N
N

N

HAL

open science

Using the Eclipse C/C++ Development Tooling as a
Robust, Fully Functional, Actively Maintained, Open
Source C+-+ Parser

Danila Piatov, Andrea Janes, Alberto Sillitti, Giancarlo Succi

» To cite this version:

Danila Piatov, Andrea Janes, Alberto Sillitti, Giancarlo Succi. Using the Eclipse C/C++ Devel-
opment Tooling as a Robust, Fully Functional, Actively Maintained, Open Source C++ Parser. 8th
International Conference on Open Source Systems (OSS), Sep 2012, Hammamet, Tunisia. pp.399-399,
10.1007/978-3-642-33442-9 45 . hal-01519049

HAL Id: hal-01519049
https://inria.hal.science/hal-01519049
Submitted on 5 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01519049
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Using the Eclipse C/C++ Development Tooling
as a Robust, Fully Functional, Actively
Maintained, Open Source C++ Parser

Danila Piatov, Andrea Janes, Alberto Sillitti, and Giancarlo Succi

CASE, Free University of Bolzano, Piazza Domenicani 3, Italy
{danila.piatov, ajanes, asillitti, gsucci}@unibz.it

Abstract. Open Source parsers that support contemporary C/C++,
can recover from errors, include a preprocessor, and that are actively
maintained, are rare. This work describes how to use the parser contained
in the Eclipse C/C++ Development Tooling (CDT) as a Java library.
Such parser provides not only the abstract syntax tree of the parsed file
but also the semantics, i.e., type information and bindings. The authors
used the same approach to obtain Java and JavaScript parsers.

Programming language parsers are used by industry and research to create com-
pilers or interpreters, statical code analysis tools, code metrics tools, source code
editors with code completion, etc.

Parsing C/C++ is particularly tricky (e.g., a construct a * b can be a mul-
tiplication or a pointer definition depending on the type of a). Generic Open
Source parser generators do not alleviate this task since the ambiguities cannot
be resolved by a parser alone but require type information.

We searched for Open Source C++ parsers that include a preprocessor, per-
form semantic analysis (resolve type information and name bindings), are ro-
bust, and support contemporary C/C++ features. Of the found parsers, namely
cpp-ripper, Elsa, GCC using the “fdump-translation-unit” option, GCC_ XML,
Clang, and the Eclipse CDT parser only the latter 2 fulfilled the requirements.
We decided to opt for the Eclipse parser since the approach could also (and did)
provide us with parsers for other languages like Java and JavaScript.

The actual parser is located in the file “org.eclipse.cdt.core X.jar”, in the
Eclipse installation folder, where X stands for version of the file. The jar itself
is an Eclipse plugin, however, it is possible to use it as a Java library, without
initializing the Eclipse platform.

The instruction “org.eclipse.cdt.core.dom.ast.gnu.cpp.GPPLanguage. getDe-
fault().get ASTTranslationUnit(FileContent, IScannerInfo, IncludeFileContent-
Provider, IIndex, int, IParserLogService)” performs the actual parsing, returning
an abstract syntax tree (AST).

This work deals with an (apparently) simple problem: to “find a working C+-+
parser”. Eclipse CDT contains such parser, but there is no official documentation
about using it as a library outside of Eclipse. We hope that our poster can fill
this gap and be of help.



