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Abstract. The integration of gene expression datasets with gene function in-
formation provides valuable insights in unraveling the molecular mechanisms 
of the brain. In this paper, gene expression maps, acquired by the technique of 
voxelation, are analyzed using an atlas-based framework and the extracted spa-
tial information is employed to organize genes in significant clusters. Moreover, 
gene function enrichment analysis of clusters enables exploring the relation-
ships among brain regions, gene expressions and gene functions. Our work con-
firms the hypothesis that genes of similar spatial expression patterns display 
similar functions indicating that our methodology could assist in the functional 
identification of unannotated genes. 
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1 Introduction 

The mammalian brain is a complex organ exhibiting a rich variety of gene expression 
patterns across a broad range of cell types. Expression of genes is manifested by the 
production of RNA transcripts within cells and recent advances in the quantitative 
detection of mRNA and proteins on a genomic scale permit localization of gene prod-
ucts onto maps of the brain. Concerning that about 40% of the proteins encoded in 
eukaryotic genomes are proteins of unknown function, a challenging issue in the field 
of analysis of gene expression maps (GEMs) is their association with gene function 
information in order to reveal functional characterization of unannotated genes [1]. 
Preliminary results concerning the amounts of transcripts detected within different 
tissues or the same tissues under different states (e.g., physiological or disease), which 
are visualized using GEMs, shed light on the etiology and pathology of neurological 
diseases and may lead to the discovery of biomarkers and of proteins responsible for 
diseases[2].  



The methodologies for spatial mapping of proteins and transcripts in the brain 
are various, offering compelling information. A cheap and fast method is voxelation 
[3]. Voxelation allows acquisition of both transcript and protein mapping data in par-
allel simplifying co-registration of multiple genes, however it offers gene expression 
maps of intermediate resolution. According to this approach, the brain is divided into 
spatially registered voxels (cubes) and using microarrays or mass spectroscopy spatial 
images with quantitative information on transcripts or proteins are reconstructed. 

The analysis of GEMs involves the application of feature extraction techniques 
combined with data mining methodologies such as clustering, classification and simi-
larity search. Gene information from other aspects, such as Gene Ontology, is usually 
employed to validate biological hypothesis or to strengthen the fidelity of research 
outcomes. For example, aiming at the identification of unannotated genes An et al. [4] 
analyzed GEMs by extracting wavelet features and by using a multiple clustering 
technique. The authors confirmed the hypothesis that a subset of genes with similar 
expression maps display function similarity, where the identification of function simi-
larity was based on Gene Ontology. Regarding the analysis of GEMs for the discrimi-
nation between normal and disease, Brown et al. [5] investigated the expression dif-
ferences between normal and Parkinson’s disease (PD) mice brains using voxel ex-
pression maps of 9000 genes acquired by voxelation. The analysis was based on two 
genexgene matrices (normal and PD matrix) whose elements represented the cross 
correlation of corresponding GEMs. Gene expression in normal and PD brains re-
vealed significant global expression differences when averaged across voxels for 
known genes. Moreover, the singular Value Decomposition method was applied to 
the two matrices and global shifts of gene expression between normal and PD brains 
were indicated. Concerning spatial differentiation through a GEM produced by 
voxelation, a clustering analysis of gene expression patterns from mouse voxelation 
data revealed four distinct groups of genes corresponding to different mapping pat-
terns [6].  

In this paper, we extend previous work [4] exploring gene expressions differ-
ences with regard to brain anatomy. Our aim is the identification of genes whose ex-
pressions display similar anatomical distribution regarding specific brain regions such 
as white matter, gray matter and the hippocampal region. We also want to investigate 
if the gene clusters with similar expression patterns have also similar gene function. 
Finally, we examine if we can extract more informative clusters by down-weighting 
inconsistent measurements, such as in voxels with high partial volume effect. Our 
investigation concludes that clusters of genes with similar localized expression pat-
terns display functional similarity indicating that our work has the potential of creat-
ing comprehensive atlases of gene and protein expression in the mammalian brain. 

2 Methods 

The association of gene expression in the brain anatomy with functional activity can 
provide a better understanding of the role of the gene’s products. In this study we are 
investigating the hypothesis that genes with similar expression maps have similar 



gene functions. For this purpose GEM’s similarity is calculated as in previous work 
[4] based on the expression patterns acquired with the voxelation technique. 
Voxelation data however have much lower resolution than single cell resolution data, 
thus suffer from partial volume effect, meaning that the acquired expression values 
represent an average over the gene expression of all cells in each voxel. This limita-
tion becomes especially prominent in regions where different tissue types mix, 
whereas in homogenous regions where similar expression patterns are expected, aver-
aging does not alter significantly the gene’s expression profile.   
      Thus, in this study we examine whether partial volume effect and unreliable 
measurements can affect GEMs similarity and therefore alter the relationship between 
gene expression and function. The idea is that measurements on untrustworthy loca-
tions should have less effect on the calculation of the overall similarity between 
genes. Such regions include the background and ventricles and also voxels with high 
partial volume effect. Next we describe the construction of four spatial maps: three of 
them represent spatial distribution of different tissues and one map reflects the confi-
dence on measurements. We furthermore explain how these spatial maps are used in 
the calculation of similarity between GEMs. 

2.1 Brain partitioning and confidence map 

Let Ω be the set of genes and 𝐱𝑖 ∈ 𝑅𝑛,  𝑖 ∈ Ω, be the expression profile of gene i, 
where 𝑛 is the number of voxels of the particular slice (at the level of the striatum) of 
mouse brain we consider. 

We explore the brain’s anatomical morphology by mapping a mouse brain atlas 
[7] on the space of the GEM as illustrated in Fig. 1 (left). Then the registered atlas 
image is partitioned into three regions: (i) gray matter (GM) in the cerebral cortex and 
anterior cingulated area, (ii) white matter (WM) including the striatum and 
caudoputamen and (iii) hippocampal region (HR) including the nucleus accumbens, 
substantia innominata, diagonal band nucleus and medial septal nucleus and exclud-
ing the lateral septal nucleus. The three brain segments are visualized in Fig. 1 (in the 
midde) and are used to construct spatial maps by assigning the value of 1 to a voxel if 
it belongs to the corresponding brain segment, or 0 if it doesn’t belong. Voxels on 
region boundaries are assigned a value equal to the partial volume in each tissue com-
partment. The acquired spatial maps are denoted as  wGM , wWM, wHR ∈ 𝑅𝑛 for GM, 
WM and HR, respectively. The amount of partial volume for each brain voxel 𝑗 is 
then calculated by the following measure of fuzziness: 

𝑤𝑃𝑉(𝑗) = �1 − �𝑤𝐺𝑀2 (𝑗) + 𝑤𝑊𝑀
2 (𝑗) + 𝑤𝐻𝑅2 (𝑗)�

 
 (1) 

It is easy to see that the more equally distributed is the tissue to the three compart-
ments, the higher is wPV(𝑗). The uncertainty map is calculated by averaging the 
amount of partial volume and the volume outside brain tissue (background or ventric-
ular regions). A confidence map, 𝐰𝐂 ∈ 𝑅𝑛, indicating the certainty of each voxel 
value, is then defined as the negative of the uncertainty map as illustrated in Fig. 1 on  



  
 

 
Fig. 1. Mouse brain partitioning. Left: Brain atlas with superimposed voxelation grid (red 
voxels indicate background). Middle: Brain tissue maps based on atlas [7] at bregma=0 (green: 
GM, blue: WM, red: HR). Right: Confidence map wC (the darker, the less certainty). 

𝑤𝐶 (𝑗) = 1 −
𝑤𝑃𝑉(𝑗)+ 1−�𝑤𝐺𝑀(𝑗)+𝑤𝑊𝑀(𝑗)+𝑤𝐻𝑅(𝑗)�
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the right and defined in equation 2.  
Next, due to the inherent bilateral symmetry of the mouse brain and lack of "handed-
ness" or speech-centers in mice, we decrease the amount of data by retaining the 
voxels of only one brain hemisphere. Similarly for the GEMs, left and right hemi-
spheres are averaged and only one hemisphere is retained, thus decreasing noise. For 
all GEMs and spatial maps the number of voxels is therefore reduced to 𝑛 = 42.  

2.2 Definition of gene similarity of expression and function 

The gene expression maps similarity between two genes, 𝐱1 and 𝐱2, is defined as the 
squared weighted Euclidean distance function, D, formalized below: 

D(𝐱1,𝐱2) =
∑ 𝑤(𝑗)�𝑥1(𝑗)−𝑥2(𝑗)�

2𝑛
𝑗=1

∑ 𝑤(𝑗)𝑛
𝑗=1

𝑛  

 (3) 

The weight vector w is used to emphasize dissimilarity on selective spatial loca-
tions. By incorporating such a weight vector, we can test two hypotheses. First, we 
can investigate whether by down-weighting the measurements on locations with high 
uncertainty we can form a more informative similarity measure that is not affected by 
partial volume and artifacts due to ventricles. This hypothesis is tested by using the 
confidence map wC as weight vector. The second hypothesis is that the gene function 
might correlate with gene expression in specific anatomic locations. Thus we investi-
gate whether genes with similar expression in some anatomic locations have similar 
gene functions. For this purpose we use the three spatial maps wGM , wWM, wHR  as 
weight vectors in equation (3) and investigate each region independently.  

The gene function similarity is calculated using Lin’s method [8] to evaluate 
function distance in Gene Ontology structure. The similarity values are obtained with-
in each of the three categories of Gene Ontology (GO version: January 2009), and are 
based on frequencies from the Mouse Genome Informatics (MGI) annotation dataset 
(MGI version: 01/31/2009). The three categories of gene function refer to “Cellular 
Component”, “Molecular Function” and “Biological Process”. The function similarity 



between two clusters of genes is calculated as average pairwise function distance, as 
explained in [4]. The significance of the function distance (p-value) is calculated as a 
percentile in respect to average pairwise function distances. Due to the huge number 
of possible gene combinations, groups of genes are randomly selected and the corre-
sponding average distances are calculated. The p-value then indicates how small is the 
respective function similarity with respect to the average function distances. More 
details are provided in [4]. 

2.3 Clustering analysis 

For each spatial map, clustering analysis was performed by two sets of experiments. 
In the first set we selected prototype genes with diverse expression patterns as queries 
and detected genes with similar expression maps. Then we calculated the average 
function distance in each cluster of similar genes. Similarity was assessed by the p-
value; smaller p-values result in smaller clusters. In the second set of experiments we 
attempted to find clusters that have both similar GEMs and similar gene functions.  
First clusters of GEMs were determined by the k-means algorithm using the weighted 
Euclidean distance function (Eq. 3). According to this criterion, the clusters consisted 
of genes with similar expression in the investigated region of interests (all 4 spatial 
maps were tested). Then only the clusters with significant expression maps similarity 
and average function similarity were retained, whereas the rest of the clusters were 
further split into an increasing number of smaller clusters until they reached the sig-
nificance threshold (p-value = 0.05) for both gene expression and function. Thus the 
parameter K in the k-means algorithm (representing number of clusters) was not pre-
defined, but calculated in a hierarchical fashion [4].  

The first set of experiments will help us investigate whether the average function 
distance for each group of genes is reduced when specific spatial maps are used. The 
results of the second set of experiments will be used to extract the common gene ex-
pression patterns for each significant cluster and examine whether these patterns are 
related with specific anatomical locations. Moreover, connectivity relations might be 
revealed, if distinctive expression patterns will be identified in locations different 
from the applied spatial maps. 

The validation of clustering is performed by the commonly used ratio of inter-
cluster distance (Dinter) to intra-cluster distance (Dintra). The intra-cluster distance is 
defined as the average distance of each point to its cluster centroid, 𝐷𝑖𝑛𝑡𝑟𝑎 =
1
𝑁
∑ ∑ �𝑥𝑗 − 𝜇𝑖�

2
𝑥𝑗∈𝑆𝑖

𝑘
𝑖=1 , where N is the total number of data points, 𝑆𝑖, 𝑖 = 1,2, …,  𝑘, 

𝑘 is the number of clusters and 𝜇𝑖 is  the centroid of the cluster 𝑆𝑖). The inter-cluster 
distance is the minimum of the distances between each pair of cluster centroids, 
𝐷𝑖𝑛𝑡𝑒𝑟 = min (�𝜇𝑖 − 𝜇𝑗�

2, 𝑖 = 1,2, … , 𝑘 − 1, 𝑗 = 𝑖 + 1, … , 𝑘). 



 
Fig. 2. Gene expression maps of the selected prototype genes 

3 Results 

3.1 Clustering based on prototype genes  

Fig. 2 shows the gene expression maps for 6 genes selected as queries. PPP1r1b is 
strongly expressed in striatum, Ndn and HSLOH11 are expressed in hypothalamus, 
Serpinb1a is weakly expressed in striatum, Nfix is expressed in a gradient pattern in 
cortex and Pbx3 is expressed in striatum and adjacent ventral structures. For each  
prototype gene, we detected increasing number of genes (7, 15, 23,..., 78) with similar 
expression maps based on the use of different spatial maps and we calculated the 
average function distance in the group. The function similarity was considered with 
respect to the three function categories, Cellular Component, Molecular Function and 
Biological Process. Some indicative results are shown for the prototype genes 
PPP1r1b and Nfix in Tables 1 and 2, correspondingly. We highlight p-values that are 
smaller than 0.05.  

A gene example demonstrating the importance of the use of the confidence map 
wC  is presented in Table 1. It can be seen the p-values regarding Biological Process 
are much smaller when applying the confidence map in the computation of the simi-
larity of GEMs leading to the conclusion that the expression map of the gene Pbx3 is 
affected by partial volume effects and artifacts due to background and ventricles. The 
use of the confidence map which reflects the down-weighting of unreliable regions 
improves the similarity rate between the query gene Pbx3 and retrieved similar genes, 
confirming the hypothesis that a more informative similarity measure is obtained 
when incorporating weights of significance in the calculation of GEM’s similarity. 

Regarding the hypothesis that genes expression in specific anatomic regions might 
be correlated with similar gene functions, we calculated the gene expression map 
similarity using each one of the three spatial maps wGM, wWM, wHR and using no 
mask. In most cases the use of a spatial mask provides better function similarity (i.e. 
smaller p-value) results compared to the absence of any mask. Among the three spa-
tial maps, each gene is associated mainly with one of them; for example PPP1r1b 
displays higher function similarity when focusing on WM region, whereas Nfix dis-
plays higher results when focusing on GM region. Furthermore, the comparison with 
the function  similarity  results when no spatial map is used,  revealed that  the 



Table 1. Comparison of similarity results of the gene Pbx3 with respect to the use of the 
confidence map wC .  

Number 
of 

similar 
genes 

Using the confidence map 𝐰𝐂 Without using a confidence map 

Cellular 
Component 

Molecular 
Function 

Biological 
Process 

Cellular 
Component 

Molecular 
Function 

Biological 
Process 

7 1.00 0.00 0.00 1.00 0.00 0.60 
15 1.00 0.00 0.00 1.00 0.08 0.38 
23 1.00 0.00 0.00 1.00 0.00 0.00 
31 0.88 0.00 0.00 0.98 0.00 0.04 
39 0.24 0.00 0.00 0.86 0.00 0.00 
47 0.16 0.00 0.02 0.59 0.00 0.06 
55 0.02 0.00 0.00 0.30 0.00 0.82 
63 0.76 0.00 0.32 0.11 0.00 0.73 
70 0.59 0.00 0.92 0.02 0.00 0.94 
78 0.04 0.00 0.97 0.07 0.00 0.98 

Table 2. Average Function Distance (p-values) using Lin’s method [8] for the gene PPP1r1b. 
The clusters of similar GEMs are created using the proposed spatially-oriented methodology 
focusing on WM region (left) and without using a spatial map for comparison (right).  

 
proposed spatially-oriented approach of GEMs achieves not only higher function 
similarity (e.g. regarding the biological process for PPP1r1b) but also revealed new 
function categories that are related with this gene (e.g. cellular component and biolog-
ical process for PPP1r1b). These comparative results regarding PPP1r1b gene are 
illustrated in Table 2. Obviously, focusing on the anatomic region of WM the re-
trieved genes display much higher function similarity indicating that specific anatom-
ic regions of the brain play important role in identification of gene function. 

Number 
of 

similar 
genes 

Using the spatial map 𝐰𝐖𝐌 Without using a spatial map 

Cellular 
Component 

Molecular 
Function 

Biological 
Process 

Cellular 
Component 

Molecular 
Function 

Biological 
Process 

7 0.00 0.00 0.00 1.00 1.00 0.18 
15 0.00 0.00 0.00 0.82 0.14 0.23 
23 0.00 0.01 0.00 0.71 0.06 0.01 
31 0.00 0.00 0.00 1.00 0.03 0.39 
39 0.00 0.00 0.00 0.63 0.02 0.91 
47 0.00 0.00 0.00 0.50 0.01 1.00 
55 0.00 0.06 0.00 0.48 0.00 0.97 
63 0.89 0.54 0.04 0.75 0.00 0.99 
70 1.00 0.41 0.36 0.78 0.01 0.93 
78 1.00 0.13 0.22 0.98 0.09 0.82 



3.2 Clustering based on all genes  

The GEMs of each significant cluster obtained by the hierarchical k-means algorithm 
for different function categories are averaged and some of them are illustrated in Fig. 
3. The average maps, each of them representing one cluster, are shown only for the 
first 6 significant clusters for each one of the three function categories when the pro-
posed confidence map was used (right column of Fig. 3) and when no spatial map was 
used in the clustering process (left column of Fig.3). We also searched for significant 
clusters with low p-value of functions distance in any one of the three function cate-
gories; the corresponding results are shown in the last row of Fig. 3. The cardinality 
of each cluster is presented above the corresponding average GEM. Comparing the 
average GEMs in Fig. 3, we remark that many significant clusters are present regard-
less the use of the confidence map; a characteristic example is the cluster 2 in biologi-
cal process without any spatial map and the cluster 4 in biological process with the 
use of confidence map. Although red-like pixels of GEMS indicate strong positive 
expression while blue-like pixels indicate strong negative expression, both of them 
are useful as encode important information for the analysis of gene expression. Fur-
thermore, the location of such a pixel plays an important role; for example a red pixel 
in the region of ventricles is not informative. As it can be seen in Fig. 3, the clusters 
when using the confidence map contain more informative pixels, i.e. pixels which 
both display strong gene expression and are localized in meaningful regions within 
the brain. 
     Table 3 shows the clustering validity score (Dinter / Dintra), with the highest validity 
score for each function category highlighted. The results indicate that when function 
similarity for each of the three function categories is sought independently, the best 
clustering is achieved when the confidence map is used. When function similarity for 
any of the three function categories is aimed, the best clustering is achieved when the 
gene expression in GM is considered. 

4 Discussion and Conclusions 

Clustering analysis on voxelation data showed that the group of genes that was identi-
fied as similar to a target gene shares very similar gene functions in at least one gene 
function category. Moreover for some genes when a spatial map was used in the cal-
culation of GEMs similarity, the average function similarity was increased or a new 
function category was revealed. By clustering GEMs of genes with known and un-
known function together, the proposed approach has the potential to be used in pre-
dicting unknown gene functions. 
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Fig. 3. Average gene expression maps for the first 6 significant clusters for each function. 



Table 3. Validity score for all significant clusters. The number of significant clusters is shown 
in parentheses for each case. 

 No spatial 
map 

Confidence 
Map GM WM HR 

Cellular Component 0.099 (78) 0.128 (72) 0.078 (86) 0.056 (65) 0.098 (60) 

Molecular Function 0.116 (81) 0.154 (75) 0.062 (91) 0.079 (67) 0.109 (41) 

Biological Process 0.123 (82) 0.162 (70) 0.095 (83) 0.067 (60) 0.125 (46) 

Either category 0.107 (32) 0.089 (34) 0.110 (45) 0.055 (39) 0.088 (21) 
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