
HAL Id: hal-01519081
https://inria.hal.science/hal-01519081

Submitted on 5 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Exploring the Role of Commercial Stakeholders in Open
Source Software Evolution

Andrea Capiluppi, Klaas-Jan Stol, Cornelia Boldyreff

To cite this version:
Andrea Capiluppi, Klaas-Jan Stol, Cornelia Boldyreff. Exploring the Role of Commercial Stakeholders
in Open Source Software Evolution. 8th International Conference on Open Source Systems (OSS),
Sep 2012, Hammamet, Tunisia. pp.178-200, �10.1007/978-3-642-33442-9_12�. �hal-01519081�

https://inria.hal.science/hal-01519081
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Exploring the Role of Commercial Stakeholders in
Open Source Software Evolution

Andrea Capiluppi1, Klaas-Jan Stol2 and Cornelia Boldyreff3

1Brunel University, United Kingdom
2Lero—The Irish Software Engineering Research Centre

University of Limerick, Ireland
3University of East London, United Kingdom

andrea.capiluppi@brunel.ac.uk, klaas-jan.stol@lero.ie,
c.boldyreff@uel.ac.uk

Abstract. It has been lately established that a major success or failure factor
of an OSS project is whether or not it involves a commercial company, or more
extremely, when a project is managed by a commercial software corporation. As
documented recently, the success of the Eclipse project can be largely attributed
to IBM’s project management, since the upper part of the developer hierarchy
is dominated by its staff. This paper reports on the study of the evolution of
three different Open Source (OSS) projects — the Eclipse and jEdit IDEsand
the Moodle e-learning system — looking at whether they have benefited from
the contribution of commercial companies. With the involvement of commercial
companies, it is found that OSS projects achieve sustained productivity,increas-
ing amounts of output produced and intake of new developers. It is alsofound
that individual and commercial contributions show similar stages: developer in-
take, learning effect, sustained contributions and, finally, abandonment of the
project. This preliminary evidence suggests that a major success factorfor OSS
is the involvement of a commercial company, or more radically, when project
management is in hands of a commercial entity.

1 Introduction

Governance and control in Open Source Software (OSS) has been dramatically chang-
ing [30]. Thetraditional volunteer-based OSS project model is now being accompa-
nied by sponsored OSS, where commercial stakeholders provide effort beyond vol-
untary programmers. It has been argued that OSS projects have become increasingly
hybrid with respect to this type of contributing stakeholders [12].

Since their inception in the early 1980s, OSS projects were mostly volunteer-based
(or Traditional OSS, right end of Figure 1), heavily relying on personal effortsand non-
monetary recognition, and reportedly suffering from communication and coordination
problems [14].

Nowadays, so-calledSponsored OSS projects have also been documented as more
similar toClosed Source systems (as in far left of Figure 1). They could be industry-led
OSS projects, where a commercial stakeholder plays a major role in the development
and decision making, as in the case of the Eclipse project by IBM [25, 24, 19, 33].



2 A. Capiluppi, K. Stol and C. Boldyreff

They can also beindustry-involved OSS projects when they are driven by an OSS
community, but often have one or several companies or institutions (e.g., universities)
among their stakeholders, as in the case of the Moodle Content Management System
(CMS) [8].

Fig. 1.Scenarios of development of OSS projects

Both theindustry-led andindustry-involved scenarios introduce new challenges to
OSS projects: the first is based on one (or a small subset of) critical stakeholder(s),
which could eventually halt the project if they decide to abandon it1. In the case of
Eclipse, for example, IBM staff have been identified as the top contributors, with only
a few external developers working on the core system [36]. For Community OSS, es-
pecially in the case of large and complex OSS systems, there is a need of proper in-
centives for different types of stakeholders, with complementary expertise and require-
ments, in particular when their contributions are relevantto a system’s core functional-
ity.

This paper aims to explore these three scenarios and to studywhether the involve-
ment of commercial companies can help sustaining the evolution of OSS projects. To
that end, the paper presents different analyses of the evolution of acommercial and a
traditional OSS systems (Eclipse and jEdit), sharing the same application domain, and
onecommunity OSS project (Moodle).

By exploring the type of activities performed by commercialstakeholders, and by
comparing the results achieved by similar OSS projects (sharing the same application
domain, but with different involvement of stakeholders), this paper explores a research
area that only recently started to be covered in the literature [28, 27, 31].

1.1 Terminology

Existing literature typically distinguishes betweencommunity-managed (also called
autonomous [32]) andsponsored communities. However, current terminology for this
has some issues. For instance, OSS projects that are led by firms are referred to ascom-
mercial OSS, whereas an OSS project that involves commercial stakeholders (compa-
nies), but is led by an OSS community (consisting of “traditional” community mem-
bers) is referred to asCommunity OSS. We argue that both terms are not precisely de-
fined and need further refinement. Commercial OSS suggests that profit is made from

1 This happened with Netscape Navigator (then Mozilla) when Netscape Communications Cor-
poration (NCC) released it as open source, but without further evolving it.



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 3

the OSS project. The term “Community OSS” does not clearly distinguish projects that
involve companies from “traditional” OSS projects (that donot involve companies).
Therefore, in this paper we propose the following new terminology for the various
models of involvement:

Traditional OSS projects are those projects in which no companies are involved.
Industry-involved OSS projects are projects in which commercial firms are in-

volved as contributors, but the project is still managed by the “community”.
Industry-led OSS projects are projects that are led by a commercial firms. The

wider community can contribute (as with any OSS project), but since a company has
control over the project, it defines the evolution strategy.

Together, industry-involved and industry-led projects areSponsoredOSS projects,
whereas industry-involved and traditional projects are both forms of Community
projects (see Figure 1) as they are led by a community (as opposed to a company).

1.2 Structure of this paper

The remainder of this paper is structured as follows: Section 2 presents the goals, ques-
tions and metrics of the study. Section 3 presents the research design. Sections 4 and 5
presents the Eclipse and jEdit case studies, respectively.Section 6 focuses on the Moo-
dle system as an example of an industry-involved OSS system,and explores the rele-
vance of the commercial stakeholders, and how they differ from individual developers.
Section 7 discusses the results followed by conclusions in Section 8.

2 Background and Related Work

This section provides a brief overview of relevant background and related studies. Most
reports on participation of firms in OSS projects present results from large-scale sur-
veys.

Bonaccorsi and Rossi studied contributions to OSS projectsby commercial firms.
They conducted a large-scale survey among 146 Italian companies that provide soft-
ware solutions and services based on Open Source Software [6]. One of the findings
was that approximately 20 per cent of companies were coordinating an OSS project.
Furthermore, almost half of the companies (46.2%) had neverjoined an OSS project.
It is important to note that these results were published in 2004, and that these numbers
may have changed significantly over the last eight years; we suggest that a replication
of this study would be a valuable contribution.

Bonaccorsi and Rossi have further studied (using data from the same survey) moti-
vations of firms to contribute to OSS projects [7, 29].

Bonaccorsi et al. [5] have investigated whether and how firmscontribute to OSS
projects. Their study investigated which activities firms undertake in OSS projects, as
well as whether the presence of firms affect the evolution of OSS projects. To address
these questions, Bonaccorsi et al. conducted a survey of 300OSS projects hosted on
SourceForge.net. They found that almost one in three of the studied projects had one
or more firms involved. In a survey of 1,302 OSS projects by Capra et al. [13], similar



4 A. Capiluppi, K. Stol and C. Boldyreff

results were found, namely that firms were involved in 31% of the projects. Different
types of involvement were identified: (1) project coordination, (2) collaboration in code
development, and (3) provision of code. Capra et al. [13] made a slightly different clas-
sification of participation models: theManagement model (for project coordination),
the Support model (sponsoring through financial or logistic support) and theCoding
model (contributing code, bug fixes, customization, etc.). In most cases, it was found
that the firms founded the OSS project, but in some cases firms took over by replacing
a project’s coordinator.

Aaltonen and Jokinen [1] studied the influence in the Linux kernel community and
found that firms have a large impact in the project’s development.

Martinez-Romo et al. [22] have studied collaboration between an OSS commu-
nity and a company. They conducted case studies of two OSS projects: Evolution and
Mono.

Companies can sponsor OSS projects in different ways. Berdou [4] investigated
the dynamics of cooperation in community-led projects thatinvolve paid contributors,
and proposed a framework to understand this relationship.

Dahlander and Magnusson [15] proposed a typology consisting of symbiotic (win-
win), commensalistic (firm gains, community indifferent) andparasitic (firm gains,
community loses) approaches to characterize firm–community relationships. These re-
lationships only apply in community-led projects.

The last decade of research in OSS has well established the relationship between
firms and OSS projects. This relationship has been shown to have a direct effect on
a project’s sustainability. However, what kind of effects this relationship has on a
project’s evolution has not been studied. Therefore, we setout to explore this by means
of a comparative case study. The next section outlines the research design.

3 Research Design

This section presents the research design of the empirical study following theGoal-
Question-Metric (GQM) approach [3].

3.1 Goal

The long term objective of this research is to understand whether there are (and there
likely will be) differences in the maintenance and evolution activities of OSS projects
as long as commercial stakeholders join or drive the development.

3.2 Questions

This paper addresses the following research questions:

1. Are there differences in the evolution of similar-scopedOSS applications, as long
as one (or more) commercial stakeholders play a major role inthe development?



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 5

2. When considering projects in the same application domain,are different “cate-
gories” achieving different results or patterns of maintenance?

3. From an effort perspective, do commercial stakeholders behave similarly to indi-
vidual developers?

3.3 Method and metrics

Given the exploratory nature of this topic, we decided to perform an exploratory mul-
tiple case study. Since this topic has not been studied in depth, this multiple case study
can be considered as arevelatory case study [37]. Rather than seeking to make gener-
alizations with respect to the influence of commercial stakeholders in OSS evolution,
we have aimed at exploring this phenomenon with the purpose to identify more precise
hypotheses that can be studied in more depth and with different research methods (e.g.,
surveys).

The choice of the studied projects was grounded in the fact that they are appropriate
examples of the three types of involvement models mentionedearlier, and was also
supported by the fact that the first author was familiar with these projects through
previous studies [8, 9, 35] as well as ongoing (as of yet unpublished) studies.

Our study is a quantitative analysis of the studied projects, for which two types of
metrics are used:code metrics andeffort metrics. These are discussed below.

Code Metrics Given the available (public) releases, a set of data was extracted from
the studied projects: two systems (Eclipse and jEdit) are implemented mostly in Java,
while Moodle is implemented in PHP, and partially relying onOO features, evidenced
by a visible number of PHP classes. The terminology and associated definitions for
these metrics are extracted from related and well-known past studies, for example, the
definition ofcommon andcontrol coupling ([2, 21, 16]).

– Methods (or functions in PHP): the lowest level of granularity of thepresent analy-
sis. Within this attribute, the union of the sets of OO methods, interfaces, construc-
tors and abstract methods was extracted.

– Classes: as containers of methods, the number of classes composing the systems has
been extracted. Differently from past studies [25],anonymous andinner classes [20]
were also considered as part of the analysed systems.

– Size: the growth in size was evaluated in number of SLOCs (physical lines of code),
number of methods, classes and packages.

– Coupling: this is the union of all thedependencies andmethod calls (i.e., the com-
mon and control coupling) of all source files as extracted through Doxygen2. The
three aggregations introduced above (methods, classes andpackages) were consid-
ered for the same level of granularity (themethod-to-method, class-to-class and the
package-to-package couplings). A strong coupling link between package A and B
is found when many elements within A call elements of packageB.

– Complexity: the complexity was evaluated at the method level. Each method’s com-
plexity was evaluated via its McCabe index [23].

2 http://www.doxygen.nl, supporting both the Java and PHP languages



6 A. Capiluppi, K. Stol and C. Boldyreff

Effort Metrics A second set of data was extracted based on the availability of CMS
servers: this data source represents a regular, highly parsable set of atomic transactions
(i.e., ‘commits’) which details the actions that developers (i.e., ‘committers’) perform
on the code composing the system. Two metrics were extracted:

– Effort : the effort of developers was evaluated by counting the number of unique (or
distinct, in a SQL-like terminology) developers in a month.

– Output metrics: the work produced was evaluated by counting the monthly cre-
ations of, or modifications to, classes or packages. Severalmodifications to the same
file were also filtered with the SQLdistinct clause, in order to observe how many
different entities were modified in a month3.

4 Industry-led Open Source Project: Eclipse IDE

The Eclipse project has attracted a vast amount of attentionby researchers and prac-
titioners, in part due to the availability of its source code, and the openness of its
development process. Among the recent publications, several have been focused on
the “architectural layer” of this system [34, 19], extracting the relevant information
from special-purposed XML files used to describe Eclipse’s features and extensions
(i.e., plugins) implementing them, in this way representing somesort of “module ar-
chitecture view” [18].

As recently reported, the growth of the major releases in Eclipse follows a linearly
growing trend [24], when studying the evolution of its linesof code, number of files
and classes. The study on Eclipse’s meta-data indicated that, over all releases, the size
of the architecture has increased more than sevenfold (from35 to 271plugins) [34].

The present study is instead performed at the method level, and on two release
streams (trunk andmilestones). Regarding Eclipse, 26 releases composing the stream
of “major” and “minor” releases of Eclipse (from 1.0 to 3.5.1) and some 30 additional
releases tagged as “milestones” (M) or “release candidates” (RC), were considered
in this study, spanning some 8 years of evolution. For each release, we performed an
analysis of the source code with the Doxygen tool. This latter analysis lasted a few
hours for the early releases, but it required more than one day of parsing for the latest
available releases, mostly due to the explosion in size of the project (490,000 SLOCs
found in the 1.0 release of Eclipse, up to more than 3 million SLOCs found in the 3.6
releases4). Overall, it required more than one month to perform the analysis on the
whole batch of Eclipse releases.

The remainder of this section presents the results of the analysis of Eclipse. Sub-
section 4.1 presents the results of the evolution of the sizeof Eclipse. Subsection 4.2
presents the evolution of Eclipse’s complexity.

3 In specific cases, specific committer IDs were excluded, when it was clear that they are re-
sponsible for automatic, uninteresting, commits; it was also excluded fromthis metric any
activity concerning the ’Attic’ CMS location (which denotes deleted source material).

4 Statistics were collected with SLOCCount,http://www.dwheeler.com/
sloccount/



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 7

4.1 Results – Eclipse Size

This study considered the “main” releases (3.0, 3.1, etc.),and the “milestone” releases
(e.g., 3.2M1, 3.2M2, etc.) and “release candidates” (e.g.,3.3RC1, 3.3RC2, etc.) release
streams of the Eclipse project. The overall growth is almostfivefold, while it is also
evident from Figure 2 that the main stream of releases has a stepwise growth, the steps
being the major releases5.

Fig. 2.Growth in the “main” branch of Eclipse

Major releases of Eclipse are regularly devoted to new features, while milestone
and release candidates releases are devoted to maintainingexisting ones (Figure 3).
The milestones stream has a more linear path: plotting the number of methods against
the “build date” of the relative release, a linear fit is foundwith an appropriate good-
ness of fit (R2 = 0.98). The step-wise growth for the main release stream, and the
linear trend for the milestones release also reflect what wasfound when studying the
evolution of Eclipse at a larger granularity level, i.e. itsplugins [34].

4.2 Results – Eclipse Complexity

The study at the method level shows a distribution of the McCabe cyclomatic indexes
which is constant along the two streams of releases (main andmilestones) of Eclipse.
This is visible when assigning the cyclomatic complexity ofeach method (cci) in the
four following clusters:

1. cci < 5

2. 5 ≤ cci < 10

3. 10 ≤ cci < 15

5 The overall size growth has been normalized to 1 for easing the reading of the graph.



8 A. Capiluppi, K. Stol and C. Boldyreff

Fig. 3. Growth and maintenance patterns in the “milestones” branch of Eclipse.

4. cci ≥ 15

Figure 4 shows the relative evolution of the fourth cluster,and reveals a quasi-
constant evolutionary trend (for reason of clarity, the other trends are not displayed,
although they follow a similar evolutionary pattern). The amount of highly complex
methods (cc > 15, [23]) present in the system never reaches the2% of the overall
system. As reported in other works, this shows a profound difference from other tra-
ditional Open Source projects, where this ratio (for C and C++ projects) has been
observed at around10% of the system [10].

Fig. 4.Patterns of highly complex methods (McCabe index> 15) in the main branch of Eclipse.



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 9

4.3 Results – Eclipse Coupling

The number of couplings (i.e., unique method calls) has beencounted for each of
the two streams of releases. The set of added, deleted and kept couplings has been
evaluated between two subsequent releases in each stream, and plotted in Figure 5.
As shown, these findings confirm previous ones [34] regardingEclipse’s maintenance
patterns: in the main stream, a large amount of modificationsto its existing connections
is made between minor and major releases, reaching more than60% of new couplings
added during the transition between the subsequent versions 2.1.3 and 3.0.

Fig. 5.Distribution of coupling in the main branch of Eclipse.

On the other hand, the Milestones stream (Figure 6) confirms arecurring pattern,
where the milestones show a great deal of added and removed couplings, whereas the
Release Candidates (RC’s) show a much lower activity in the same activity of coupling
restructurings (the amount of shared couplings between twosubsequent releases is not
shown for clarity purposes).

4.4 Results – Eclipse Cohesion

The cohesion of classes or packages was measured by countingthe number of ele-
ments connected with other internal elements, and then cumulated for all the classes
or packages. Figure 7 shows the evolution of cohesion at the package level, and it
confirms the observations achieved when evaluating the highly complex methods (Fig-
ure 4). Although there is a vast increase in the number of methods and classes, most of
the connections are confined within the same package, keeping the cohesion constant
throughout the life-cycle until the latest observed release. This measurement is also
found higher in the earliest releases (some73%), and declining sharply until release
3.0, where it stabilizes to some69− 70% for the last 6 years.



10 A. Capiluppi, K. Stol and C. Boldyreff

Fig. 6.Distribution of coupling in the milestones branch of Eclipse.

Fig. 7.Patterns of cohesion of the two branches of Eclipse.

5 Traditional Open Source Project: jEdit

Given the results from the above study, acommunity-driven OSS project (i.e., where no
commercial company is “sponsoring” the development [12]) was studied in a similar
way to evaluate and compare in some way the quantitative results of Eclipse. Although
not exactly implementing all the features within Eclipse, the jEdit project also aims
to be a fully-fledged IDE, benefiting from a large number of add-ons and plugins, in-
dependently developed and pluggable in the core system. Though any two software
systems are always different to some degree, this study was not performed for the pur-
pose of comparing features, but for the sake of observing whether the patterns observed



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 11

in a very large and articulated project are similarly found in a much smaller project,
and whether good practices should be inferred in any direction.

Similarly to the Eclipse project, the 14 releases availableof jEdit were therefore
collected on the largest OSS portal (i.e., SourceForge), from 3.0 to 4.3.1 (earlier re-
leases do not provide the source code). Being a much smaller project, collecting the
information via Doxygen was much quicker, both at the beginning of the sequence
(57 kSLOCs, jEdit-3.0) and at the end (190 kSLOCs, jEdit-4.3.1). The 14 considered
releases are the ones made available to the community, and span some 10 years of
development.

5.1 Results – jEdit Size

The second system also shows a linear growth, with an adequate goodness of fit (R2 =

0.97), albeit with a lower slope than what found in Eclipse, as to summarise a slower
linear growth in Figure 8. A similar linear trend is found in the evolution of methods,
classes and packages. The most evident difference with the evolution of Eclipse is
the pace of the public releases in jEdit: between releases 4.2 and 4.3 some 5 years
passed, although the jEdit configuration management systemcontains information on
the ongoing activity by developers.

Fig. 8.Evolution of size in jEdit

5.2 Results – jEdit Complexity

Regarding jEdit, the evolution of the complexity at the methods’ level brings an inter-
esting insight: for this project, it was found that more than25% of the methods are
constantly over a threshold of high complexity, at any time of jEdit’s evolution. This
complexity pattern has been observed also in other OSS systems [10]. Large and com-
plex methods are typically a deterrent to the understandability and maintainability of a



12 A. Capiluppi, K. Stol and C. Boldyreff

software system, and a vast refactoring of these methods hasbeen achieved in the last
two public releases, as visible in the graph, where a significant drop of highly complex
methods is achieved even in the presence of a net increase in the number of methods.

5.3 Results – jEdit Coupling

The maintenance patterns of jEdit present a more discontinuous profile, with changes
between major releases typically presenting large additions of new couplings (see Fig-
ure 9, bottom), and minor releases where less of such modifications were made. More
importantly, the maintenance of couplings appears not to beplanned, where the largest
modifications (between 4.2 and 4.3) appear after a long hiatus of five years, and rep-
resent a full restructuring of the underlying code architecture, with added and deleted
couplings representing three-times and twice as many couplings as the maintained
ones, respectively.

Fig. 9.Coupling in jEdit.

6 Industry-involved OSS Project: Moodle

As per the definition of anindustry-involved OSS project, Moodle’s development is
primarily centered around the OSS community, but various other actors have interest in
its development. A number of organizations across the worldare directly contributing
to the development of Moodle by way of funding or contributing their expertise, and
have been defined as “Moodle partners”.



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 13

Similarly to the other two case studies, we extracted the size, complexity and cohe-
sion of the PHP code contained in the publicly available releases6: overall we studied
some 90 releases of this project. By checking on the official website, it can be observed
that Moodle was evolved in one single stream of release untilversion 1.7: from 1.8 on-
wards, several branches have been evolved at the same time (e.g., 1.7.x, 1.8.x, 1.9.x
etc). For each of these branches we kept the results on size, coupling and complexity
separated from the other branches.

6.1 Results – Moodle Size

As observed in Eclipse, the evolution of Moodle resembles a step-like pattern (see Fig-
ure 10), where the major releases consist of the addition of alarge number of files,
classes and functions, and the minor releases show smaller additions in all the mea-
sured metrics. From release 1.8 onwards, all the various branches maintain the same
pattern as well, albeit the growth is intertwined in time with all the other branches
(Figures 11 middle and bottom): during the interim releasesbetween minor (e.g., 1.8)
and development (e.g., 1.8.1) releases, the growth in number of functions, classes and
source files is minimal, while the step-wise growth pattern is observed between mi-
nor releases (e.g., between 1.8 and 1.9). Therefore, for this system the increase in size
has changed the approach to development, requiring the project to define and maintain
various branches at the same time.

Fig. 10.Growth of size in the main branch of Moodle (up to release 1.7).

6 A list of the releases (with the relative releasing date) since 2002 is availableat http://
docs.moodle.org/dev/Releases



14 A. Capiluppi, K. Stol and C. Boldyreff

Fig. 11.Growth of size in the parallel branches of Moodle (after release 1.7).



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 15

6.2 Results – Moodle Complexity

Since Moodle is written in the PHP programming language, which is based on pro-
cedural and object-oriented constructs, we evaluated the complexity of the functions
contained in the source code. This was plotted per release, as above, and the percent-
age of highly complex functions tracked throughout. The summary in Figure 12 shows
how the excessive complexity (i.e., the sum of functions whose McCabe cyclomatic
index is> 15, and depicted in the continuous line) has been kept under control even
though the system constantly increases the number of its functions (depicted as a con-
tinuous line in the same figure). What is quite evident is also the major refactoring that
was undertaken between releases 1.x and 2.x. In the latter, alarger number of func-
tions were introduced, in a step-wise growth, while parallel work was done to reduce
the amount of complexity in existing and new functions, witha step-wise descent of
highly complex functions.

Fig. 12.Evolution of complexity in Moodle (continuous line) and overall increase in number of
functions (dashed).

6.3 Results – Moodle Coupling

The functions composing the releases of Moodle were also analysed in terms of their
connections, and which of the connections were added or removed between major and
minor releases, and between branches. As done for the previous cases, the releases
were analysed by the Doxygen engine, extracting all the links between low level enti-
ties, that were later lifted to file-to-file dependencies.

As reported for the size growth, it becomes clear that the minor and development
releases have become central in Moodle to perform several adjustments, that trail off
in proximity of the next release, similarly to what is found in the Eclipse environment
(see Figure 13, displaying the 1.7.x and 1.8.x branches of releases). This has evolved



16 A. Capiluppi, K. Stol and C. Boldyreff

in Moodle: the earlier branches (e.g., Moodle-1.1.x or Moodle-1.2.x) did not display
long sequences of development (e.g., only Moodle-1.1 and Moodle-1.1.1 have been
released within the Moodle-1.1.x branch). With more recentreleases, the pattern ob-
served in Eclipse is also visible in Moodle, with longer sequences of development re-
leases (14 development releases in Moodle-1.8.x, 17 in Moodle-1.9.x), in which fewer
and fewer couplings are added and removed, until the releaseis being discontinued
and not supported further.

Fig. 13.Added and removed couplings in Moodle (branches 1.7.x and 1.8.x).

7 Discussion

The two cases of Moodle and jEdit show that similar issues arefaced by the developers:
even if companies are involved in development of the Moodle project, they do not
drive the development, as for Eclipse. Given it is taken for granted that industry-led
OSS projects do not have an issue of long-term sustainability, industry-involved and
traditional OSS projects need to address the issue of how to attract and maintain the
existing contributors in the development loop. In the following subsections, we analyse
how effectively developers and contributors are attractedand maintained within the
two projects, and whether lessons learned can be drawn in both cases.

7.1 Contributions on the Periphery

In both the Moodle and jEdit projects, the “core” of the system is separated from
the “plugins” or “contributors” section. We assume that contributing to the “core” of
a project is more time-consuming, and requires more skills,than contributing to the



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 17

“modules” or the “plugins” sections7. Therefore we investigated whether a sustained
intake of contributors is achieved in Moodle and jEdit, or whether these projects face
an issue in this respect.

Moodle – Two main directories are found in the CMS server: the core ‘Moodle’ direc-
tory (which makes for the public releases, that we consider as “core”), and the ‘contrib’
folder, organized in ‘plugins’, ‘patches’ and ‘tools’ (butnot wrapped in the official re-
leases). As visible in Figure 14 (left), the evolution of thecore Moodle system follows
the typical pattern of an early (or ‘cathedral’ [26]) OSS project: few contributors are
visible in the first months (mostly the main Moodle developer), with few other contrib-
utors being active in a discontinuous way. A further, sustained period is also visible,
where the number of active developers follows a growing trend with peaks of over 30
developers a month contributing, and revealing a ‘bazaar’ phase [11]. The main issue
that is visible in the Moodle “core” system is revealed at around3/4 of its life-cycle,
where the number of active developers start to decline. Fromthe point of view of the
sustainability, we posit that this could represent a serious issue in the long-term evolu-
tion of this system.

On the other hand, the activity of Moodle has been devoted more and more to
the ‘contrib’ folder, rather than in the ‘core’: this reflects a more and more distributed
participation to the Moodle development, and a low barrier to entry, albeit not all the
contributed modules are selected for inclusion in the publicly available releases. The
overall distribution of changes throughout the Moodle evolution proceeds on a lin-
ear trend (R2 = 0.78): in recent months, the inflection of productivity in the “core”
Moodle has been balanced by the late growth of contributionsto the other parts. That
reflects a more and more distributed participation to the Moodle development, and a
low barrier to entry, but several of the proposed modules have not been selected for
inclusion in the main Moodle system.

Fig. 14.Active monthly contributors in the “core” (left) and in the overall Moodle project (right)

jEdit – The main difference between jEdit and Moodle in the intake of developers
is visible in Figure 15 (below): albeit the ‘core’ (or ‘trunk’) is separated from the

7 This is because writing plugins or additional modules, where the system is modular, should
be possible without modifying other files, but just using the system’s APIs.



18 A. Capiluppi, K. Stol and C. Boldyreff

‘plugins’, few contributors were added in the latter, following a cyclic development
pattern overall. Differently from Moodle, the intake of contributors does not follow
a linear pattern: the presence of developers in the “core” declines at around3/4 of
the life-cycle, and so does the number of contributors working on the periphery of the
system. This makes jEdit even more brittle to sustainability issues, specifically around
the intake of new developers.

Fig. 15.Active monthly contributors in the “core” and in the “plugins” parts of jEdit

7.2 Three-layered Contributions

The study of Moodle as an industry-involved OSS project resulted in an in-depth anal-
ysis of the types of contributors who actively produce code for the system. Interesting
insights were discovered when studying each developer’s actual contribution to the
code: in a first attempt to categorize the intake, the contributions, and the develop-
ers leaving the project, three categories are clearly distinguishable, not based on the
amount of effort inputed in the system, but purely on the length of the activity of each
developer:

1. Sporadic developers: this refers to the extremely low presence of certain contrib-
utors in the development. Within Moodle, 60 developers havebeen active for just
one month; other 70 developers have been active between 2 and6 (not necessarily
consecutive) months.

2. Seasonaldevelopers: as reported recently [28], most OSS projects benefit seasonal
developers, i.e., those developers who are active for a short period of time (we are
not referring to ‘recurring’ or ‘returning’ developers).

3. Stabledevelopers: those developers showing a sustained involvement (say, more
than 24 months for the Moodle system). Both seasonal and stable developers can



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 19

be part of the top 20% developing most of the system, as in the definition of ’gen-
eration of OSS developers’ given in the past [5].

Some of the Moodle partners have been found acting asseasonal developers; the
Catalyst partner8 has so far provided a large number of modifications to the coreMoo-
dle, by deploying several developers who became active contributors within the com-
munity. The profile of the contributed outputs is visible in Figure 16 (bottom), and can
be defined as a ‘seasonal’ effort pattern, meaning a large contribution on a very specific
time interval, and lower levels of effort before and after it. Comparing this curve to a
selection of seasonal Moodle individual developers (Figure 16, top), a similar pattern
is visible: an initial period of low commit rates, followed by a peak were a high level
of contributions is observed, finally a leveling-off.

Fig. 16.Output produced by one of the partners (Catalyst, top), as compared toseasonal devel-
opers in Moodle

8 http://www.catalyst.net.nz/



20 A. Capiluppi, K. Stol and C. Boldyreff

7.3 Limitations of this study

We are aware of a few limitations of this study, which we discuss below. Yin [37] lists
four types of threats to validity, namely,construct, internal andexternal validity, and
reliability.

Construct validity Construct validity is concerned withestablishing correct opera-
tional measures for the concepts that are studied [37]. In this study, construct validity
relates to the measures we have used to collect and analyze the data, namely, code
metrics such as size, coupling and complexity, and effort metrics such as number of
developers and number of modifications made. We argue that these are well established
metrics that appropriately represent the concepts being studied.

Internal validity Internal validity is concerned with establishing a causal relation-
ship. In our study, the relationship that we have explored isbetween the nature of the
stakeholders (i.e., commercial versus non-commercial) and the evolution of OSS. The
results of this exploratory study suggest that there is, in fact, an influence from the
presence of commercial stakeholders. However, changes in evolutionary patterns may
not be due to the involvement of commercial stakeholders. Further research is needed
to establish the nature of this relationship in more detail.

External validity External validity is concerned with the extent to which findings
of a study can be generalized to other settings. A common critique of the case study
methodology is that findings cannot be generalized. However, the purpose of conduct-
ing case study research is not to look forstatistical generalizability, such as aimed for
in large-scale quantitative surveys, but rather to seektheoretical generalization [37]. In
other words, in this paper we have started to explore a theoryrelating to the influence
of commercial stakeholders on the evolution of OSS. We like to emphasize that our
study is ofexploratory nature, and as such serves the purpose of exploring our initial
ideas and defining more focused hypotheses for further research.

Reliability Reliability of a study refers to the degree to which a study can be re-
peated and attaining the same results. One strategy to increase a study’s reliability is
to establish an audit trail [17]. Our audit trail consists ofthe extracted data as well as
spreadsheets that contain the analysis.

8 Conclusions and Future Work

The terminology around the OSS phenomenon has been radically changing in the past
few years. This research has studied how commercial stakeholders can have an influ-
ence on the evolution and maintenance of OSS systems. Eclipse has been studied as
an industry-led OSS system, since it is backed by the IBM corporation; the Java IDE
jEdit was selected as an exemplar of atraditional OSS system; while Moodle was cho-
sen as an exemplar ofindustry-involved system, built mostly by the OSS community,
although several commercial stakeholders have write-access to it. The public releases



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 21

of each system, and their configuration management systems (CMS), were jointly ana-
lyzed, to determine the best type of information to draw results from.

The study of the releases allowed us to focus on the main points along the evolu-
tion of the studied systems. The industry-led OSS system presents several “best prac-
tices” of software engineering: low complexity of units, continuous evolution and reg-
ular maintenance cycles. The traditional OSS system, in thesame application domain,
achieves very different results: 1 in 4 units are too complex, discontinuous evolution,
and the maintenance is not regularly achieved. Finally, theindustry-involved system
shows more and more regular patterns of evolution, increasing control of complexity
and alignment of its maintenance cycles to multi-branch, large software systems with
parallel maintained releases.

On the other hand, the study of the CMSs allowed the effort of the contributors to be
tracked along the life-cycle of these systems, with the specific objective of determining
issues in the sustainability of OSS systems. Analysing the industry-led project, we
posit that it does not present (yet) issues of sustainability, as it is backed by a large
corporation. The industry-involved project shows that theamount of active developers
and the output produced follow an increasing, linear trend.Factors for these trends
were found in the increasing number of contributions and plug-ins, and the presence
of commercial partners driving the evolution, that act exactly as typical developers,
joining in the projects, producing contributions, and thenleaving. As observed, and
different from Eclipse, the studied commercial stakeholder in Moodle is aseasonal
contributor, after some time trailing off and leaving the project.

The study of the effort in the traditional system shows instead that, even with a
sustained number of releases, jEdit has fewer and fewer developers in both the “core”
system as well as in the periphery, showing more issues of sustainability than the other
two cases.

What these findings demonstrate could have a profound impact on what is consid-
ered as “Open Source” development and raises the following questions:

– Is the presence of commercial stakeholders a necessary condition to achieve sus-
tained evolution?

– Are “traditional” OSS projects eventually destined to trail off and be abandoned?
– Is the lack of adherence to basic software engineering principles an obstacle to OSS

development?

These are fundamental questions to be answered by further research studies in
order to understand how the OSS phenomenon will change in thefuture.

Acknowledgments

The authors wish to thank Dr Fernández-Ramil for his extensive comments on an ear-
lier draft of this paper. We thank the two anonymous reviewers who provided construc-
tive feedback on this paper. This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero—The Irish Software Engineering Research Centre
(www.lero.ie).



22 A. Capiluppi, K. Stol and C. Boldyreff

References

1. T. Aaltonen and J. Jokinen. Influence in the linux kernel community. In J. Feller, B. Fitzger-
ald, W. Scacchi, and A. Sillitti, editors,Open Source Development, Adoption and Innova-
tion, pages 203–208. Springer, 2007.

2. E. Arisholm, L. C. Briand, and A. Foyen. Dynamic coupling measurement for object-
oriented software.IEEE Transactions on Software Engineering, 30(8):491–506, 2004.

3. V. R. Basili, G. Caldiera, and D. H. Rombach. The goal question metricapproach. In
Encyclopedia of Software Engineering, pages 528–532. John Wiley & Sons, 1994.

4. E. Berdou. Insiders and outsiders: paid contributors and the dynamics of cooperation in
community led f/os projects. In E. Damiani, B. Fitzgerald, W. Scacchi, M. Scotto, and
G. Succi, editors,Open Source Systems, pages 201–208. Springer, 2006.

5. A. Bonaccorsi, D. Lorenzi, M. Merito, and C. Rossi. Business firms’ engagement in com-
munity projects. empirical evidence and further developments of the research. InProc.
First International Workshop on Emerging Trends in FLOSS Research and Development,
Washington, DC, USA, 2007. IEEE Computer Society.

6. A. Bonaccorsi and C. Rossi. Contributing to os projects. a comparison between individual
and firms. InProc. 4th Workshop on Open Source Software Engineering (WOSSE), pages
18–22, 2004.

7. A. Bonaccorsi and C. Rossi. Intrinsic motivations and profit-oriented firms. do firms practise
what they preach? InProc. First International Conference on Open Source Systems, pages
241–245, 2005.

8. A. Capiluppi, A. Baravalle, and N. W. Heap. Engaging without over-powering: a case study
of a floss project. In P. Ågerfalk, C. Boldyreff, J. M. González-Barahona, G. R. Madey, and
J. Noll, editors,Open Source Software: New Horizons, pages 29–41. Springer, 2010.

9. A. Capiluppi, A. Baravalle, and N. W. Heap. From “community” to “commercial” floss
– the case of moodle. InProc. Third Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development, pages 11–16. ACM, 2010.

10. A. Capiluppi and J. Fernández-Ramil. Studying the evolution of opensource systems at
different levels of granularity: Two case studies. InProc. 7th International Workshop on
Principles of Software Evolution (IWPSE), pages 113–118, Washington, DC, USA, 2004.
IEEE Computer Society.

11. A. Capiluppi and M. Michlmayr. From the cathedral to the bazaar: Anempirical study
of the lifecycle of volunteer community projects. In J. Feller, B. Fitzgerald, W. Scacchi,
and A. Silitti, editors,Open Source Development, Adoption and Innovation, pages 31–44.
Springer, 2007.

12. E. Capra, C. Francalanci, and F. Merlo. An empirical study on the relationship between
software design quality, development effort and governance in opensource projects.IEEE
Transactions on Software Engineering, 34(6):765–782, 2008.

13. E. Capra, C. Francalanci, F. Merlo, and C. R. Lamastra. A survey on firms’ participation in
open source community projects. In C. Boldyreff, K. Crowston, B. Lundell, and A. Wasser-
man, editors,Open Source Ecosystems: Diverse Communities Interacting, pages 225–236.
Springer, 2009.

14. K. Crowston, K. Wei, J. Howison, and A. Wiggins. Free/libre open-source software de-
velopment: What we know and what we do not know.ACM Computing Surveys, 44(2),
2012.

15. L. Dahlander and M. G. Magnusson. Relationships between open source software compa-
nies and communities: Observations from nordic firms.Research Policy, 34(4):481–493,
2005.



Exploring the Role of Commercial Stakeholders in Open Source SoftwareEvolution 23

16. N. E. Fenton and S. L. Pfleeger.Software metrics: a practical and rigorous approach.
Thomson, 1996.

17. E. Guba. Criteria for assessing the trustworthiness of naturalistic inquiries. Educational
Communication and Technology, 29(2):75–91, 1981.

18. C. Hofmeister, R. Nord, and D. Soni.Applied Software Architecture: A Practical Guide for
Software Designers. Addison-Wesley Professional, 2000.

19. D. Hou. Studying the evolution of the Eclipse Java editor. Ineclipse ’07: Proc. OOPSLA
workshop on eclipse technology eXchange, pages 65–69, New York, NY, USA, 2007. ACM.

20. A. Igarashi and B. C. Pierce. On inner classes.Information and Computation, 177(1):56–89,
2002.

21. W. Li and S. Henry. Object-oriented metrics that predict maintainability. The Journal of
Systems and Software, 23(2):111–122, 1993.

22. J. Martinez-Romo, G. Robles, J. M. González-Barahona, and M.Ortuño-Perez. Using so-
cial network analysis techniques to study collaboration between a floss community and a
company. In B. Russo, E. Damiani, B. L. Scott Hissam, and G. Succi, editors,Open Source
Development, Communities and Quality, pages 171–186. Springer, 2008.

23. T. J. McCabe and C. W. Butler. Design complexity measurement andtesting.Communica-
tions of the ACM, pages 1415–1425, December 1989.

24. T. Mens, J. Fernández-Ramil, and S. Degrandsart. The evolutionof Eclipse. InProc. 24th
International Conference on Software Maintenance (ICSM), pages 386–395, October 2008.

25. E. Merlo, G. Antoniol, M. Di Penta, and V. F. Rollo. Linear complexity object-oriented
similarity for clone detection and software evolution analyses. InProc. 20th IEEE Inter-
national Conference on Software Maintenance (ICSM), pages 412–416, Washington, DC,
USA, 2004. IEEE Computer Society.

26. E. S. Raymond.The Cathedral and the Bazaar. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 1999.

27. G. Robles, S. Dueñas, and J. M. González-Barahona. Corporate involvement of libre soft-
ware: Study of presence in debian code over time. In J. Feller, B. Fitzgerald, W. Scacchi,
and A. Sillitti, editors,Open Source Development, Adoption and Innovation, pages 121–132.
Springer, 2007.

28. G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz. Evolution of the core team of devel-
opers in libre software projects. InProc. 6th IEEE International Working Conference on
Mining Software Repositories (MSR), pages 167–170, 2009.

29. C. Rossi and A. Bonaccorsi. Why profit-oriented companies enterthe os field?: intrin-
sic vs. extrinsic incentives. InProc. 5th Workshop on Open Source Software Engineering
(WOSSE), New York, NY, USA, 2005. ACM.

30. C. D. Santos Jr., G. Kuk, F. Kon, and R. Suguiura. The inextricable role of organizational
sponsorship for open source sustainability. InProc. 2nd workshop Towards Sustainable
Open Source, 2011.

31. M. Schaarschmidt and H. F. von Kortzflieisch. Divide et impera! the role of firms in large
open source software consortia. InProc. 15th Americas Conference on Information Systems
(AMCIS), 2009.

32. B. Shibuya and T. Tamai. Understanding the process of participatingin open source com-
munities. InProc. 2nd Workshop on Emerging Trends in Free/Libre/Open Source Software
Research and Development, 2009.

33. M. Wermelinger and Y. Yu. Analyzing the evolution of eclipse plugins. In Proc. Interna-
tional working conference on Mining Software Repositories (MSR), pages 133–136, New
York, NY, USA, 2008. ACM.



24 A. Capiluppi, K. Stol and C. Boldyreff

34. M. Wermelinger, Y. Yu, and A. Lozano. Design principles in architectural evolution: a case
study. InProc. 24th International Conference on Software Maintenance (ICSM), pages
396–405, 2008.

35. M. Wermelinger, Y. Yu, A. Lozano, and A. Capiluppi. Assessing architectural evolution: a
case study.International Journal of Empirical Software Engineering, pages 623–666, 2011.

36. M. Wermelinger, Y. Yu, and M. Strohmaier. Using formal conceptanalysis to construct and
visualise hierarchies of socio-technical relations. InProc. 31st International Conference on
Software Engineering (ICSE), companion volume, pages 327–330. IEEE, 2009.

37. R. K. Yin. Case Study Research: Design and Methods. SAGE Publications, 3rd edition,
2003.


