other distributed slicing approaches can be found in [9)].

In general, each node participating in a slicing protocol possesses an arbitrary
local attribute and wishes to know the slice this value belongs to. The protocols
work by performing pairwise exchanges of the local attribute with its neighbors.
The decided slice may change after each such exchange, when the locally available
information indicates that the local attribute value crosses a border in the global
virtual ranking.

By assumption, each node in the system has access to a continuous stream
of random nodes from the system. These nodes can be used as members of the
node’s view or to determine its position among the different slices. This is usually
provided by an underlying proactive Peer Sampling Service (PSS) [10] that builds
this stream of random nodes through a gossip-based periodic exchange of views
between nodes. We also assume that the number of slices, k, is known by all
nodes. This value can easily be disseminated to all nodes through a gossip-based
dissemination [5], leveraging the PSS.

2.1 Ranking

Ranking [6], described by Algorithm 1, works in periodic cycles. It features an
active and a passive thread. At each cycle, a node’s active thread updates the
local view by obtaining fresh random peers from the PSS. It then initiates an
exchange with all these peers, simply sending its attribute (lines 7 to 10). Each
contacted node processes the request with its passive thread (lines 11 to 27).

The principle of Ranking is to locally estimate the number of received at-
tributes that are smaller than the receiver’s. This allows estimating the position
of the node’s attribute in the wvirtual ranking, and decide on a slice (line 27).
Ties in attribute values are disambiguated by comparing the node identifiers
(line 16, second clause of the condition). Failure to do so by considering tied
attributes on either the smaller or greater portion of the system would introduce
estimation problems, particularly in scenarios where the attribute distribution
is narrow (multiple nodes with the same attribute value).

As described, Ranking uses a sliding window mechanism by bounding the
number of attributes considered and thus take churn (nodes’ dynamics) into
account.

2.2 Sliver

Sliver [8], described by Algorithm 2, relies on the same basic idea of Ranking. Its
fundamental difference though is to not only keep track of the attributes received
but also to record their source nodes. Such apparently small difference has a sig-
nificant impact and tackles a weakness in Ranking. Because the PSS is proactive
and nodes periodically exchange the same information, eventually Ranking will
consider the same attributes (providing from the same nodes) several times in the
slice computation. If the underlying PSS does not provide completely uniform
samples of the network, for instance due to heterogeneous network connections
or to the nature of the shuffling operation used,?® the biasing may strongly affect
the accuracy of the slice estimation [9]. The longer the time slice considered,
the more important is the bias introduced by selecting the same nodes several
times. As Sliver keeps track of nodes identifiers, it is possible to overcome the

3 As demonstrated in [10] there is no such thing as a “perfect” peer sampling service;
protocols that favor reactivity to take into account failed nodes usually impose a
clustering ratio that is higher than that of a purely random network. It means that
nodes in the vicinity of a given node are more likely to be seen twice in the flow of
random nodes than what would have been the case with a purely random network.

(== BN |

11

initially

// view provided by the PSS

view +— @

// local attribute

myAttribute < ...

// number slices, system parameter
k< ...

// list of latest collected attributes
attributeList <— &

// current slice estimation

slice «— L

// active thread
every A sendAttribute()

view < PSS.getView()
foreach p € view
| send myAttribute to p

// passive thread
receive value from p

// number of smaller attributes seen
smaller <— 0
// total number of attributes seen
total < 0
if attributeList.full then

| attributeList.removeOlder()

if (value < myAttribute) V
(value == myAttribute A
p < myid) then
| attributeList.add(true)

else
| attributeList.add(false)

foreach a € attributeList
if a then
L smaller < smaller + 1

total < attributeList.size()
position < smaller / total
slice < k * position

Algorithm 1: Ranking [6].

1 initially

2

3

o © N

11

12

13
14

€

// view provided by the PSS

view < &

// local attribute

myAttribute < ...

// number slices, system parameter

k<« ...

// holds the received attributes and
node ids

attributeList < @

// current slice estimation

slice < L

// active thread

very A sendAttribute()
view < PSS.getView()
foreach p € view

L send myAttribute to p

// passive thread
receive value from p

// number of smaller attributes seen

smaller <— 0

// total number of attributes seen

total <~ 0

if attributeList.contains(p,value)

then

// pair attribute and id become
the head of list

attributeList.update(p,value)

else

if attributeList.full then
attributeList.removeOlder()
attributeList.add(p,value)

else
| attributeList.add(p,value)
foreach a € attributeList
if a.value < myAttribute then
L smaller < smaller + 1

else
if a.value == myAttribute
A a.id < myld then
L smaller <— smaller + 1

total < attributeList.size()
position < smaller / total
slice < k * position

Algorithm 2: Sliver [8].

impact of duplicates as well as provide a convergence proof as shown in [9]. Such
a convergence proof is not applicable to Ranking.

2.3 Using a sliding window of observation

Unfortunately, the continuous collection of attributes hinders scalability, as the
memory required is proportional to the system size. This is the case for Ranking
but is even more critical in Sliver as much more information is kept for each
interaction. Due to this, both protocols bound memory usage by defining a time
to live on attribute records, which enables to adjust memory consumption. In
practice, defining a time to live value is equivalent to defining a maximum num-
ber of records each node can store. In our experiments this is the approach taken
by keeping the records in a least-recently-used structure with custom size.

It is important to notice that the ability to forget records is crucial to cope
with churn and changes in node local attribute values albeit with an impact on
steadiness. In fact, defining a low value for the maximum amount of memory used
allows the system to adapt to changes very fast but at the cost of unsteadiness,
whereas increasing memory improves stability but slows the response to change.

2.4 Evaluation of Ranking and Sliver

In this section we study the behavior of Ranking and Sliver with respect to
Steadiness and Slice variance, for different amounts of memory consumption.
The experiments were conducted with the help of the PeerSim simulation frame-
work [12] with a system size of 10 000 nodes and k = 10 slices with the event-
based engine. For each experiment both protocols are stacked on top of the
same PSS (Cyclon [17] in our case) and thus receive the same views enabling a
direct comparison of results. As indicated in [10], Cyclon provides the best re-
sults of available PSS for the quality of the randomness of the streams of nodes
constructed (in particular, low clustering ratios). This means we consider the
best conditions for Ranking here; accuracy can only get worse as other PSS are
considered. All presented results are the average of 10 executions. Due to the
large number of points to plot, we applied a cubic spline transformation that
summarizes plot data in order to improve readability. We consider the follow-
ing configurations: Ranking and Sliver with memory size (maximum number of
elements in attributeList) of 100, 1,000 and co.

For all configurations, the size of the view is 20. This means that the active
thread of both Ranking and Sliver will contact 20 nodes with their attribute
value. If we consider the network formed by the PSS views to be random (a
reasonable assumption in this case), each node will be on average contacted
20 times per cycle. Every time a node is contacted with an attribute value, its
passive thread will integrate the received value and may decide on a slice change.
In the worst case, a node may thus change its slice 20 times per cycle.

Figure 1(a) explores the steadiness of the various configurations. We repre-
sent the evolution of the number of changes per cycle, for all nodes (note the
logarithmic scale for the y axis). As expected, due to the low number of values

Steadiness (cycles 500-600)

10000 ¢ Ranking (100) 4 100

| Sliver (100)
3
1000 A Ranking (1,000) 4

% nodes

Sliver (1,000) |

Ranking ()]

Total slice changes per cycle

100
Sliver (w)“ 0.1 1 10 100 1000
10 . . , , , Slice changes
0 100 200 300 400 500 600 Ranking (100) Sliver (100)
Ranking (1000) ----=-=- Sliver (1000)

Cycles Ranking (o) e Sliver (s)

(a) Steadiness. Evolution of the number (b) Steadiness. Cumulative changes over
of slice changes. the last 100 cycles.

—_
o
o

Ranking{100)

Sliver (100) |

N
o

expected slice size (1,000 nodes)

€

o

=

K=l

kS anking.(1,000).

q>) Sliver (1,000)]

©

S 10

©

=

<

(2] Ranking (=)]
4 Sliver (o) |

0 100 200 300 400 500 600

Cycles

(c) Slice Variance. Evolution of the slices
std. dev. from 1,000 nodes.

Fig. 1. Steadiness and slice variance for 10,000 nodes and 10 slices over 600 cycles.

stored by both protocols, there is a major instability of the slice decisions in the
beginning that result in a large number of slice changes, multiple times per cycle
and per node.When using a bounded memory size, there is a stabilization period
after which the number of slice changes per cycle remain almost constant. This
stabilization period is the time it takes to fill the memory: 20 times 50 cycles
makes for 1,000 entries in one case, 20 times 5 cycles makes for the 100 entries
in the other. The number of slice changes, and thus steadiness, is thus directly
linked to the memory size at each node.

Even a memory of a tenth of the total system size is synonym with major
slice attribution instability. Keeping system-size amount of information results
in the protocols stabilizing, but very slowly. By cycle 600, Ranking will have
seen 600 times 20 values, more than the size of the system, and still be unstable.
As expected, Sliver is slightly more efficient for the same memory and stabilizes
faster by discarding already known information and counting each attribute
only once. Nonetheless, we do not see the stabilization of Sliver with a complete
knowledge of the system as it would require much more than % = 500 cycles

to get such a complete knowledge (latest missing attributes taking longer to

be captured). We note that the difference between Ranking and Sliver would
be higher if using a PSS yielding a lower-quality stream of nodes, e.g., where
clustering would be more present.

Figure 1(b) presents the cumulative slice changes from cycle 500 to 600 which
is enough for all configurations to stabilize. As expected, slice changes are not
evenly distributed among all nodes and tends to affect nodes that are on, or next
to, slice borders in the virtual ranking. In fact, even with knowledge of one tenth
of the system (1 000 records), roughly 20% of the nodes change slices at least
every 10 cycles. The result is deceptive for the usability of Ranking and Sliver
in a real system as these nodes will be unusable or incur a heavy and persistent
reconfiguration load on the system.

Figure 1(c) presents the impact of the various configurations on slice variance.
Here, we plot the standard deviation from the expected slice size (1,000 nodes).
We observe that slice variance is heavily dependent on the memory used: more
entries reduce the differences between slices while low memory (100 entries)
results in an instability on the number of slices. Note that the distribution of
slice sizes evolves over time: the large slices may be the smaller a few cycles
later, due to the randomness in the slice attribution. This we attribute to the
low memory available and resulting limited knowledge of the network.

Discussion These evaluations show that an immediate application of either pro-
tocol is problematic, particularly due to the steadiness problem, as a significant
percentage of the system would be devoted to performing slice transitions with-
out doing any useful work. These observations are the starting point and main
motivation behind the solutions and protocol presented next.

3 Slead

In this Section we present SLEAD, a new distributed slicing protocol that ad-
dresses the problems of steadiness and memory consumption found in existing
protocols and highlighted in the previous section. This is achieved without im-
pacting slice variance (and thus the distance from an ideal slice distribution).
In fact, SLEAD can achieve the same slice variance as state-of-the-art protocols
but with a significantly lower memory consumption as we demonstrate later in
this Section. For the sake of clarity we introduce each mechanism independently
which allows a better understanding of the impact of each of them.

Conceptually, SLEAD is similar to both Sliver and Ranking as in each cycle
nodes send their local attributes to their neighbors and compute their position
in the global ranking (and hence their slice) based on the attributes received in
the recent past. The full pseudo-code of SLEAD is presented in Algorithm 3, and
detailed and evaluated in the following sections.

3.1 Steadiness

Changing slice typically requires the node to change context and local state,
which can be very expensive. As we have shown in Section 2, Sliver [8] and
Ranking [6] suffer from a steadiness problem in the slice estimation: a large
fraction of nodes keep changing slices even in a stable network and long after

bootstrap. In fact, this happens mainly because nodes close to the slice border
are highly affected by small variations in their position estimation.

To address such fluctuations, we propose the use of a hysteresis mechanism
that prevents such problematic changes. The basic idea is to look at the slice
estimate over a period of time and only change slice if the slice proposal is done
for a sufficient amount of rounds, or if the magnitude of the change is high e
nough. The number of rounds or the magnitude of the change needed is given
by a parameter we call the friction factor.

The hysteresis component of SLEAD is presented in Algorithm 3, lines 20 to
24 and works as follows. At each cycle, the protocol computes the slice estima-
tion (lines 18 to 20). The magnitude of the change is accumulated in a local
variable, current_difference, which represents the cumulative difference between
the current slice estimation and the one the protocol is suggesting as correct (line
21). As we compute the difference between the current slice and the estimated
one, small fluctuations in the estimation are avoided since they do not go over
the friction factor and thus steadiness is improved. If the estimated slice consis-
tently points to a new value, the cumulative difference will eventually be greater
than the friction factor and the protocol will effectively adopt the change to
the new slice. Furthermore, as the hysteresis is based on cumulative differences
the protocol is able to quickly adapt to abrupt changes in the system such as
massive joins or failures. In fact, if the difference between the proposed slice and
the current one is greater than the friction factor, the change will be immediate
thus helping to effectively deal with dynamics.

Figure 2 presents the impact of the hysteresis mechanism applied to Ranking
and Sliver in the same scenario of Section 2 with friction=2. We only consider
the versions with unbounded memory of both protocols as those achieve better
results in both metrics as observed in Figure 1. We observe that the hysteresis
mechanism not only improves overall system steadiness (Figure 2(a)) but also
considerably reduces the amount of nodes that frequently changes slice (Fig-
ure 2(b), note that the x axis scale is logarithmic). Moreover, there is no im-
pact on slice variance (Figure 2(c)) meaning that despite avoiding unnecessary
changes the protocols still converge to the optimal configuration when compared
with their original versions.

3.2 Memory usage

The other main frailty with existing slicing protocols is that the memory require-
ments depend on the system size and too low a memory impacts slice variance
as observed in Figure 1. This is because Ranking and Sliver need to store the
values of the attributes of other nodes (and the node id in the case of Sliver) to
build adequate estimations of the slice position. The compromise taken in Sliver
and Ranking is to use a least-recently-used structure that bounds memory con-
sumption even though constraining estimation accuracy.

Our contribution to reducing memory usage rests on two key observations
regarding the nature of distributed slicing. First, it is important to track which
attributes (source nodes) have been considered in the past to avoid duplicates.

Steadiness (cycles 500-600)

(0]
© 200 100
&
© 95 |
8 100
@ 50 | Sliver (0
<) 85 L
= g
S 20t Ranking+hysteresis (c) - e 80r)
@ R*
Q 75 ¢
= 10 ¢ .
5 or Sivorameher () ——
8 L 1 i teresis (co
,E Sliver+hysteresis (o) S verr ys:;:ﬁﬂ; gmz

3 - - - - - 0) Ranking-+hysteresis (-<)

0 100 200 300 400 500 600 01 4 10 100
Cycles Slice changes

(a) Steadiness. Evolution of the number (b) Steadiness. Cumulative changes over
of slice changes. the last 100 cycles.

—-
o
o

N
o

Ranking () (with and without |
hysteresis: lines overlap)

Standard deviation from
expected slice size (1,000 nodes)
=

IS

(c) Slice Variance. Evolution of the slices
std. dev. from 1,000 nodes.

Fig. 2. Impact of hysteresis on steadiness and slice variance (10,000 nodes, 10 slices).

Secondly, what really matters to the slice computation is not the values them-
selves but whether they are greater or smaller than the local attribute. The first
observation directly calls for the use of a Bloom filter, a space-efficient data
structure for tracking identifiers [3]*. The second one, leads to simply counting
the greater and smaller observations, which only requires to keep two numbers
instead of a list with all the occurrences.

Therefore, in SLEAD we use Bloom filters to track the node identifiers, which
allows to track a significant higher number of ids using a bounded and small
amount of memory. Assuming a pair IP:port as the node identifier (48 bits)
and that attributes are encoded as long integers (64 bits), each entry requires 64
bits in Ranking and 112 in Sliver. For the memory configurations used previously
with 100, 1000 and 10,000 entries (the unbounded version in practice corresponds
to the system size), Ranking requires 6,400, 64,000 and 640,000 bits, whereas
Sliver requires 11,200, 112,000 and 1,120,000 bits, respectively. On the other

4 We note that using a Bloom filter can give false positives for the inclusion of an
element in the set (here, a node identifier). However, the probability of a false positive
for the identifier of a node with a greater attribute is the same as for a node with
a smaller attribute; henceforth the position estimation is not affected by such errors
that are evenly spread on the attribute range space.

hand, a Bloom filter with a probability of false positives of 1 x 10~* (the order
of the system size) requires only 1,071, 10,899 and 109,158 bits for storing 100,
1,000 and 10,000 nodes respectively [3], representing savings of around 90% when
compared to Sliver. The next step is simply to count the number of elements
in each Bloom filter and compute the slice estimation accordingly (lines 10 and
19). Please note that the addition to a Bloom filter is an idempotent operation
and thus has no impact on the cardinality which can be easily computed from
the filter fill ratio [3].

1 initially
// view provided by the PSS

2 view +— &
// local attribute
3 myAttribute < ...
// number slices, system parameter
4 k< ...
// mode identifiers whose attributes are smaller than the local one
5 smaller < BloomFilter()
// mode identifiers whose attributes are greater than the local one
6 greater <— BloomFilter()
// current slice estimation
7 slice <— L
// current value of cumulative changes attempts
8 current_difference < 0

// active thread
9 every A sendAttribute()

10 view <— PSS.getView()
11 foreach p € view
12 L send myAttribute to p
13 receive value from p
14 if (value < myAttribute V (value == myAtiribute A p < myld)) then
15 | smaller.add(p)
16 else
17 | greater.add(p)
18 total <— smaller.size() + greater.size()
19 position < smaller.size() / total
// hysteresis mechanism
20 nextSlice < k * position
21 current_difference <— current_difference + (slice — nextSlice)
22 if ||current_dif ference|| > friction then
23 slice <— nextSlice
24 myprotocol.current_difference < 0

Algorithm 3: SLEAD protocol.

To evaluate our mechanism, we compared Ranking and Sliver with unbounded
memory which in practice corresponds to 640,000 and 1,120,000 bits respectively,
and SLEAD with 218,316 bits which corresponds to the two Bloom filters with
a capacity to store 10 000 node identifiers with a false positive probability of
1 x 10~%. We detail the need for two bloom filters in the next section. To iso-
late the impact of the use of Bloom filters, SLEAD does not use the hysteresis
mechanism in this experiment. The results are depicted in Figure 3 and as it
is possible to observe despite using only 35% of Ranking’s memory and 20% of
Sliver’s, SLEAD provides similar results for both steadiness and slice variance.
Such memory improvements could be further increased by using more advanced

Bloom filters that do not require setting an a priori filter size and are able to scale
with the number of inserted elements [1]. In fact, this benefits nodes that are on
the low/high end of the attribute spectrum as they will not require significant
memory for the smaller/larger Bloom filters.

500

Sliver (oe)
Ranking () -
Slead () (W/0 hysteresis)

Ranking (e0)

Standard deviation from
expected slice size (1,000 nodes)

Sliver (e0) and Slead () without

Total slice changes per cycle
=
o

20 f ‘ ‘ ‘ hystergsis (Iinespver\ap)’ 4 ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Cycles Cycles
(a) Steadiness. Evolution of the number (b) Slice Variance. Evolution of the
of slice changes. slices std. dev. from 1,000 nodes.

Fig. 3. Bloom filter’s impact on steadiness and slice variance (10,000 nodes, 10 slices).

3.3 Dynamics

In the previous section we intentionally omitted details regarding the Bloom
filter implementation. Actually, such implementation impacts the behavior of
the protocol, which can be tuned to meet application specific criteria.

A traditional Bloom filter implementation [3] does not have the ability to
delete entries. In the static scenarios we considered previously such capacity is
not required and moreover, due to the low memory consumption, this simple
Bloom filter implementation copes with our requirements. However, in scenarios
with churn this capacity is fundamental as it enables old values to be pruned
enabling adaption to new configurations. In Ranking and Sliver this is addressed
by the sliding window mechanism, which simultaneously limits memory usage.

In SLEAD we decouple these distinct but related properties simply by con-
sidering a different implementation of the underlying Bloom filter. To this end
we use an implementation able to forget and mimic the sliding window-type be-
havior found in Ranking and Sliver. The approach used, known as A2, provides
least-recently-used semantics while keeping low memory usage [19]. In short it
uses two traditional Bloom filters that are filled out of phase, i.e. one starts to
be filled only after a number of updates to the other. This allows each Bloom
filter to record a set of values that differ in the timeline they represent, where
one contains the more recent items and is a subset of the other. The old values
are deleted by judiciously swapping and flushing the Bloom filters [19].

In our experiments we used the A? implementation with the parametrized
memory size. Figure 4 presents the evaluation of SLEAD under a dynamic en-
vironment and thus the impact of A%2. We start with a system with 100 nodes,
let it stabilize, and then at cycle 140 add 10 nodes per cycle for a duration of
10 cycles. As it is possible to observe, SLEAD exhibits similar behavior to Sliver

and Ranking. Even though it incurs in slightly higher variance initially, it quickly
converges and accommodates the system size changes. Moreover, when the hys-
teresis mechanism is added, the same quick convergence is observable validating
that our complete approach is also adequate for dynamic environments.

40 T T —
Slead (<) (W/0 hysteresis;
35 ¢ 4 Slead () (w hysteresis
{ Sliver (eo)
30 1 Ranking (e

25

Standard deviation from
expected slice size

100 120 140 160 180 200 220 240
Cycles

(a) Slice Variance: evolution of the slices

std. dev.

Fig. 4. Slice variance under churn. Starts with 100 nodes, ends with 200.

4 Discussion

In this paper we studied the behavior of two state-of-the-art distributed slicing
protocols, Ranking and Sliver, along several practical metrics namely, steadiness,
slice variance and memory complezity.

The experiments conducted showed that acceptable slice variance could only
be achieved with considerable memory consumption which poses inherent scal-
ability limits. Moreover, memory usage also impacts steadiness which imposes
constant slice reconfigurations. For instance, even keeping track of one tenth of
the node identifiers in the system, more than 10% of the nodes keep changing
slice very frequently and thus cannot be used effectively (Figure 1).

Our proposal, SLEAD, overcomes these limitations by using Bloom Filters
to considerably reduce the memory required and an hysteresis mechanism to
improve steadiness. Most strikingly this is achieved without impacting the slice
variance of existing state-of-the-art protocols. In fact, SLEAD achieves similar
performance regarding steadiness and slice variance with a fraction of the re-
sources of existing approaches as shown in Figure 3.

The adaptation to churn in all the protocols studied in this paper is a direct
consequence of the mechanism used to forget old node identifiers. Consequently,
the removal of old identifiers is directly influenced by the frequency of view
updates coming from the PSS and from the limited number of entries nodes are
allowed to keep in memory. Surprisingly, both factors are not necessarily related
to actual churn on the system, which hinders the capability of existing systems
to perform well under heavy churn environments. We thus believe that a node
removal mechanism that can take as a parameter the observed churn rate is
essential to widen the range of applicability of distributed slicing protocols. This
is an open problem, which we are trying to address using more complex Bloom

Filters [4]. The churn rate in a distributed large-scale system can be obtained
through simple gossip-based mechanisms such as ChurnDetect [14].

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

P. S. Almeida, C. Baquero, N. Preguica, and D. Hutchison. Scalable Bloom Filters.
Information Processing Letters, 2007.

R. Bhagwan, S. Savage, and G. M. Voelker. Understanding availability. In Inter-
national Workshop on Peer-to-Peer Systems, 2003.

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 1970.

K. Cheng, L. Xiang, and M. Iwaihara. Time-decaying Bloom Filters for data
streams with skewed distributions. International Workshop on Research Issues in
Data Engineering: Stream Data Mining and Applications, 2005.

P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.-M. Ker-
marrec. Lightweight probabilistic broadcast. ACM Transactions on Computer
Systems, 2003.

A. Fernandez, V. Gramoli, E. Jimenez, A.-M. Kermarrec, and M. Raynal. Dis-
tributed Slicing in Dynamic Systems. In International Conference on Distributed
Computing Systems, 2007.

J. Gantz. The Diverse and Exploding Digital Universe. Technical report, IDC
White Paper - sponsored by EMC, 2008.

V. Gramoli, Y. Vigfusson, K. Birman, A.-M. Kermarrec, and R. van Renesse.
Sliver, A fast distributed slicing algorithm. In ACM symposium on Principles of
distributed computing, 2008.

V. Gramoli, Y. Vigfusson, K. Birman, A.-M. Kermarrec, and R. van Renesse.
Slicing Distributed Systems. IEEE Transactions on Computers, 2009.

M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. Van Steen.
Gossip-based peer sampling. ACM Transactions on Computer Systems, 2007.

M. Matos, R. Vilaca, J. Pereira, and R. Oliveira. An epidemic approach to depend-
able key-value substrates. In IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops, 2011.

A. Montresor and M. Jelasity. PeerSim: A scalable P2P simulator. In International
Conference on Peer-to-Peer, 2009.

A. Montresor, M. Jelasity, and O. Babaoglu. Decentralized Ranking in Large-Scale
Overlay Networks. 2008.

Andrei Pruteanu, Venkat Iyer, and Stefan Dulman. Churndetect: a gossip-based
churn estimator for large-scale dynamic networks. In Proceedings of the 17th in-
ternational conference on Parallel processing - Volume Part II, Euro-Par’11, pages
289-301, Berlin, Heidelberg, 2011. Springer-Verlag.

E. Riviere and S. Voulgaris. Gossip-Based Networking for Internet-Scale Dis-
tributed Systems . Lecture Notes in Business Information Processing. 2011.

H. Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal, 2005.

S. Voulgaris, D. Gavidia, and M. Van Steen. CYCLON: Inexpensive Membership
Management for Unstructured P2P Overlays. Journal of Network and Systems
Management, 2005.

F. Wang, Y. Xiong, and J. Liu. mTreebone: A Collaborative Tree-Mesh Over-
lay Network for Multicast Video Streaming. IEEE Transactions on Parallel and
Distributed Systems, 2010.

M. Yoon. Aging Bloom Filter with Two Active Buffers for Dynamic Sets. Ieee
Transactions on Knowledge and Data Engineering, 2010.

