N
N

N

HAL

open science

Exploring the Role of Commercial Stakeholders in Open
Source Software Evolution

Andrea Capiluppi, Klaas-Jan Stol, Cornelia Boldyreff

» To cite this version:

Andrea Capiluppi, Klaas-Jan Stol, Cornelia Boldyreff. Exploring the Role of Commercial Stakeholders
in Open Source Software Evolution. 8th International Conference on Open Source Systems (OSS),

Sep 2012, Hammamet, Tunisia. pp.178-200, 10.1007/978-3-642-33442-9 12 . hal-01519081

HAL Id: hal-01519081
https://inria.hal.science/hal-01519081
Submitted on 5 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01519081
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Exploring the Role of Commercial Stakeholders in
Open Source Software Evolution

Andrea Capilupgi, Klaas-Jan Stdland Cornelia Boldyreff

!Brunel University, United Kingdom
2| ero—The lIrish Software Engineering Research Centre
University of Limerick, Ireland
SUniversity of East London, United Kingdom
andr ea. capi | uppi @r unel . ac. uk, klaas-jan.stol @ero.ie,
c. bol dyref f @el . ac. uk

Abstract. It has been lately established that a major success or failure factor
of an OSS project is whether or not it involves a commercial companyooe
extremely, when a project is managed by a commercial software ratipo. As
documented recently, the success of the Eclipse project can be lattgiblytad

to IBM’s project management, since the upper part of the developearbrey

is dominated by its staff. This paper reports on the study of the evolution of
three different Open Source (OSS) projects — the Eclipse and jEdit HDHs
the Moodle e-learning system — looking at whether they have benefited fro
the contribution of commercial companies. With the involvement of coroialer
companies, it is found that OSS projects achieve sustained produdticityas-

ing amounts of output produced and intake of new developers. It iSalsal

that individual and commercial contributions show similar stages: dpeelo-
take, learning effect, sustained contributions and, finally, abanddnofi¢he
project. This preliminary evidence suggests that a major success fac®@gS

is the involvement of a commercial company, or more radically, wheiept
management is in hands of a commercial entity.

1 Introduction

Governance and control in Open Source Software (OSS) hasdramatically chang-
ing [30]. Thetraditional volunteer-based OSS project model is now being accompa-
nied by sponsored OSS, where commercial stakeholders provide effort beyatd v
untary programmers. It has been argued that OSS projectsb&nome increasingly
hybrid with respect to this type of contributing stakehotdg 2].

Since their inception in the early 1980s, OSS projects wergtiyvolunteer-based
(or Traditional OSS, right end of Figure 1), heavily relying on personal eff@tsl non-
monetary recognition, and reportedly suffering from comination and coordination
problems [14].

Nowadays, so-calle8ponsored OSS projects have also been documented as more
similar toClosed Source systems (as in far left of Figure 1). They could be indusény-|
OSS projects, where a commercial stakeholder plays a namimr the development
and decision making, as in the case of the Eclipse projecBby [25, 24, 19, 33].

2 A. Capiluppi, K. Stol and C. Boldyreff

They can also béndustry-involved OSS projects when they are driven by an OSS
community, but often have one or several companies or inigtits (e.g., universities)
among their stakeholders, as in the case of the Moodle Coktanagement System
(CMS) [8].

Closed source Sponsored open source

/ Traditional // (" Industry-led // Industry- / Traditional /

| | Inner Source involved open |
closed source | open source \ | Open Source |
\ \ source \
\ \ \

Fig. 1. Scenarios of development of OSS projects

Both theindustry-led andindustry-involved scenarios introduce new challenges to
OSS projects: the first is based on one (or a small subset itifatistakeholder(s),
which could eventually halt the project if they decide to rat@n it. In the case of
Eclipse, for example, IBM staff have been identified as tipedontributors, with only
a few external developers working on the core system [3@].Geonmunity OSS, es-
pecially in the case of large and complex OSS systems, teeaeneed of proper in-
centives for different types of stakeholders, with compearary expertise and require-
ments, in particular when their contributions are relevarat system'’s core functional-
ity.

This paper aims to explore these three scenarios and to stuetper the involve-
ment of commercial companies can help sustaining the egalof OSS projects. To
that end, the paper presents different analyses of the temolof acommercial and a
traditional OSS systems (Eclipse and jEdit), sharing the same applicdtimain, and
onecommunity OSS project (Moodle).

By exploring the type of activities performed by commeratakeholders, and by
comparing the results achieved by similar OSS projectsifsipshe same application
domain, but with different involvement of stakeholderkjstpaper explores a research
area that only recently started to be covered in the liteed28, 27, 31].

1.1 Terminology

Existing literature typically distinguishes betweeosmmunity-managed (also called
autonomous [32]) andsponsored communities. However, current terminology for this
has some issues. For instance, OSS projects that are ledsydiie referred to amm-
mercial OSS, whereas an OSS project that involves commercial stakeholdompa-
nies), but is led by an OSS community (consisting of “tradiil” community mem-
bers) is referred to aSommunity OSS. We argue that both terms are not precisely de-
fined and need further refinement. Commercial OSS suggetpritfit is made from

! This happened with Netscape Navigator (then Mozilla) when Netscape Goivations Cor-
poration (NCC) released it as open source, but without further explzin

Exploring the Role of Commercial Stakeholders in Open Source Softaateition 3

the OSS project. The term “Community OSS” does not cleadtimtjuish projects that
involve companies from “traditional” OSS projects (that miat involve companies).
Therefore, in this paper we propose the following new teoiugy for the various

models of involvement:

Traditional OSS projects are those projects in which no companies are involved.

Industry-involved OSS projects are projects in which commercial firms are in-
volved as contributors, but the project is still managedh®y“tommunity”.

Industry-led OSS projects are projects that are led by a commercial firms. The
wider community can contribute (as with any OSS project},dince a company has
control over the project, it defines the evolution strategy.

Together, industry-involved and industry-led projeces$ponsoredOSS projects,
whereas industry-involved and traditional projects ar¢htforms of Community
projects (see Figure 1) as they are led by a community (assagito a company).

1.2 Structure of this paper

The remainder of this paper is structured as follows: Se@ipresents the goals, ques-
tions and metrics of the study. Section 3 presents the r@séasign. Sections 4 and 5
presents the Eclipse and jEdit case studies, respect®etyion 6 focuses on the Moo-
dle system as an example of an industry-involved OSS systethexplores the rele-
vance of the commercial stakeholders, and how they diftenfindividual developers.
Section 7 discusses the results followed by conclusiongati&h 8.

2 Background and Related Work

This section provides a brief overview of relevant backgband related studies. Most
reports on participation of firms in OSS projects preseniltegrom large-scale sur-
veys.

Bonaccorsi and Rossi studied contributions to OSS profactsommercial firms.
They conducted a large-scale survey among 146 Italian compghat provide soft-
ware solutions and services based on Open Source Softwa@r{é of the findings
was that approximately 20 per cent of companies were coatidonan OSS project.
Furthermore, almost half of the companies (46.2%) had rieireed an OSS project.
Itis important to note that these results were publisheddv2and that these numbers
may have changed significantly over the last eight years;uggest that a replication
of this study would be a valuable contribution.

Bonaccorsi and Rossi have further studied (using data fhensame survey) moti-
vations of firms to contribute to OSS projects [7, 29].

Bonaccorsi et al. [5] have investigated whether and how firorgribute to OSS
projects. Their study investigated which activities firnrmglartake in OSS projects, as
well as whether the presence of firms affect the evolution 86@rojects. To address
these questions, Bonaccorsi et al. conducted a survey o©O3¥ projects hosted on
SourceForge.net. They found that almost one in three ofttitéesl projects had one
or more firms involved. In a survey of 1,302 OSS projects byr@apal. [13], similar

4 A. Capiluppi, K. Stol and C. Boldyreff

results were found, namely that firms were involved in 31%hefprojects. Different
types of involvement were identified: (1) project coordioat (2) collaboration in code
development, and (3) provision of code. Capra et al. [13]eraslightly different clas-
sification of participation models: tHdanagement model (for project coordination),
the Support model (sponsoring through financial or logistic support) and @oeling
model (contributing code, bug fixes, customization, etc.). In huases, it was found
that the firms founded the OSS project, but in some cases faoksaver by replacing
a project’s coordinator.

Aaltonen and Jokinen [1] studied the influence in the Linuakécommunity and
found that firms have a large impact in the project’s develepm

Martinez-Romo et al. [22] have studied collaboration betwan OSS commu-
nity and a company. They conducted case studies of two O§&ctspEvolution and
Mono.

Companies can sponsor OSS projects in different ways. Befloinvestigated
the dynamics of cooperation in community-led projects ihnatlve paid contributors,
and proposed a framework to understand this relationship.

Dahlander and Magnusson [15] proposed a typology congisfisymbiotic (win-
win), commensalistic (firm gains, community indifferent) angarasitic (firm gains,
community loses) approaches to characterize firm—commtaiationships. These re-
lationships only apply in community-led projects.

The last decade of research in OSS has well establishedl#t®mnship between
firms and OSS projects. This relationship has been shownue aalirect effect on
a project’s sustainability. However, what kind of effechéstrelationship has on a
project’s evolution has not been studied. Therefore, wewseb explore this by means
of a comparative case study. The next section outlines geareh design.

3 Research Design

This section presents the research design of the empitigdy $ollowing the Goal-
Question-Metric (GQM) approach [3].
3.1 Goal

The long term objective of this research is to understandivenehere are (and there
likely will be) differences in the maintenance and evolataxtivities of OSS projects
as long as commercial stakeholders join or drive the deveoy.

3.2 Questions

This paper addresses the following research questions:

1. Are there differences in the evolution of similar-sco@8iS applications, as long
as one (or more) commercial stakeholders play a major rdleeinlevelopment?

Exploring the Role of Commercial Stakeholders in Open Source Softaateition 5

2. When considering projects in the same application don@aim different “cate-
gories” achieving different results or patterns of maiatece?

3. From an effort perspective, do commercial stakeholderabe similarly to indi-
vidual developers?

3.3 Method and metrics

Given the exploratory nature of this topic, we decided tdgrem an exploratory mul-
tiple case study. Since this topic has not been studied ithddps multiple case study
can be considered agevelatory case study [37]. Rather than seeking to make gener-
alizations with respect to the influence of commercial dtakders in OSS evolution,
we have aimed at exploring this phenomenon with the purpoiskentify more precise
hypotheses that can be studied in more depth and with diffeesearch methods (e.qg.,
surveys).

The choice of the studied projects was grounded in the fatthiey are appropriate
examples of the three types of involvement models menti@setier, and was also
supported by the fact that the first author was familiar witse projects through
previous studies [8, 9, 35] as well as ongoing (as of yet ulghsd) studies.

Our study is a quantitative analysis of the studied projdotswvhich two types of
metrics are used:ode metrics andeffort metrics. These are discussed below.

Code Metrics Given the available (public) releases, a set of data waa&bei from
the studied projects: two systems (Eclipse and jEdit) apgeémented mostly in Java,
while Moodle is implemented in PHP, and partially relying@® features, evidenced
by a visible number of PHP classes. The terminology and &sgedcdefinitions for
these metrics are extracted from related and well-knowhgtadies, for example, the
definition of common andcontrol coupling ([2, 21, 16]).

— Methods (or functions in PHP): the lowest level of granularity of fhesent analy-
sis. Within this attribute, the union of the sets of OO methadterfaces, construc-
tors and abstract methods was extracted.

— Classesas containers of methods, the number of classes compd&isystems has
been extracted. Differently from past studies [2Blonymous andinner classes [20]
were also considered as part of the analysed systems.

— Size the growth in size was evaluated in number of SLOCs (phybiws of code),
number of methods, classes and packages.

— Coupling: this is the union of all thelependencies andmethod calls (i.e., the com-
mon and control coupling) of all source files as extractedugh DoxygeA. The
three aggregations introduced above (methods, classesaakedges) were consid-
ered for the same level of granularity (timethod-to-method, class-to-class and the
package-to-package couplings). A strong coupling link between package A and B
is found when many elements within A call elements of pack&ge

— Complexity: the complexity was evaluated at the method level. Each ogétitom-
plexity was evaluated via its McCabe index [23].

2htt p: // waww. doxygen. nl , supporting both the Java and PHP languages

6 A. Capiluppi, K. Stol and C. Boldyreff

Effort Metrics A second set of data was extracted based on the availabil®yvs
servers: this data source represents a regular, highlglplarset of atomic transactions
(i.e., ‘commits’) which details the actions that develapére., ‘committers’) perform
on the code composing the system. Two metrics were extracted

— Effort : the effort of developers was evaluated by counting the rermabunique (or
distinct, in a SQL-like terminology) developers in a month.

— Output metrics: the work produced was evaluated by counting the monthly cre
ations of, or modifications to, classes or packages. Sewerdifications to the same
file were also filtered with the SQdistinct clause, in order to observe how many
different entities were modified in a morith

4 Industry-led Open Source Project: Eclipse IDE

The Eclipse project has attracted a vast amount of attebiaresearchers and prac-
titioners, in part due to the availability of its source cpded the openness of its
development process. Among the recent publications, aklieve been focused on
the “architectural layer” of this system [34, 19], extragtithe relevant information
from special-purposed XML files used to describe Eclipse&idres and extensions
(i.e., plugins) implementing them, in this way representing s@owt of “module ar-
chitecture view” [18].

As recently reported, the growth of the major releases iipgelfollows a linearly
growing trend [24], when studying the evolution of its lineflscode, number of files
and classes. The study on Eclipse’s meta-data indicatédthex all releases, the size
of the architecture has increased more than sevenfold @®to 27 1plugins) [34].

The present study is instead performed at the method lendlpa two release
streamstfunk andmilestones). Regarding Eclipse, 26 releases composing the stream
of “major” and “minor” releases of Eclipse (from 1.0 to 3.pahd some 30 additional
releases tagged as “milestones” (M) or “release canditléi®s), were considered
in this study, spanning some 8 years of evolution. For eaease, we performed an
analysis of the source code with the Doxygen tool. This latelysis lasted a few
hours for the early releases, but it required more than op®ftigarsing for the latest
available releases, mostly due to the explosion in sizeeptbject (490,000 SLOCs
found in the 1.0 release of Eclipse, up to more than 3 millib@8s found in the 3.6
released. Overall, it required more than one month to perform thelysis on the
whole batch of Eclipse releases.

The remainder of this section presents the results of thiysiaaf Eclipse. Sub-
section 4.1 presents the results of the evolution of thedifclipse. Subsection 4.2
presents the evolution of Eclipse’s complexity.

3 In specific cases, specific committer IDs were excluded, when it was ttat they are re-
sponsible for automatic, uninteresting, commits; it was also excluded thiggmmetric any
activity concerning the 'Attic’ CMS location (which denotes deleted souratenal).

4 Statistics were collected with SLOCCounthtt p: / / www. dwheel er . cont
sl occount/

Exploring the Role of Commercial Stakeholders in Open Source Softaateition 7
4.1 Results — Eclipse Size

This study considered the “main” releases (3.0, 3.1, etnd,the “milestone” releases
(e.g., 3.2M1, 3.2M2, etc.) and “release candidates” (8.§RC1, 3.3RC2, etc.) release
streams of the Eclipse project. The overall growth is alnfiesfold, while it is also
evident from Figure 2 that the main stream of releases hapwaiste growth, the steps
being the major releases

Eclipse - Main branch

100%
90%
80%
70%
60%
50%

40%
4
30%
72
20%

10%

0%
19/04/01 01/09/02 14/01/04 28/05/05 10/10/06 22/02/08 06/07/09 18/11/10

#Methods + Classes * Packages

Fig. 2. Growth in the “main” branch of Eclipse

Major releases of Eclipse are regularly devoted to new featuwhile milestone
and release candidates releases are devoted to maintakisiong ones (Figure 3).
The milestones stream has a more linear path: plotting thebeuof methods against
the “build date” of the relative release, a linear fit is founith an appropriate good-
ness of fit 22 = 0.98). The step-wise growth for the main release stream, and the
linear trend for the milestones release also reflect whatfewasd when studying the
evolution of Eclipse at a larger granularity level, i.e.ptagins [34].

4.2 Results — Eclipse Complexity

The study at the method level shows a distribution of the M&Cayclomatic indexes
which is constant along the two streams of releases (mainraledtones) of Eclipse.
This is visible when assigning the cyclomatic complexityeath methoddg;) in the
four following clusters:

1. cc; <5
2. 5<cc; <10
3.10<¢ce <15

® The overall size growth has been normalized to 1 for easing the reafiing graph.

8 A. Capiluppi, K. Stol and C. Boldyreff

Eclipse - Milestones branch

100%

90%

80%

70%

60%

50%

40%

02/05
09/05
03/06
10/06
04/07
11/07
06/08
12/08
07/09
01110
08/10

& Methods + Classes = Packages

Fig. 3. Growth and maintenance patterns in the “milestones” branch of Eclipse.

4, cc; > 15

Figure 4 shows the relative evolution of the fourth cluserd reveals a quasi-
constant evolutionary trend (for reason of clarity, theeottiends are not displayed,
although they follow a similar evolutionary pattern). Thaaunt of highly complex
methods {c > 15, [23]) present in the system never reaches2tieof the overall
system. As reported in other works, this shows a profounférdifice from other tra-
ditional Open Source projects, where this ratio (for C and- @fojects) has been
observed at arounth% of the system [10].

Complexity of methods - Main

10.00% 260,000

2.00%

TR VIR WY
B.00% 7 200,000
7.00%
6.00% 160,000

5.00%

methods

4.00% 100,008

3.00%

2.00% 50,000
1.800% ’ " Methods
Foami & <10

0.00% 0 mwx=10 & <15
o401 0902 01404 QSRS 10M08 D28 079 1MH0 wma=ih

Fig. 4. Patterns of highly complex methods (McCabe index5) in the main branch of Eclipse.

Exploring the Role of Commercial Stakeholders in Open Source Softaateition 9
4.3 Results — Eclipse Coupling

The number of couplings (i.e., unique method calls) has lweemted for each of
the two streams of releases. The set of added, deleted ah@d@pings has been
evaluated between two subsequent releases in each stredmlodted in Figure 5.
As shown, these findings confirm previous ones [34] regarHitlipse’s maintenance
patterns: in the main stream, a large amount of modificatimits existing connections
is made between minor and major releases, reaching moréfanf new couplings

added during the transition between the subsequent vergiar8 and 3.0.

Couplings evolution - Main

400000

350000

300000

250000

NN
AN -

200000 O deleted
£ added

B comman

DR I

150000

106000
SQ0Q0
0

DT |
DN, —

|
|
|
[orT]
|
|
RN

i BT S B T T B M s . B B S . S B

Fig. 5. Distribution of coupling in the main branch of Eclipse.

On the other hand, the Milestones stream (Figure 6) confirmeswaring pattern,
where the milestones show a great deal of added and remouetirags, whereas the
Release Candidates (RC’s) show a much lower activity indaingesactivity of coupling
restructurings (the amount of shared couplings betweerstlisequent releases is not
shown for clarity purposes).

4.4 Results — Eclipse Cohesion

The cohesion of classes or packages was measured by cotimtimgimber of ele-

ments connected with other internal elements, and then latiecfor all the classes

or packages. Figure 7 shows the evolution of cohesion at dlckgge level, and it

confirms the observations achieved when evaluating théyhigimplex methods (Fig-

ure 4). Although there is a vast increase in the number of oolsthnd classes, most of
the connections are confined within the same package, kg#péncohesion constant
throughout the life-cycle until the latest observed retedhis measurement is also
found higher in the earliest releases (somi&), and declining sharply until release
3.0, where it stabilizes to son® — 70% for the last 6 years.

10 A. Capiluppi, K. Stol and C. Boldyreff

Coupling evolution - Milestones
70,000

B0,000

50,000

40,000 H
30,000
I O dalntad

20,000 % £ added
10,000

e

o

-

:

o

-

[ARRARNNNAN S—

EEEEER

3.3WM4 -3.3M5 o

A

3.6M2 -3.6M3 =T/

i e |

9.3M2 -3.3M3

===

3.2M2 -3.2M3 ==
|]|
EEES]
1]

=

40 - 14 B

31-32M1 @
32-33M1 =
3.5M5 - 3.53M7
33RCT -3.2RG2 1
|
3.IRCS - 3.3RCH |
3.4M2 -3.4M3 =
35-38M1 ==

3.2M6 - 3.2RC1
3.2RC2Z - 3.2RCS

3.2RC4 - 3.2RCS
3.2RCE - 32RCT

Fig. 6. Distribution of coupling in the milestones branch of Eclipse.
Overall cohesion - Main and Milesones tracks

0.49

0.48

0.47

0.46

= Main
V- Milestones

0.45 X
Vv Vy

\%
0.44 VNV VUG gy

VvV
0.43

Fig. 7. Patterns of cohesion of the two branches of Eclipse.

5 Traditional Open Source Project: jEdit

Given the results from the above studgoanmunity-driven OSS project (i.e., where no
commercial company is “sponsoring” the development [14¥swtudied in a similar
way to evaluate and compare in some way the quantitativétsexfiEclipse. Although
not exactly implementing all the features within Eclipg®s {Edit project also aims
to be a fully-fledged IDE, benefiting from a large number of-add and plugins, in-
dependently developed and pluggable in the core systenugrhany two software
systems are always different to some degree, this study etgsenformed for the pur-
pose of comparing features, but for the sake of observinghven¢he patterns observed

Exploring the Role of Commercial Stakeholders in Open Source Soft#xarieition 11

in a very large and articulated project are similarly foundaimuch smaller project,
and whether good practices should be inferred in any doecti

Similarly to the Eclipse project, the 14 releases availaiblg=dit were therefore
collected on the largest OSS portak(SourceForge), from 3.0 to 4.3.1 (earlier re-
leases do not provide the source code). Being a much smatigrch collecting the
information via Doxygen was much quicker, both at the beigigrof the sequence
(57 kSLOCs, jEdit-3.0) and at the end (190 kSLOCs, jEdit¥).3The 14 considered
releases are the ones made available to the community, amdsgme 10 years of
development.

5.1 Results — jEdit Size

The second system also shows a linear growth, with an adegoatiness of fitR? =
0.97), albeit with a lower slope than what found in Eclipse, asummarise a slower
linear growth in Figure 8. A similar linear trend is found metevolution of methods,
classes and packages. The most evident difference withvihlatien of Eclipse is
the pace of the public releases in jEdit: between releasesard 4.3 some 5 years
passed, although the jEdit configuration management sysbatains information on
the ongoing activity by developers.

jEdit growth

1 —aud

0.8 //
v

0.6 —— Methods

' g —o— Classes

{ ' Packages

0.4*%~
0.2

0
12/00 10/01 08/02 06/03 04/04 02/05 12/05 10/06 08/07 06/08 04/09

Fig. 8. Evolution of size in jEdit

5.2 Results — jEdit Complexity

Regarding jEdit, the evolution of the complexity at the noetsi level brings an inter-
esting insight: for this project, it was found that more tt2a% of the methods are
constantly over a threshold of high complexity, at any tim¢ealit's evolution. This
complexity pattern has been observed also in other OSSwsy$id]. Large and com-
plex methods are typically a deterrent to the understafitigiaind maintainability of a

12 A. Capiluppi, K. Stol and C. Boldyreff

software system, and a vast refactoring of these methodsdmmsachieved in the last
two public releases, as visible in the graph, where a sigmifidrop of highly complex
methods is achieved even in the presence of a net increase mumber of methods.

5.3 Results — jEdit Coupling

The maintenance patterns of jEdit present a more discamimprofile, with changes
between major releases typically presenting large additad new couplings (see Fig-
ure 9, bottom), and minor releases where less of such maitifisavere made. More
importantly, the maintenance of couplings appears not dned, where the largest
modifications (between 4.2 and 4.3) appear after a long $iattdive years, and rep-
resent a full restructuring of the underlying code archites; with added and deleted
couplings representing three-times and twice as many owsghs the maintained
ones, respectively.

Couplings evolution - jEdit
16000

14000
12000
10000

8000 O deleted

4 added

6000 B common

Y]

4.0-4.0.2 [N

4000

NN\

32321 I
321322 [N

2000

3.1-3.2
4.0.3-4.1
4.1-4.2

402-403 [N
NE
NN
4.2-43 R N
43421

o
30301 [N
30.1-302 [
30231 (Y]

3.2.2-4.0

Fig. 9. Coupling in jEdit.

Q

6 Industry-involved OSS Project: Moodle

As per the definition of amndustry-involved OSS project, Moodle’s development is
primarily centered around the OSS community, but variobeidctors have interest in
its development. A number of organizations across the wanéddirectly contributing
to the development of Moodle by way of funding or contribgtiheir expertise, and
have been defined as “Moodle partners”.

Exploring the Role of Commercial Stakeholders in Open Source Softaateition 13

Similarly to the other two case studies, we extracted thes sizmplexity and cohe-
sion of the PHP code contained in the publicly availableas$&: overall we studied
some 90 releases of this project. By checking on the officiddsite, it can be observed
that Moodle was evolved in one single stream of release wension 1.7: from 1.8 on-
wards, several branches have been evolved at the same tignel(&.x, 1.8.x, 1.9.x
etc). For each of these branches we kept the results on sizplirng and complexity
separated from the other branches.

6.1 Results — Moodle Size

As observed in Eclipse, the evolution of Moodle resemblaskke pattern (see Fig-
ure 10), where the major releases consist of the additionlafge number of files,
classes and functions, and the minor releases show smddéioas in all the mea-
sured metrics. From release 1.8 onwards, all the variouschess maintain the same
pattern as well, albeit the growth is intertwined in time wéll the other branches
(Figures 11 middle and bottom): during the interim reledssg/een minor (e.g., 1.8)
and development (e.g., 1.8.1) releases, the growth in nuailfenctions, classes and
source files is minimal, while the step-wise growth pattermlserved between mi-
nor releases (e.g., between 1.8 and 1.9). Therefore, fosyisiem the increase in size
has changed the approach to development, requiring thegbtojdefine and maintain
various branches at the same time.

Moodle evolution -- main trunk

12,000 500
gt tmmas = mwam 450
10,000 ! i 400
8,000 % 350
a ! 30
6,000 Y T ‘ 250 &
S ‘ 200 &
~ o
4,000 X'/_-' ‘
’ 150
{
2,000 =g e 100
2l 50
0 s 0

19/04/01 01/09/02 14/01/04 28/05/05 10/10/06 22/02/08 06/07/09

—— Classes —#— Files Functions

Fig. 10.Growth of size in the main branch of Moodle (up to release 1.7).

5 A list of the releases (with the relative releasing date) since 2002 is avaiabtet p: / /
docs. noodl e. or g/ dev/ Rel eases

14 A. Capiluppi, K. Stol and C. Boldyreff

Moodle -- Number of classes
4,500

4,000
3,500
3,000
2,500
2,000
1,500 — .o o o b+ &+ >+ o
1,00 —=—=—8—8 8 B8 88
500

0
01/08 07/08 02/09 09/09 03/10 10/10 04/11 11/1 05/12

—— moodle-1.8 —&— moodle-1.9 moodle-2.0 —4&— moodle-2.1 —»— moodle-2.2

Moodle -- Number of files
8,000

7,000 ra—a K
6,000
5,000
4,000

-+t >+

300 g === wm = = ——n
2,000
1,000

0
01/08 07/08 02/09 09/09 03/10 10/10 04/11 11/1 05/12

—— moodle-1.8 —— moodle-1.9 moodle-2.0 —4— moodle-2.1 —»— moodle-2.2

Moodle -- Number of functions
35,000

30,000 O =
25,000
20,000

15,000

R e i G SIS S SEun S O o e
" = ® = % % mEE B B 8
10,000
5,000

0
01/08 07/08 02/09 09/09 03/10 10/10 04/11 11/1 05/12

—— moodle-1.8 —4— moodle-1.9 moodle-2.0 —4&— moodle-2.1 —»— moodle-2.2

Fig. 11.Growth of size in the parallel branches of Moodle (after release 1.7).

Exploring the Role of Commercial Stakeholders in Open Source Softaateition 15

6.2 Results — Moodle Complexity

Since Moodle is written in the PHP programming language ctig based on pro-
cedural and object-oriented constructs, we evaluateddah®lexity of the functions
contained in the source code. This was plotted per releassh@ve, and the percent-
age of highly complex functions tracked throughout. Themiamy in Figure 12 shows
how the excessive complexity (i.e., the sum of functions sghiblcCabe cyclomatic
index is> 15, and depicted in the continuous line) has been kept unddrat@ven
though the system constantly increases the number of itdifuns (depicted as a con-
tinuous line in the same figure). What is quite evident is disamajor refactoring that
was undertaken between releases 1.x and 2.x. In the lati@iger number of func-
tions were introduced, in a step-wise growth, while patalierk was done to reduce
the amount of complexity in existing and new functions, watktep-wise descent of
highly complex functions.

Moodle -- highly complex functions

% 3.50E+04
6% - — — 3.00E+04
° /_ﬁw \\rii - L
/ \
5% [\ _ | 2.50E+04
// -) "”\ﬁ‘ |
4% | | 2.00E+04
/
3% | e 1.50E+04
/ I —
2% r—" 1.00E+04
1% S 5.00E+03
0% 0.00E+00
© - - N MO N NSNS0 O N O OO N Y
S A @MY -0 8 OgENNN®GS T T80 TS0 0 =
I Tl 2 et e oo oo e e R R I R - SN DN N

I\\\\\\JIII‘-'P"\\\"'
releases

Fig. 12.Evolution of complexity in Moodle (continuous line) and overall increaseuimber of
functions (dashed).

6.3 Results — Moodle Coupling

The functions composing the releases of Moodle were alslysathin terms of their
connections, and which of the connections were added orvetmetween major and
minor releases, and between branches. As done for the peeeises, the releases
were analysed by the Doxygen engine, extracting all theslimtween low level enti-
ties, that were later lifted to file-to-file dependencies.

As reported for the size growth, it becomes clear that theondamd development
releases have become central in Moodle to perform sevejtatents, that trail off
in proximity of the next release, similarly to what is foumdthe Eclipse environment
(see Figure 13, displaying the 1.7.x and 1.8.x branchesl@fses). This has evolved

16 A. Capiluppi, K. Stol and C. Boldyreff

in Moodle: the earlier branches (e.g., Moodle-1.1.x or Meeti2.x) did not display
long sequences of development (e.g., only Moodle-1.1 anddiée1.1.1 have been
released within the Moodle-1.1.x branch). With more regetgases, the pattern ob-
served in Eclipse is also visible in Moodle, with longer segges of development re-
leases (14 development releases in Moodle-1.8.x, 17 in Meb@.x), in which fewer
and fewer couplings are added and removed, until the releaseing discontinued
and not supported further.

120 600
12 109
100 500
80 400
5 =)
5 60 300 3
= 3
3 40 3 32 200 3
[}
el
20 I IA% II 7 100
7 7 7
3 / 4
0 2 7] lm - g -~ M l é 0
~
< H del

1.7.3:1.7.4
1.74:175
1.7.5:1.7.6
1.7.6:1.7

1.8.2:1.8.3
1.8.3:1.8.4
1.8.4:1.8.5
1.8.5:1.8.6
1.8.6:1.8.7

1.8.7:11.8.8
1.8.8:1.8.9

add

1.8.9::1.8.10
1.8.11:1.8.12
18.12:1813 | ©

1.8.10::1.8.11
1.8.13:1.8.14

Fig. 13. Added and removed couplings in Moodle (branches 1.7.x and 1.8.x)

7 Discussion

The two cases of Moodle and jEdit show that similar issue$saed by the developers:
even if companies are involved in development of the Moodtgegt, they do not
drive the development, as for Eclipse. Given it is taken for grakeat industry-led
OSS projects do not have an issue of long-term sustainghbidustry-involved and
traditional OSS projects need to address the issue of howrerand maintain the
existing contributors in the development loop. In the failog subsections, we analyse
how effectively developers and contributors are attraeted maintained within the
two projects, and whether lessons learned can be drawn finchses.

7.1 Contributions on the Periphery

In both the Moodle and jEdit projects, the “core” of the systes separated from
the “plugins” or “contributors” section. We assume that teitnuting to the “core” of
a project is more time-consuming, and requires more skilsn contributing to the

Exploring the Role of Commercial Stakeholders in Open Source Soft#xarieition 17

“modules” or the “plugins” sectiorfs Therefore we investigated whether a sustained
intake of contributors is achieved in Moodle and jEdit, oretifer these projects face
an issue in this respect.

Moodle — Two main directories are found in the CMS server: the coredle’ direc-
tory (which makes for the public releases, that we consigécare”), and the ‘contrib’
folder, organized in ‘plugins’, ‘patches’ and ‘tools’ (babt wrapped in the official re-
leases). As visible in Figure 14 (left), the evolution of tuee Moodle system follows
the typical pattern of an early (or ‘cathedral’ [26]) OSSjpat: few contributors are
visible in the first months (mostly the main Moodle develgpeith few other contrib-
utors being active in a discontinuous way. A further, sudiperiod is also visible,
where the number of active developers follows a growingdneith peaks of over 30
developers a month contributing, and revealing a ‘bazasasp [11]. The main issue
that is visible in the Moodle “core” system is revealed atusu®3/4 of its life-cycle,
where the number of active developers start to decline. Ehenpoint of view of the
sustainability, we posit that this could represent a sarissue in the long-term evolu-
tion of this system.

On the other hand, the activity of Moodle has been devoteceraod more to
the ‘contrib’ folder, rather than in the ‘core’: this refls@ more and more distributed
participation to the Moodle development, and a low barigeentry, albeit not all the
contributed modules are selected for inclusion in the plibhvailable releases. The
overall distribution of changes throughout the Moodle atioh proceeds on a lin-
ear trend R? = 0.78): in recent months, the inflection of productivity in the ted
Moodle has been balanced by the late growth of contributiornise other parts. That
reflects a more and more distributed participation to the diwdevelopment, and a
low barrier to entry, but several of the proposed module mt been selected for
inclusion in the main Moodle system.

Moodle core --input Moodle complete --input

1(x) = 0.02x - 642.62
RE=09

0401 08102 12103 05105 00106 02108 06109 o401 08i02 12103 0505 00108 02108 06109
months months

Fig. 14.Active monthly contributors in the “core” (left) and in the overall Moodleject (right)

jEdit — The main difference between jEdit and Moodle in the intakdavelopers
is visible in Figure 15 (below): albeit the ‘core’ (or ‘truhkis separated from the

" This is because writing plugins or additional modules, where the systemdslarpshould
be possible without modifying other files, but just using the system’s APIs

18 A. Capiluppi, K. Stol and C. Boldyreff

‘plugins’, few contributors were added in the latter, feliag a cyclic development
pattern overall. Differently from Moodle, the intake of ¢ohutors does not follow
a linear pattern: the presence of developers in the “corelimks at around/4 of
the life-cycle, and so does the number of contributors waykin the periphery of the
system. This makes jEdit even more brittle to sustainghgidues, specifically around
the intake of new developers.

jEdit contributors

12 »

10 se4l 9
s Wi —

8 [\ goegsibet o/l o
we 4| o | 1

6 IRV | 24 || #e # \ & el e
[7| e o || | . +|

4 “wg Ve LR i
\¢| oy e :‘

2 g4 if .

12/99 04/01 09/02 01/04 05/05 10/06 02/08 07/09 11/10 04/12

—&— core plugins

Fig. 15.Active monthly contributors in the “core” and in the “plugins” parts of jEdit

7.2 Three-layered Contributions

The study of Moodle as an industry-involved OSS projectltedun an in-depth anal-
ysis of the types of contributors who actively produce camtelie system. Interesting
insights were discovered when studying each developetisabhcontribution to the
code: in a first attempt to categorize the intake, the cauiohs, and the develop-
ers leaving the project, three categories are clearlyrgjsishable, not based on the
amount of effort inputed in the system, but purely on the terj the activity of each
developer:

1. Sporadic developers: this refers to the extremely low presence daitecontrib-
utors in the development. Within Moodle, 60 developers Haen active for just
one month; other 70 developers have been active between® (@od necessarily
consecutive) months.

2. Seasonatlevelopers: as reported recently [28], most OSS projecisfliseasonal
developers, i.e., those developers who are active for & phdod of time (we are
not referring to ‘recurring’ or ‘returning’ developers).

3. Stabledevelopers: those developers showing a sustained invelve(aay, more
than 24 months for the Moodle system). Both seasonal antesialelopers can

Exploring the Role of Commercial Stakeholders in Open Source Softaateition 19

be part of the top 20% developing most of the system, as indfinition of 'gen-
eration of OSS developers’ given in the past [5].

Some of the Moodle partners have been found actingeasonal developers; the
Catalyst partnef has so far provided a large number of modifications to the Mure-
dle, by deploying several developers who became activeibatdrs within the com-
munity. The profile of the contributed outputs is visible iglire 16 (bottom), and can
be defined as a ‘seasonal’ effort pattern, meaning a largeilsotion on a very specific
time interval, and lower levels of effort before and afteldbmparing this curve to a
selection of seasonal Moodle individual developers (FédL8, top), a similar pattern

is visible: an initial period of low commit rates, followed la peak were a high level
of contributions is observed, finally a leveling-off.

“
" L
» - |
20 | wl

[‘\‘ ‘H "

, A T

04/01 08/02 12/03 05/05 09/06 02/08 06/09

—m

% . & Dev 1
20 [A Dev 2

I % Dev3
10 ® ‘

o w0 s Y i

03/04 04/05 05/06 06/07 07/08 08/09

Fig. 16. Output produced by one of the partners (Catalyst, top), as compaseasonal devel-
opers in Moodle

8http://ww. cat al yst. net. nz/

20 A. Capiluppi, K. Stol and C. Boldyreff
7.3 Limitations of this study

We are aware of a few limitations of this study, which we dgschelow. Yin [37] lists
four types of threats to validity, namelgonstruct, internal andexternal validity, and
reliability.

Construct validity Construct validity is concerned witstablishing correct opera-
tional measures for the concepts that are studied [37]. In this study, construct validity
relates to the measures we have used to collect and analyzath, namely, code
metrics such as size, coupling and complexity, and effotrio®esuch as number of
developers and number of modifications made. We argue thse thre well established
metrics that appropriately represent the concepts beirtiest.

Internal validity Internal validity is concerned with establishing a causdtion-
ship. In our study, the relationship that we have explordukisveen the nature of the
stakeholders (i.e., commercial versus nhon-commercial tla@ evolution of OSS. The
results of this exploratory study suggest that there isaat, fan influence from the
presence of commercial stakeholders. However, changesiati®nary patterns may
not be due to the involvement of commercial stakeholderghEuresearch is needed
to establish the nature of this relationship in more detail.

External validity External validity is concerned with the extent to which fimgs

of a study can be generalized to other settings. A commoigeeitof the case study
methodology is that findings cannot be generalized. Howéwermpurpose of conduct-
ing case study research is not to look $tatistical generalizability, such as aimed for
in large-scale quantitative surveys, but rather to skedretical generalization [37]. In
other words, in this paper we have started to explore a thedaying to the influence
of commercial stakeholders on the evolution of OSS. We likernphasize that our
study is ofexploratory nature, and as such serves the purpose of exploring ouliniti
ideas and defining more focused hypotheses for furtherngsea

Reliability Reliability of a study refers to the degree to which a study ba re-
peated and attaining the same results. One strategy tagereestudy'’s reliability is
to establish an audit trail [17]. Our audit trail consistsloé extracted data as well as
spreadsheets that contain the analysis.

8 Conclusions and Future Work

The terminology around the OSS phenomenon has been rgdibalhging in the past
few years. This research has studied how commercial stileisccan have an influ-
ence on the evolution and maintenance of OSS systems. E¢lgsbeen studied as
anindustry-led OSS system, since it is backed by the IBM corporation; tha Jat
jEdit was selected as an exemplar dfaditional OSS system; while Moodle was cho-
sen as an exemplar afdustry-involved system, built mostly by the OSS community,
although several commercial stakeholders have writessdreit. The public releases

Exploring the Role of Commercial Stakeholders in Open Source Soft#xarieition 21

of each system, and their configuration management systems), were jointly ana-
lyzed, to determine the best type of information to draw ltestom.

The study of the releases allowed us to focus on the maingalohg the evolu-
tion of the studied systems. The industry-led OSS systesepts several “best prac-
tices” of software engineering: low complexity of unitsntimuous evolution and reg-
ular maintenance cycles. The traditional OSS system, isdhee application domain,
achieves very different results: 1 in 4 units are too compiiiscontinuous evolution,
and the maintenance is not regularly achieved. Finallyjitdastry-involved system
shows more and more regular patterns of evolution, inangasontrol of complexity
and alignment of its maintenance cycles to multi-brandgdaoftware systems with
parallel maintained releases.

On the other hand, the study of the CMSs allowed the effohi@€tbntributors to be
tracked along the life-cycle of these systems, with theifipexbjective of determining
issues in the sustainability of OSS systems. Analysing tideistry-led project, we
posit that it does not present (yet) issues of sustaingbél it is backed by a large
corporation. The industry-involved project shows thataheunt of active developers
and the output produced follow an increasing, linear tréfattors for these trends
were found in the increasing number of contributions and){ihs, and the presence
of commercial partners driving the evolution, that act ¢lyaas typical developers,
joining in the projects, producing contributions, and theaving. As observed, and
different from Eclipse, the studied commercial stakeholdeMoodle is aseasonal
contributor, after some time trailing off and leaving thejpct.

The study of the effort in the traditional system shows iadtéhat, even with a
sustained number of releases, jEdit has fewer and fewetapmnrs in both the “core”
system as well as in the periphery, showing more issues tdigasility than the other
two cases.

What these findings demonstrate could have a profound impaghat is consid-
ered as “Open Source” development and raises the followiegtipns:

— Is the presence of commercial stakeholders a necessadjtioarnto achieve sus-
tained evolution?

— Are “traditional” OSS projects eventually destined tdltoff and be abandoned?

— Is the lack of adherence to basic software engineeringiptas an obstacle to OSS
development?

These are fundamental questions to be answered by furteeandh studies in
order to understand how the OSS phenomenon will change ifutines.

Acknowledgments

The authors wish to thank Dr Ferndndez-Ramil for his extensbomments on an ear-
lier draft of this paper. We thank the two anonymous revieweno provided construc-
tive feedback on this paper. This work was supported, in pgrScience Foundation
Ireland grant 10/CE/I1855 to Lero—The lIrish Software Engiiieg Research Centre
(wwv. | ero.ie).

22 A. Capiluppi, K. Stol and C. Boldyreff
References
1. T. Aaltonen and J. Jokinen. Influence in the linux kernel community. Feller, B. Fitzger-

10.

11.

12.

13.

14.

15.

ald, W. Scacchi, and A. Sillitti, editor©pen Source Development, Adoption and Innova-
tion, pages 203-208. Springer, 2007.

. E. Arisholm, L. C. Briand, and A. Foyen. Dynamic coupling measwmet for object-

oriented softwarel EEE Transactions on Software Engineering, 30(8):491-506, 2004.

. V. R. Basili, G. Caldiera, and D. H. Rombach. The goal question mapjzoach. In

Encyclopedia of Software Engineering, pages 528-532. John Wiley & Sons, 1994.

. E. Berdou. Insiders and outsiders: paid contributors and the dgsarhcooperation in

community led f/os projects. In E. Damiani, B. Fitzgerald, W. Scacchi, bbtt®, and
G. Succi, editorsQpen Source Systems, pages 201-208. Springer, 2006.

. A. Bonaccorsi, D. Lorenzi, M. Merito, and C. Rossi. Business fiengagement in com-

munity projects. empirical evidence and further developments of trearels. InProc.
First International Workshop on Emerging Trends in FLOSS Research and Development,
Washington, DC, USA, 2007. IEEE Computer Society.

. A. Bonaccorsi and C. Rossi. Contributing to os projects. a compebistween individual

and firms. InProc. 4th Workshop on Open Source Software Engineering (WOSSE), pages
18-22, 2004.

. A.Bonaccorsiand C. Rossi. Intrinsic motivations and profit-origfitens. do firms practise

what they preach? IRroc. First International Conference on Open Source Systems, pages
241-245, 2005.

. A. Capiluppi, A. Baravalle, and N. W. Heap. Engaging without ov@gring: a case study

of a floss project. In P. Agerfalk, C. Boldyreff, J. M. Gonzalez#wna, G. R. Madey, and
J. Noll, editors Open Source Software: New Horizons, pages 29-41. Springer, 2010.

. A. Capiluppi, A. Baravalle, and N. W. Heap. From “community” to “acoercial” floss

— the case of moodle. IRroc. Third Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development, pages 11-16. ACM, 2010.

A. Capiluppi and J. Ferndndez-Ramil. Studying the evolution of gpence systems at
different levels of granularity: Two case studies. Rroc. 7th International Workshop on
Principles of Software Evolution (IWPSE), pages 113-118, Washington, DC, USA, 2004.
IEEE Computer Society.

A. Capiluppi and M. Michlmayr. From the cathedral to the bazaarefpirical study
of the lifecycle of volunteer community projects. In J. Feller, B. Fitzgersd Scacchi,
and A. Silitti, editors,Open Source Development, Adoption and Innovation, pages 31-44.
Springer, 2007.

E. Capra, C. Francalanci, and F. Merlo. An empirical study onalaionship between
software design quality, development effort and governance in sperte projectslEEE
Transactions on Software Engineering, 34(6):765-782, 2008.

E. Capra, C. Francalanci, F. Merlo, and C. R. Lamastra. A gumwdirms’ participation in
open source community projects. In C. Boldyreff, K. Crowston, Badell, and A. Wasser-
man, editorsOpen Source Ecosystems: Diverse Communities Interacting, pages 225-236.
Springer, 2009.

K. Crowston, K. Wei, J. Howison, and A. Wiggins. Free/libre opearse software de-
velopment: What we know and what we do not knoACM Computing Surveys, 44(2),
2012.

L. Dahlander and M. G. Magnusson. Relationships between opecessoftware compa-
nies and communities: Observations from nordic firnResearch Policy, 34(4):481-493,
2005.

Exploring the Role of Commercial Stakeholders in Open Source Softaateition 23

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

20.

30.

31.

32.

33.

N. E. Fenton and S. L. PfleegeBoftware metrics: a practical and rigorous approach.
Thomson, 1996.

E. Guba. Criteria for assessing the trustworthiness of naturalistiizsjuEducational
Communication and Technology, 29(2):75-91, 1981.

C. Hofmeister, R. Nord, and D. Soripplied Software Architecture: A Practical Guide for
Software Designers. Addison-Wesley Professional, 2000.

D. Hou. Studying the evolution of the Eclipse Java editoreclipse '07: Proc. OOPSLA
workshop on eclipse technology eXchange, pages 65-69, New York, NY, USA, 2007. ACM.
A. Igarashi and B. C. Pierce. On inner clas$ef®r mation and Computation, 177(1):56—89,
2002.

W. Li and S. Henry. Object-oriented metrics that predict maintainabilite Journal of
Systems and Software, 23(2):111-122, 1993.

J. Martinez-Romo, G. Robles, J. M. Gonzalez-Barahona, ardrifio-Perez. Using so-
cial network analysis techniques to study collaboration between a flossieoity and a
company. In B. Russo, E. Damiani, B. L. Scott Hissam, and G. Suditgre, Open Source
Development, Communities and Quality, pages 171-186. Springer, 2008.

T. J. McCabe and C. W. Butler. Design complexity measuremertestidg. Communica-
tions of the ACM, pages 1415-1425, December 1989.

T. Mens, J. Fernandez-Ramil, and S. Degrandsart. The evoaftieclipse. InProc. 24th
International Conference on Software Maintenance (ICSM), pages 386—395, October 2008.
E. Merlo, G. Antoniol, M. Di Penta, and V. F. Rollo. Linear complexityjext-oriented
similarity for clone detection and software evolution analysesPrizc. 20th |EEE Inter-
national Conference on Software Maintenance (ICSM), pages 412-416, Washington, DC,
USA, 2004. IEEE Computer Society.

E. S. RaymondThe Cathedral and the Bazaar. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 1999.

G. Robles, S. Duefias, and J. M. Gonzalez-Barahona. Ctepovalvement of libre soft-
ware: Study of presence in debian code over time. In J. Feller, B. FitlzjéV. Scacchi,
and A. Sillitti, editors Open Source Development, Adoption and Innovation, pages 121-132.
Springer, 2007.

G. Robles, J. M. Gonzalez-Barahona, and |. Herraiz. Evolufidheocore team of devel-
opers in libre software projects. Proc. 6th IEEE International Working Conference on
Mining Software Repositories (MSR), pages 167-170, 2009.

C. Rossi and A. Bonaccorsi. Why profit-oriented companies ehéos field?: intrin-
sic vs. extrinsic incentives. IRroc. 5th Workshop on Open Source Software Engineering
(WOSSE), New York, NY, USA, 2005. ACM.

C. D. Santos Jr., G. Kuk, F. Kon, and R. Suguiura. The inexieaaite of organizational
sponsorship for open source sustainability. Phoc. 2nd workshop Towards Sustainable
Open Source, 2011.

M. Schaarschmidt and H. F. von Kortzflieisch. Divide et imperalrtiie of firms in large
open source software consortia.Rroc. 15th Americas Conference on Information Systems
(AMCIS), 2009.

B. Shibuya and T. Tamai. Understanding the process of participatiogen source com-
munities. InProc. 2nd Workshop on Emerging Trends in Free/Libre/Open Source Software
Research and Development, 2009.

M. Wermelinger and Y. Yu. Analyzing the evolution of eclipse pluginsPioc. Interna-
tional working conference on Mining Software Repositories (MSR), pages 133—-136, New
York, NY, USA, 2008. ACM.

24 A. Capiluppi, K. Stol and C. Boldyreff

34. M. Wermelinger, Y. Yu, and A. Lozano. Design principles in architead evolution: a case
study. InProc. 24th International Conference on Software Maintenance (ICSM), pages
396-405, 2008.

35. M. Wermelinger, Y. Yu, A. Lozano, and A. Capiluppi. Assessinthadectural evolution: a
case studylnternational Journal of Empirical Software Engineering, pages 623-666, 2011.

36. M. Wermelinger, Y. Yu, and M. Strohmaier. Using formal con@eplysis to construct and
visualise hierarchies of socio-technical relationsPiac. 31st International Conference on
Software Engineering (ICSE), companion volume, pages 327-330. IEEE, 2009.

37. R. K. Yin. Case Study Research: Design and Methods. SAGE Publications, 3rd edition,

2003.

