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Abstract. In this paper, we address the problem of melodic string matching that 
enables identification of  varied (ornamented) instances of a given melodic 
pattern. To this aim, a new set of edit distance operations adequate for pitch 
interval strings is introduced. Insertion, deletion and replacement operations are 
abolished as irrelevant. Consolidation and fragmentation are retained, but 
adapted to the pitch interval domain, i.e., two or more intervals of one string 
may be matched to an interval from a second string through consolidation or 
fragmentation. The melodic interval string matching problem consists of 
finding all occurrences of a given pattern in a melodic sequence that takes into 
account exact matches, consolidations and fragmentations of intervals in both 
the sequence and the pattern. We show some properties of the problem and an 
algorithm that solves this problem is proposed. 

Keywords: melodic pattern matching, string matching, pitch intervals.

1   Introduction

As vast amounts of audio recordings, MIDI files and sheet music become available on 
the web, efficient Music Information Retrieval (MIR) methods are indispensable for 
organising and accessing this data, not only in terms of metadata but primarily in terms 
of musical content (content- based MIR). Most current MIR applications are still in 
early stages of development and are, usually, not robust, general, or efficient  enough. 
One key problem that hampers attempts to build reliable and robust systems is the lack 
of explicit structural information in musical data (lack of the equivalent of words or 
phrases in language). Content-based MIR systems commonly operate on primitive 



descriptors extracted from audio or on the elementary musical surface (i.e. sequences 
of note symbols), and do not have access to the kind of rich higher-level musical in-
formation that humans use when storing and accessing musical data (in a sense, it is 
like having text IR systems operating on mere strings of letters without spaces). Ex-
tracting musically pertinent features, especially significant repeating melodic patterns 
as discussed in this paper, can enormously increase effectiveness and efficiency of mu-
sic information indexing and retrieval systems. Extracting melodies and rhythms from 
sequences is a difficult problem which has been researched in the past but generally 
these algorithms work just on notes in a MIDI like representation and not on pitch in-
tervals. This leads to the problem that the methods used are not transposition invariant 
and can often struggle to take into account some of the natural variations that occur in 
music sequences. 

Ornamentation, embellishment, elaboration, filling in, thinning out, and  reduction 
are common strategies employed by composers in order to generate new musical ma-
terial that is recognised as being similar to an initial (or underlying) musical pattern. 
This way musical unity and homogeneity is retained, whilst at the same time, variation 
and change occur. This interplay between repetition, variation and change makes mu-
sic ‘meaningful’ and interesting. Musical passages are often heard as ornamented or 
reduced versions of other passages. Listeners are capable of discerning common ele-
ments between varied musical material primarily through reduction, i.e. identifying 
‘essential’ common characteristics. The capacity of listeners to ‘match’ varied musical 
materials is essential to the process of identifying meaningful musical entities such as 
interesting motifs, themes, melodic and rhythmic patterns, characteristic harmonic pro-
gressions, and other memorable musical entities. 

Pattern matching methods are commonly employed to capture musical variation, 
especially melodic variation[3][6][7]. Dynamic programming techniques, often based 
on various types of edit distance, are used to find patterns in melodic strings. In this 
paper,  we  maintain  that  techniques  using  standard  edit  distance  operations 
(replacement, insertion, deletion, along with consolidation and fragmentation) applied 
on strings of notes are limited and have inherent shortcomings. Instead, we redefine 
the problem of matching in a way that is appropriate for strings of melodic intervals 
(not notes). To this aim, we abolish the replacement, insertion and deletion operations, 
and retain only consolidation and fragmentation operations which are adapted to the 
interval  domain.  It  is  shown that  this  new definition  of  the problem of   melodic 
matching enables more reliable matches and is also transposition invariant. 

In this paper we consider the ‘Melodic String Matching Via Interval Consolidation 
and Fragmentation’ problem and give optimal algorithms that will find all occurrences 
of a pattern p in a text t allowing for consolidations and fragmentations.

The paper is structured as follows: In Section 1 we introduce the problem, in 
Section 2 we describe the problem and give preliminaries and present some important 
properties used in our analysis, in Sections 3-5 we give our algorithms, in Section 6 
experimental results and future improvements.



2   The Melodic String Matching Via Interval Consolidation and 
Fragmentation Problem

Pattern matching methods are commonly employed to capture musical variation 
(especially melodic variation). Dynamic programming techniques, often based on 
various types of edit distance, are used to find patterns in melodic strings. The most 
common edit operations in melodic string matching are insertion (inserting a note), 
deletion (deleting of a note) and replacement (replacing a note). Mongeau and 
Sankoff[9] suggest two additional operations: fragmentation (division of a note into 
multiple notes of the same pitch) and consolidation (combining multiple notes in a 
single note). The minimum number of operations that are necessary for making two 
strings identical is called edit distance; this distance is a measure of similarity between 
the two strings. In Figure 1, the first melody is transformed into the second melody if 
the notes indicated by an asterisk are deleted/inserted as appropriate.

-2 2 -2 -2 -1 -2 -1 1
-2 2 -4 4 -5 5 -7 7 -8 8 -7

Figure 1  Beginning of Toccata (a) and theme of Fugue (b) from Bach’s D-minor Toccata 
and Fugue BWV 565. Intervals of one excerpt may be fragmented or consolidated in the other 
excerpt as depicted in the table.

Edit distance is usually applied to strings of pitches. This distance is problematic, 
however, when applied to strings of pitch intervals. The reason is that the deletion, 
insertion or replacement of a pitch interval in a melodic sequence changes radically 
the initial sequence. If for instance, a 2 semitone interval is replaced by a 3 semitone 
interval, the rest of the melody following this interval is transposed by 1 semitone in a 
remote key and thus the quality of the melody is altered drastically[3].

The  use  of  edit  distance  in  strings  on  notes  (not  intervals)  also  has  some 
shortcomings. Firstly, in order to account for transpositions it is necessary to transpose 
the query to 12 different keys and search the target string twelve times. Secondly, it is  
difficult to define a distance threshold beyond which two strings do not match. If 
enough edit operations are performed any string can be made identical to any other 
string  –  such  strings,  however,  may  be  very  dissimilar.  An  appropriate  distance 
threshold  has to  be determined in order  for  edit  distance to account for  plausible 
similarity ratings; determining such a threshold is not straightforward.

In this paper, we address the problem of melodic string matching, introducing a 
new set of operations that are adequate for pitch interval strings. Insertion, deletion 
and  replacement  are  abolished  as  irrelevant.  Consolidation  and  fragmentation  are 
retained  but  adapted  to  the  pitch  interval  domain  (they  can  also  be  applied  to 
durations). That is, two or more intervals of one string may be matched to an interval 
from a second string through consolidation or fragmentation (see table in Figure 1). 



Working  with  intervals  means  melodic  matching  is  transposition-invariant. 
Additionally, matching is confined by the consolidation and fragmentation operations 
(the only threshold necessary is the maximum number of intervals an interval may be 
broken down to).

Let us examine one musical example (Figure 2) in more detail. According to our 
proposed interval consolidation and fragmentation operations (see tables in Figure 2), 
the top melodic query matches fully with instances (a) and (c) in agreement with 
standard  musical  knowledge/intuition  (actually  the  query  and  instance  c  are 
elaborations of instance a). The query matches partially with instance b (except for the 
last interval). Finally, only the first two intervals of instance d match with the first 
interval  of  the  query;  this  is  the  weakest  match.  These  match  results  are  rather 
plausible according to our general musical understanding. 

Query

5 -1 1 -3 2 -4 5 -1 1 -3 2 -4 5 1 1 -3 2 -4 5 -1 1 3 2 4
5 -5 5 -1 1 -3 2 -4 2 2 1 -1 -2 -2 4 1 2

Figure 2  The top query matches fully with instances (a) and (c), matches partially with 
instance (b) except for the last interval, and, in case (d), only the first two intervals match with 
the first interval of the query (solid line tables indicate matches).

In this same example we get quite different results in terms of the standard edit 
distance operations (for pitch only – query transposed in 12 different keys). The query 
is measured to be most similar to instance b (only one replacement for the last note), 
and the other three instances are equidistant to the query (four operations in each case). 
These results are counter-intuitive (a and c are most similar to the query, then b, and 
lastly d). Although it is simple to construct a dynamic programming matrix to find an 
alignment of the pattern with the melody, this won't find all the occurrences of the 
melody; an operation which is useful for musical analysis. Additionally by not using the 
dynamic programming approach we can avoid the problem of determining a good 
threshold and can reduce the high memory usage needed by such dynamic program 
techniques. This is our motivation for considering our problem.  

3 Formal Definition

Let Σ  ⊂ Z be a finite alphabet of integers. A string is a sequence of symbols from Σ and 
the set of all strings over the alphabet is denoted by Σ* . Melodic string matching is a 
pattern matching problem where we wish to find all occurrences of a pattern within a 



text. Throughout the paper the use the following notation: p represents the pattern of 
length m, t is the text of length n. The i -th element of the pattern (text) is denoted by pi 

(ti ). A factor of a word t starting at i and finishing at j is represented by t[i...j]. 
   Melodic string matching via consolidations and fragmentation is a string matching 
problem where we are given a text t = t1 ...tn and pattern p = p1 , ..., pm over an alphabet 

.Σ  The problem is to find all occurrences of p in t, where an occurrence of p can consist 
of three operations 
– equal (ti matches pj ) 
– consolidation (ti + ti+1 + ..ti+j matches pk ) 
– fragmentation (tk matches pi + pi+1 + ..pi+j ) 
The total number of summations allowed for a single character is 
bounded by a parameter .З
Now we present  some important properties of the problem which will be used in our 
analysis of the algorithm.

Lemma 1 For a pattern of size m there are O(2m-1 ) valid combinations of the pattern, 
where З >= m. 

Proof . We can encode pattern combinations as a bit mask, Where a 1 at position i 
represents a summation between i and i+1 and 0 otherwise. Where summations are 
bounded by З this means that a valid pattern is a binary string of length m which avoid 
factors 1m-1 . So where З >= m this consists of all the binary words of length m-1, the 
total combinations is bounded by O(2m-1 ).

Lemma 2 For a valid pattern combination there are O(2n-1 ) valid occurrences at  a 
position i in the text, where З = n. 

Proof. We can make a similar argument as Lemma 1 for Lemma 2. If we encode the 
valid summations in the text as a bit mask. In the worst case a text and pattern of all 0s, 
where З = n we have O(2n-1). 

Lemma 3 There are at most O(n2n+m-2 ) occurrences of a pattern of size m in a text of 
size n where З = n.

Proof. By Lemma 1 and 2 we have at most O(2n+m-2 ) occurrences at each position in the 
worst case and at n positions. Therefore O(n2n+m-2 ) occurrences overall.

Theorem 1 It will take at least Ω(n2n+m-2m) in the worst case to solve the Melodic string 
matching problem via interval consolidation and fragmentation.

Proof. By Lemma 3 there are at most O(n2n+m-2 ) occurrences in a string, therefore, any 
algorithm solving this problem will have a worst case of at least Ω(n2n+m-2

 m)if we wish 
to individually report every occurrence. 



4   Algorithms

We present a simple binary search based algorithm. The main idea behind this 
algorithm is to use a binary search to identify only those sections of the text where a 
valid occurrence of the pattern could possibly occur. This filtering step based on the 
following 2 observations. 

Observation 1 For the pattern to occur it must occur in a section of the text that sums 
up to M, where M is the sum of the entire pattern. We call an interval of the text which 
sums to M, a submass[1] of size M. 

Observation 2 P is a submass of s with occurrence at position (i, j) if and only if s = 
s1 + . . . + sj   − s1 + . . . + si−1.  [2,5]

Within these valid sections of the text we then need to try pattern combinations of the 
same length as the section. Although simple this technique means, on average, we will 
drastically reduce the number of pattern combinations we need to check. This filtering 
technique is similar to that used in the Karp Rabin[8] string matching algorithm where 
we are using a very simple hashing function. An outline of the algorithm is given 
below. 

Step 1 Calculate the sum of every prefix of t and store them as an array called PSA[i]. 
Such that PSA[i] = s1 + . . . + si . We store these values as pairs (PSA[i], i) to make 
identifying candidate segments easier later on. 

Step 2 Sort the PSA array by the first value of each pair using a stable sorting 
algorithm, we call the resulting array the SPSA array. 

Step 3 Identify all candidate segments by performing a binary search for all submasses 
M in the original string, we do this for each position i in the text. For example, if 
PSA[i] = 15 and M = 9 we would search for 15  − 9 = 14. Where there are multiple 
occurrences of the same number we can also do a binary search for the end position of 
this match. For each candidate segment we must do a further check to ensure that all 
reported candidates are valid, as it is possible that some impossible candidate segments 
are reported e.g. those segments (i, j) with j < i . 

Step 4 For each candidate segment of the text we must check pattern combinations 
within this fixed length. Checking the pattern combinations can be done using a 
restricted version of the brute force method. The restricted brute force method is 
similar to the standard brute force technique, however, only combinations which fit 
exactly in the candidate section will be checked. Time taken for this depends on the 
number of candidate intervals identified. 



5 Analysis and Runtime

Step 1 requires us to compute the prefix sum for every index which will take Θ(n) as 
each sum can be computed in constant time based on the sum for the previous index .  
Sorting the PSA array is simple and we can use any algorithm such as merge sort and 
this will take O(n log n).  Step 3 requires us to make n binary searches to find all of the 
candidate areas where an occurrence of the pattern could occur. As each binary search 
takes O(log n) and we need to do n binary searches in total we will take O(n log n) for 
every binary search. Step 4 is the most time consuming step in the algorithm and in the 
worst case it could be up to O(2n+m-2)  due to the maximum number of possible matches 
within a candidate segment, although  in practice it will be much lower as this can only 
occur if the pattern and text are all 0 which wouldn't happen in practice. So the total 
runtime  of  this  algorithm  will  be  dominated  by  the  final  step  of  the  algorithm, 
however, as previously mentioned, in practice we wouldn't ever realise this worst case 
as such strings wouldn't be interesting pieces of music or interesting melodies.

6   Experimental Results and Discussion

We  have  implemented  and  tested  our  solution  along  with  the  naive  brute  force 
algorithm. These were implemented in C++ on a computer with an Intel Core 2 Duo 
T7500 2.20Ghz with  2 GB of  RAM. The tests  were carried  out  using MIDI files  
converted into pitch interval representation. Initially we tested the speed of execution 
on random sequences with a variety of input sizes; the performance of the brute force 
algorithm was almost identical to ours for small inputs. As the size of the pattern, text, 
and the number of summations was increased, the difference became apparent. Due to 
the nature of the brute force algorithm it always performs an exponential number of 
comparisons. To give an idea of the difference in execution time, for a pattern of size 
20 with up to 4 summations, the algorithm was stopped after 48h of execution time 
and was not finished. Where as a pattern of size 11 with 4 summations took only a 
couple of minutes. To further illustrate this difference we ran the algorithms on some 
patterns with no matches. For a pattern of size 20 and a sumsize of 4 the brute force  
algorithm takes the same time stated above whereas the binary search algorithm takes 
4 seconds. 

    A focused musical experiment was performed in order to evaluate performance of 
the algorithm in more detail. More specifically, we used the melody from the first part 
of Mozart’s Sonata in A major, KV331. In this part an initial theme appears in six  
different variations illustrating various degrees and types of melodic ornamentation 
and transformation. As queries we use the theme itself and various reduced versions of 
it (the first two measures of two such reduced versions are depicted in Figure 3). 



Figure 3  Beginning of Theme and 6 Variations from Mozart’s Sonata in A major KV331. 
The two queries at the top match most of the variations (see text).

The algorithm correctly identifies most of the variations of the theme in its various 
guises. Especially, the reduced versions of the theme are successfully recognised. The 
original theme is recognised directly only in Variation II (match of other variations is 
unsuccessful as many-to-many interval interval matching is required –  see discussion 
below). A slightly reduced version of the theme (Q1 in Figure 3) is matched to 
Variations I, II, and V, whereas a further reduced version (Q2 in Figure 3) is matched to 
Variations I, II, V and VI. The reduced queries would be matched to Variation IV if a 
mod12 matching of intervals was allowed (or if the first note of each measure was 
transposed upwards by an octave); they would also be matched to Variation III if a 
tolerance of +/-1 semitone is introduced (Var III is in C minor). The algorithm is quite 
successful is capturing quite severe alteration of the melodic material. 
    Results for some queries can be seen in Table 1. The table shows the number of 
occurrences  of  each  pattern  as  identified  by  our  algorithm  for  three  queries 
(ThemeStart, Reduction1, Reduction2) and for three summation thresholds (7, 8 & 9). 
The query ThemeStart  corresponds to the first  two measures  of  the original theme 
(Orig. in Figure 3). The queries Reduction1 and Reduction2 correspond to queries Q1 
and Q2 of Figure 3 respectively (but Q2 is four measures long). The spurious large 
numbers for larger summations depicted in the table may occur due to the presence of 
0s  or  intervals  that  sum to  0  which  can  lead to  reporting  many false  positives  as 
explained in section 3. The large number of combinations found for ThemeStart may 
be reduced if, for instance, durations are taken into account (see below).



Original VarI VarII VarIII VarIV VarV VarVI

Summations 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9 7 8 9

ThemeStart 6
1

460 21 26 41 4 6 35 0 0 0 0 0 0 2 2 2 0 0 0

Reduction1 5 11 14 10 14 15 11 13 14 0 0 0 0 0 0 0 0 4 20 25 31

Reduction 2 5 12 16 10 12 16 11 13 14 0 0 0 0 0 0 0 0 4 20 26 31

Table 1 Number of occurrences found in each text, for each query and summation 
size.

There are,  various shortcomings in  the  current  preliminary attempt  to  solve this 
relatively  difficult  melodic  matching  problem.  Firstly,  the  algorithm  identifies  the 
correct instances but additionally finds in some occasions many false positives that are 
not  significant  (see  table  1);  this  is  particularly  strong  when  the 
consolidation/fragmentation limit (number of summations) is large. There are various 
ways to deal with this issue. An obvious way is to extend matching to include duration 
consolidation/fragmentation (when a pitch interval is fragmented/consolidated so are 
the  rhythmic  durations  fragmented/consolidated).  Another  way  is  to  add  extra 
constraints such as  an overall  number of  fragmentations/consolidations allowed per 
query (similar  to  -  approximate  matching  where  a  threshold  for  a  valid  match isγ  
defined as the sum of the differences over the entire match [4]). 
   Secondly, the current implementation allows only one-to-many and many-to-one 
matches (that is one interval consolidated/fragmented to many intervals). This way it is 
unlikely that two ornamented versions of the same underlying melody can be matched 
(e.g. the original theme of Figure 3 with variations). The current algorithm would be 
more successful if ornamentations were stripped away from a query melody before 
applying pattern matching. 
  Thirdly,  in  the  current  version  of  the  algorithm  interval  matching  (of 
consolidated/fragmented intervals) is exact (i.e. intervals add up exactly to the matched 
interval). This may be unnecessary. It may be useful to allow some tolerance, e.g., ±1 
semitone, to account for matches of patterns, for instance, in relative or parallel keys. 
This would be a kind of -approximate matchingδ  [4]. 
   Overall, the algorithm is performing as expected and is successful in capturing 
melodic variation. Further testing, however, is necessary. In particular we plan to make 
use of precision and recall type analysis to determine the accuracy of our algorithm. As 
our algorithm will identifies all occurrences of a pattern it is clear that in certain 
situations we will identify many occurrences that are not true occurrences of the 
melody, so testing the precision of our algorithm will be a very important metric in 
determining it's effectiveness. Additionally, larger groundtruth testdata are necessary. 
Apart from testing, further research is required to improve it and make it more robust 
and reliable. 



5   Conclusions

   In this paper we have defined the problem of matching melodic patterns in a novel  
way, such that ornamentation and variation can be naturally accommodated. This new 
approach  allows  the  development  of  new  flexible  transposition-invariant  melodic 
matching techniques that can identify melodic patterns exhibiting various degrees of 
variation/transformation.   

     We have proposed one algorithmic solution to  this  problem and tested  it  on 
artificial and actual melodic data. We have shown that the proposed technique yields 
musically meaningful results. At the same time a number of potential shortcomings 
have been identified and discussed in the previous section. Although we have shown 
that  the algorithm is quicker  in a number of situations,  it  is clear that we need to  
perform a more thorough and rigorous experimental analysis of the algorithm.  Further 
research is required to improve the current version and to show its full potential. The 
improvements  proposed  in  the  previous  section  are  expected  to  increase  the 
performance and effectiveness of the algorithm.
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