N

N

Designing Secure Systems Based on Open Architectures
with Open Source and Closed Source Components
Walt Scacchi, Thomas A. Alspaugh

» To cite this version:

Walt Scacchi, Thomas A. Alspaugh. Designing Secure Systems Based on Open Architectures with
Open Source and Closed Source Components. 8th International Conference on Open Source Systems
(OSS), Sep 2012, Hammamet, Tunisia. pp.144-159, 10.1007/978-3-642-33442-9 10 . hal-01519041

HAL Id: hal-01519041
https://inria.hal.science/hal-01519041
Submitted on 5 May 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01519041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Designing Secure Systems Based on Open
Architectures with Open Source and Closed
Source Components

Walt Scacchi and Thomas A. Alspaugh

Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3455 USA

wscacchi@ics.uci.edu, http://www.ics.uci.edu/~wscacchi
thomas .alspaugh@acm.org, http://www.thomasalspaugh.org/

Summary. The development and evolution of secure open architecture systems has
received insufficient consideration. Such systems are composed of both open source
and closed software software components subject to different security requirements
in an architecture in which evolution can occur by evolving existing components,
replacing them, or refactoring their interfaces, interconnections and configuration.
But this may result in possible security requirements conflicts and organizational
liability for failure to fulfill security obligations. We are developing an approach
for understanding and modeling software security requirements as security licenses,
as well as for analyzing conflicts among groups of such licenses in realistic system
contexts and for guiding the acquisition, integration, or development of systems with
open source components in such an environment. Consequently, this paper reports
on our efforts to extend our existing approach to specifying and analyzing software
Intellectual Property (IP) licenses to now address software security licenses that can
be associated with secure OA systems.

1 Introduction

A growing number of enterprises are adopting a strategy in which a software-
intensive system is developed with an open architecture (OA) [19, 2, 5, 21],
whose components may be open source software (OSS) or closed source with
open application programming interfaces (APIs). Such systems evolve not
only through the evolution of their individual components, but also through
replacement of one component by another, possibly from a different producer
or under a different copyright license. With this approach, the system devel-
opment organization becomes an integrator of components largely produced
elsewhere that are interconnected through middleware or open APIs as nec-
essary to achieve the desired result.

2 Walt Scacchi and Thomas A. Alspaugh

An OA development process arises in a software ecosystem in which the
integrator is influenced from one direction by the goals, interfaces, license
choices, and release cycles of the component producers, and in another direc-
tion by the needs of its consumers. As a result the software components are
reused more widely, and the resulting OA systems can achieve reuse benefits
such as reduced costs, increased reliability, and potentially increased agility in
evolving to meet changing needs. An emerging challenge is to realize the ben-
efits of this approach when the individual components are subject to different
security requirements.

We have been able to address an analogous problem of how to specify and
analyze the Intellectual Property (IP) rights and obligations of the licenses
of software components [2, 3, 5, 6]. Our efforts now focus on the challenge
of how to specify and analyze software components and composed system
security rights and obligations using a new information structure we call a
security license. Alternative renderings for a security license are beyond the
scope of this paper, but at this point, we believe it is appropriate to develop
candidate security policy expressions that can be incorporated into security
licenses. Further, we seek to articulate security license terms and conditions
in ways that can be easily formalized and readily applied to large-scale OA
systems, as well as be automatically analyzed or tested in ways we have already
demonstrated [5, 6]. This is another goal of our research here.

Mozilla Gnome AbiSource
Producers Foundation Foundation | | Community Corel
Components | Thunderbird Firefox Gnome AbiWord WordPerfect
license (license) (license) (license) (license)
Independent
Integrators Software Government

Vendors Contractors

OA Systems M ﬁ %

sys. rights, sys. rights, sys. rights,
obligations obligations obligations

Fig. 1. A sample software ecosystem in which secure OA systems may be developed.

System
Consumers

Designing Secure Systems Based on Open Architectures 3

Next, the challenge of specifying secure software systems composed from
secure or insecure components is inevitably entwined with the software ecosys-
tems that arise for OA systems. An example software ecosystem producing
and integrating software components subject to different security practices
is portrayed in Fig. 1. We find that an OA software ecosystem involves not
only organizations and individuals producing and consuming components, and
supply paths from producer to consumer; but also:

the OA of the system(s) in question, and how best to secure it,

the open interfaces provided by the components, and how to specify com-
ponent security requirements that are enforceable or satisfiable at the in-
terface level,

e the evolution of related components, and how to assess that evolution in
terms of how overall system security rights and obligations may change,
and

e the rights and obligations resulting from the security licenses under which
various components are released, and that propagate from producers to
consumers.

In order to most effectively use an OA approach in developing and evolving
a system, it is essential to consider its OA ecosystem. An OA system draws on
components from proprietary closed source software vendors and open source
software projects. Its architecture is bounded and facilitated by the relevant
ecosystem of producers, from which the initial components are chosen. The
choice of a specific OA begins with a specialized software ecosystem involving
components that meet (or can be encapsulated or “wrapped” to meet) the
open interfaces used in the architecture. We do not claim this is the best or
the only way to reuse components or produce secure OA systems, but it is
an ever more widespread way. In this paper we build on previous work on
heterogeneously-licensed systems [14, 21, 2] by examining the role of security
licenses for components included within OA software ecosystems.

In the remainder of this paper, we survey some related work (Section 2),
define and examine characteristics of open architectures with or without secure
software elements (Section 3), define and examine characteristics for how se-
cure OA systems evolve (Section 4), introduce a structure for security licenses
(Section 5), outline security license architectures (Section 6), and sketch our
approach for security license analysis (Section 7). We then close with our
conclusions (Section 8).

2 Related Work

Software systems, whether operating as standalone components, applications,
or elements within large system compositions, are continuously being sub-
jected to security attacks. These attacks seek to slip through software vulner-
abilities known to the attackers but perhaps not to the software component

4 Walt Scacchi and Thomas A. Alspaugh

producers, system integrators or consumers. These attacks often seek to ac-
cess, manipulate, or remotely affect for nefarious purposes the data values
or control signals that a component or composed system processes, or seek
to congest or over-saturate networked services. Recent high profile security
attacks such as Stuxnet [10] reveal that security attacks may be very well
planned and employ a bundle of attack vectors and social engineering tactics
in order for the attack to reach strategic systems that are mostly isolated and
walled off from public computer networks. The Stuxnet attack entered through
software system interfaces at either the component, application subsystem, or
base operating system level (e.g., via removable thumb drive storage devices),
and their goal was to go outside or beneath their entry context. Furthermore,
as the Stuxnet attack involved the use of corrupted certificates of trust from
approved authorities as false credentials that allowed corrupt evolutionary
system updates to go forward, it seems clear that additional preventions are
needed that are external to, and prior to, their installation and run-time de-
ployment. In our case, that means we need to specify and analyze software
security requirements and evolutionary update capabilities at architectural
design-time and system integration build-time, and then reconcile those with
the run-time system composition. It also highlights the need to maintain the
design-time, build-time, and run-time system compositions in repositories re-
mote from system installations, and then cross-check and independently verify
them prior to run-time deployment in a high security system context.

As already noted, both software intellectual property licenses and secu-
rity licenses represent a collection of rights and obligations for what can or
cannot be done with a licensed software component. Licenses thus denote
non-functional requirements that apply to a software systems or system com-
ponents as intellectual property (IP) or security requirements (i.e., capabili-
ties) during their development and deployment. But rights and obligations are
not limited to concerns or constraints applicable only to software as IP. In-
stead, they can be written in ways that stipulate non-functional requirements
of different kinds. Consider, for example, that desired or necessary software
system security properties can also be expressed as rights and obligations
addressing system confidentiality, integrity, accountability, availability, and
assurance [8, 9]. It is often the case that developing robust specifications for
non-functional software system security properties in natural language pro-
duces specifications that are ambiguous, misleading, inconsistent across sys-
tem components, and lacking sufficient details [22]. Using a semantic model
to formally specify the rights and obligations required for a software system
or component to be secure [8, 9, 22] means that it may be possible to de-
velop both a “security architecture” notation and model specification that
associates given security rights and obligations across a software system, or
system of systems. Similarly, it suggests the possibility of developing computa-
tional tools or interactive architecture development environments that can be
used to specify, model, and analyze a software system’s security architecture
at different times in its development — design-time, build-time, and run-time.

Designing Secure Systems Based on Open Architectures 5

The approach we have been developing for the past few years for modeling and
analyzing software system IP license architectures for OA systems [3, 5, 6, 21],
may therefore be extendable to also being able to address OA systems with
heterogeneous “software security license” rights and obligations. Furthermore,
the idea of common or reusable software security licenses may be analogous to
the reusable security requirements templates proposed by Firesmith [12]. But
such an extension of the semantic software license modeling, meta-modeling,
and computational analysis tools to also support software system security can
be recognized as a next stage of our research studies.

3 Secure Open Architecture Composition

Open architecture (OA) software is a customization technique introduced by
Oreizy [19] and further expanded [2, 5, 6, 21] that enables third parties to mod-
ify a software system through its explicitly modeled architecture, evolving the
system by replacing its components. Increasingly more software-intensive sys-
tems are developed using an OA strategy, not only with open source software
(OSS) components but also proprietary components with open APIs. These
components may or may not have their own security requirements that must
be satisfied during their build-time integration or run-time deployment, such
as registering the software component for automatic update and installation
of new software versions that patch recently discovered security vulnerabili-
ties or prevent invocation of known exploits. Using this approach can lower
development costs and increase reliability and function, as well as adaptively
evolve software security [21]. Composing a system with heterogeneously se-
cured components, however, increases the likelihood of conflicts, liabilities,
and no-rights stemming from incompatible security requirements. Thus, in
our work we define a secure OA system as a software system consisting of
components that are either open source or proprietary with open API, whose
overall system rights at a minimum allow its use and redistribution, in full or
in part, such that they do not introduce new security vulnerabilities at the
system architectural level.

It may appear that using a system architecture that incorporate secure
OSS and proprietary components, and uses open APIs, will result in a secure
OA system. But not all such architectures will produce a secure OA, since
the (possibly empty) set of available security license rights for an OA system
depends on: (a) how and why secure or insecure components and open APIs
are located within the system architecture, (b) how components and open
APIs are implemented, embedded, or interconnected, and (c) the degree to
which the IP and security licenses of different OSS components encumber
all or part of a software system’s architecture into which they are integrated
[21, 1].

The following kinds of software elements appearing in common software
architectures can affect whether the resulting overall composed systems are

6 Walt Scacchi and Thomas A. Alspaugh

open or closed, as well as compliant with specified security policies (rights and
obligations propagated from components to the overall system) [7].
Software source code components — These can be either (a) standalone
programs, (b) libraries, frameworks, or middleware, (c) inter-application script
code such as shell scripts, (d) intra-application script code, as for creating Rich
Internet Applications using domain-specific languages such as XUL for the
Firefox Web browser [11] or “mashups” [18], or (e) similar script code that can
either install and invoke externally developed plug-in software components,
or invoke external application (helper) components. In each case the source
code is available and if the component is compiled it can be rebuilt. Each may
have its own distinct IP /security requirements.

Ezxecutable components — These components are in binary form, and the
source code may not be open for access, review, modification, or possible
redistribution [20]. If proprietary, they often cannot be redistributed, and so
such components will be present in the design- and run-time architectures but
not in the distribution-time architecture.

Software services — An appropriate software service can replace a source
code or executable component.

Application programming interfaces/APIs — Availability of externally
visible and accessible APIs is the minimum requirement for an “open system”
[17].

Software connectors — Software whose intended purpose is to provide a
standard or reusable way of communication through common interfaces, e.g.
High Level Architecture [16], CORBA, MS .NET, Enterprise Java Beans, and
GNU Lesser General Public License (LGPL) libraries. Connectors can also
limit the propagation of IP license obligations, mandate the propagation of
license obligations (e.g. via use of a license like the Affero GPL), or provide
additional security capabilities.

Methods of connection — These include linking as part of a configured
subsystem, dynamic linking, and client-server connections. Methods of con-
nection affect license obligation propagation, with different methods affecting
different licenses.

Configured system or subsystem architectures — These are software
systems that are used as atomic components of a larger system, and whose in-
ternal architecture may comprise components with different licenses, affecting
the overall system license and its security requirements. To minimize license
interaction, a configured system or sub-architecture may be surrounded by
what we term a license firewall, namely a layer of dynamic links, client-server
connections, license shims, or other connectors that block the propagation of
specific obligations.

Fig. 2 shows a high-level run-time view of a composed OA system whose
reference architectural design in Fig. 3 includes all the kinds of software el-
ements listed above. This reference architecture has been instantiated in a
build-time configuration in Fig. 4 that in turn could be realized in alternative
run-time configurations in Figs. 5, 6, and 7 with different security capabilities

Designing Secure Systems Based on Open Architectures 7

% 2 28 2 0 N 4= .
: Gnome Evolution
Firefox 5= .
- 6 email, calendar
B |[Dcamsn] 77 7

Qs

Red Hat /
Fedora Linux

Fig. 2. An example composite OA system potentially subject to different IP and
security licenses.

Web Browser Word Processor Email & Calendar
| User Interface Bl User Interface Bl User Interface

{" Web Browser | [_Word Processor }[|{ Email & Calendar |

it Intra-Application Scripting‘})'—L

| ATz /

H Operating System ||;

Email Server

Co ent Vessel

Fig. 3. The design-time architecture of the system in Fig. 2 that specifies a required
security containment vessel (domain) scheme.

Key: (A

AbiWord User Gnome Evolution
Interface User Interface

S

Interface

G

>
g
=
o
g
=

Firefox i/l Gnome Evolution |

JavaScript scripts i

l

nix System Calls

Firefox User

{ Unix System Ca/ls:‘

,,,,,,,,,,,,, B IMAP/POP/SMTP
¥ via SSL

Apache HTTP__ | [(RH/Fedora Linux)|’ XMail]

Fig. 4. A secure build-time architecture describing the version running in Fig. 2
with a specified security containment vessel scheme.

8 Walt Scacchi and Thomas A. Alspaugh

o wordperfect |m Gnome Evolution

cl
i

Cshell scripts

Unix System Calls Unix System Calls ‘
w "
L o —— b4}

|
&

/ ‘
Bz
3

Unix System Calls
"

i

Apache HTTP B Fe?grsa) e ¥Mail

Fig. 5. Instantiated build-time OA system with maximum security architecture of
Fig. 4 via individual security containment vessels (domains) for each system element.

Gnome Evolution

B
Cshell scripts

=
IMAP{POPSMTP
=]

¥t b hdy
Unix System Calls Unix System Calls Unix System Calls |
v

Apache HTTP

RH/Fedora Linux .
(05) XMail

Fig. 6. Instantiated build-time OA system of Fig. 4 but with a minimum secu-

rity architecture via a single overall security containment vessel (domain) for the
complete system using a common software hypervisor.

| wordperfect |m Gnome Evolution

hd)
| Unix System Calls |

"

———¥!

Apache HTTP BE Fe?grsa) e ¥Mail

Fig. 7. Instantiated build-time OA system of Fig. 4 but with a mixed security
architecture via security containment vessels for some groupings of elements.

Designing Secure Systems Based on Open Architectures 9

(policies) and overall system security schemes. The configured systems con-
sist of software components such as a Mozilla Web browser, Gnome Evolution
email client, and AbiWord word processor (similar to MS Word), all running
on a RedHat Fedora Linux operating system accessing file, print, and other
remote networked servers such as an Apache Web server. Components are in-
terconnected through a set of software connectors that bridge the interfaces of
components and combine the provided functionality into the system’s services.
However, note that the software architecture does not pre-determine how se-
curity capabilities will be assigned and distributed across different variants of
the run-time composition.

4 OA System Evolution

An OA system can evolve by a number of distinct mechanisms, some of which
are common to all systems but others of which are a result of heterogeneous
IP and security licenses in a single system.

By component evolution — One or more components can evolve, alter-
ing the overall system’s characteristics (for example, upgrading and replacing
the Firefox Web browser from version 3.5 to 3.6 which may update existing
software functionality while also patching recent security vulnerabilities).
By component replacement — One or more components may be replaced
by others with different behaviors but the same interface, or with a different
interface and the addition of shim code to make it match (for example, re-
placing the GPL’d AbiWord word processor with either Open Office or MS
Word, perhaps depending on which is considered less vulnerable to security
attack).

By architecture evolution — The OA can evolve, using the same compo-
nents but in a different configuration, altering the system’s characteristics.
For example, as discussed in Section 3, changing the configuration in which a
component is connected can change how its IP or security license affects the
rights and obligations for the overall system. This could arise when replacing
email and word processing applications with web services like Google Mail
and Google Docs, which we might judge to be more secure since the Google
services (operating in a cloud environment) may be less easily accessed or
penetrated by a security attack.

By component license evolution — The license under which a component
is available may change, as for example when the license for the Mozilla core
components was changed from the Mozilla Public License (MPL) to the cur-
rent Mozilla Disjunctive Tri-License; or the component may be made available
under a new version of the same license, as for example when the GNU General
Public License (GPL) version 3 was released. Similarly, the security license
for a component may be changed by its producers, or the security license for
a composed system changed by its integrators, in order to prevent or deter

10 Walt Scacchi and Thomas A. Alspaugh

recently discovered security vulnerabilities or exploits before an evolutionary
version update (or patch) can be made available.

By a change to the desired rights or acceptable obligations — The
OA system’s integrator or consumers may desire additional IP or security li-
cense rights (for example the right to sublicense in addition to the right to
distribute), or no longer desire specific rights; or the set of license obliga-
tions they find acceptable may change. In either case the OA system evolves,
whether by changing components, evolving the architecture, or other means,
to provide the desired rights within the scope of the acceptable obligations.
For example, they may no longer be willing or able to provide the source code
for components with known vulnerabilities that have not been patched and
eliminated.

The interdependence of integrators and producers results in a co-evolution
of software within an OA ecosystem. Closely-coupled components from differ-
ent producers must evolve in parallel in order for each to provide its services, as
evolution in one will typically require a matching evolution in the other. Pro-
ducers may manage their evolution with a loose coordination among releases,
for example as between the Gnome and Mozilla organizations. Each release of
a producer component creates a tension through the ecosystem relationships
with consumers and their releases of OA systems using those components,
as integrators accommodate the choices of available, supported components
with their own goals and needs. As discussed in our previous work [3, 4, 6],
license rights and obligations are manifested at each component’s interface,
then mediated through the system’s OA to entail the rights and corresponding
obligations for the system as a whole. As a result, integrators must frequently
re-evaluate an OA system’s IP /security rights and obligations. In contrast to
homogeneously-licensed systems, license change across versions is a character-
istic of OA ecosystems, and architects of OA systems require tool support for
managing the ongoing licensing changes [3, 4, 5, 6].

We propose that such support must have several characteristics.

e It must rest on a license structure of rights and obligations (Section 5),
focusing on obligations that are enactable and testable.

e It must take account of the distinctions between the design-time, build-
time, and distribution-time architectures (Sections 3, 5, and 6) and the
rights and obligations that come into play for each of them.

e It must distinguish the architectural constructs significant for software
licenses, and embody their effects on rights and obligations (Section 3).
It must define license architectures (Section 6).

It must provide an automated environment for creating and managing
license architectures. We have developed a prototype that manages an IP
license architecture as a view of its system architecture [2, 3, 5, 6].

e Finally, it must automate calculations on system rights and obligations so
that they may be done easily and frequently, whenever any of the factors
affecting rights and obligations may have changed (Section 7).

Designing Secure Systems Based on Open Architectures 11
5 Security Licenses

Licenses typically impose obligations that must be met in order for the licensee
to realize the assigned rights. Common IP/copyright license obligations in-
clude the obligation to publish at no cost any source code you modify (MPL)
or the obligation to publish all source code included at build-time or statically
linked (GPL). The obligations may conflict, as when a GPL’d component’s
obligation to publish source code of other components is combined with a pro-
prietary component’s license prohibition of publishing its source code. In this
case, no rights may be available for the system as a whole, not even the right
of use, because the two obligations cannot simultaneously be met and thus
neither component can be used as part of the system. Security capabilities
can similarly be expressed and bound to the data values and control signals
that are visible in component interfaces, or through component connectors.
Some typical security rights and obligations might be:

The right to read data in containment vessel T.
The right to replace specified component C with some other component.
The right to add or update specified component D in a specified configu-
ration.
The right to add, update, or remove security mechanism M.
The obligation for a specific component to have been vetted for the capa-
bility to read and update data in containment vessel T.

e The obligation for a user to verify his/her authority to access containment
vessel T, by password or other specified authentication process.

The basic relationship between software IP /security license rights and obli-
gations can be summarized as follows: if the specified obligations are met,
then the corresponding rights are granted. For example, if you publish your
modified source code and sub-licensed derived works under MPL, then you
get all the MPL rights for both the original and the modified code. Simi-
larly, software security requirements are specified as security obligations that
when met, allow designated users or other software programs to access, mod-
ify, and redistribute data and control information to designated repositories
or remote services. However, license details are complex, subtle, and difficult
to comprehend and track—it is easy to become confused or make mistakes.
The challenge is multiplied when dealing with configured system architectures
that compose a large number of components with heterogeneous IP /security
licenses, so that need for legal counsel or expert security review begins to seem
inevitable [20, 13].

‘We have developed an approach for expressing software licenses of different
types (intellectual property and security requirements) that is more formal
and less ambiguous than natural language, and that allows us to calculate
and identify conflicts arising from the rights and obligations of two or more
component’s licenses. Our approach is based on Hohfeld’s classic group of
eight fundamental jural relations [15], of which we use right, duty, no-right,

12 Walt Scacchi and Thomas A. Alspaugh

and privilege. We start with a tuple <actor, operation, action, object> for
expressing a right or obligation. The actor is the “licensee” for all the licenses
we have examined. The operation is one of the following: “may”, “must”,
“must not”, or “need not”, with “may” and “need not” expressing rights and
“must” and “must not” expressing obligations. The action is a verb or verb
phrase describing what may, must, must not, or need not be done, with the
object completing the description. A license may be expressed as a set of
rights, with each right associated with zero or more obligations that must be
fulfilled in order to enjoy that right. Fig. 8 shows the meta-model with which
we express licenses.

License — Right JOingation

Y ¥

Tuple

?

Actor |(|Modality || Action || Object || License

Il
Secure capability actions

Fig. 8. Security license meta-model

Designers of secure systems have developed a number heuristics to guide
architectural design in order to satisfy overall system security requirements,
while avoiding conflicts among interacting security mechanisms or defenses.
However, even using design heuristics (and there are many), keeping track of
security rights and obligations across components that are interconnected in
complex OAs quickly becomes too cumbersome. Automated support is needed
to manage the complexity of multi-component system compositions where
different security requirements must be addressed through different security
capabilities.

6 Security License Architectures

Our security license model forms a basis for effective reasoning about licenses
in the context of actual systems, and calculating the resulting rights and obli-
gations. In order to do so, we need a certain amount of information about the
system’s configuration at design-time, build-time, and run-time deployment.
The needed information comprises the license architecture, an abstraction of
the system architecture:

Designing Secure Systems Based on Open Architectures 13

Red Hat /
Fedora Linux

Google pl e R
Calendar |

Fig. 9. A second instantiation at run-time (Firefox, Google Docs and Calendar
operating within different Firefox run-time sessions, Fedora) of the OA system in
Fig. 3 as an evolutionary alternative system version, which in turn implies or requires
an alternative security containment scheme.

1. the set of components of the system (for example, see Fig. 2) for the
current system configuration, as well as subsequently for system evolution
update versions (as seen in Fig. 9);

2. the relation mapping each component to its security requirements (speci-
fied and analyzed at design-time, as exemplified in Fig. 3) or capabilities
(specified and analyzed at build-time in Fig. 4 and run-time across alter-
natives shown in Fig. 5, 6, and 7);

3. the connections between components and the security requirements or
capabilities of each connector passing data or control signals to/from it;
and

4. possibly other information, needed to detect or prevent IP and security
requirements conflicts, which is as yet undetermined.

With this information and definitions of the licenses involved, it should
possible to automatically calculate rights and obligations for individual com-
ponents or for the entire system, as well as guide/assess system design and
evolution, using an automated environment of the kind that we have previ-
ously demonstrated [2, 3, 5, 6].

7 Security License Analysis

Given a specification of a software system’s architecture, we can associate se-
curity license attributes with the system’s components, connectors, and sub-

14 Walt Scacchi and Thomas A. Alspaugh

system architectures, resulting in a license architecture for the system, and cal-
culate the security rights and obligations for the system’s configuration. Due
to the complexity of license architecture analysis, and the need to re-analyze
every time a component evolves, a component’s security license changes, a
component is substituted, or the system architecture changes, OA integrators
really need an automated license architecture analysis environment. We have
developed a prototype of such an environment for analogous calculations for
software copyright licenses [2, 3, 4, 5, 6], and are extending this approach to
analyze security licenses. But here we identify two types of analysis that are
representative of those our approach supports.

7.1 Security obligation conflicts

A security obligation can conflict with another obligation, can negate a re-
lated right for the same or nearby components, or require a right that is not
available. For instance, consider two components C' and D with the following
security obligations:

(01) The obligation for component C to block access to containment vessel
T by any other component.

(02) The obligation for some component connected to component D to
grant it access to data in containment vessel T.

Obligations O1 and O2 cannot be simultaneously satisfied under any con-
ditions.

Suppose C is replaced with component C’ connected to D and having the
following obligation:

(03) The obligation for component C' to have been successfully vetted for
the capability to grant access to data in containment vessel T.

If C’ has not been vetted, then O3 is not satisfied; by extension, neither
is 02, even though O1 is no longer in force.

Consider the following security right:

(R1) The right to grant access to data in containment vessel T.

Even if C’ was successfully vetted, it requires that R1 be available to it in
order to fulfil O2. If R1 is unavailable, then O2 cannot be satisfied.

These kinds of conflicts must be taken into consideration in different ways
at different development times:

e at design time, ensuring that R1 can be available and that it will be pos-
sible to vet C’;

e at build time, ensuring that the specific implementation of C’ has been
vetted successfully; and

e possibly at run time as well, confirming that C’ is certified to have been
vetted, or (if ¢’ is dynamically connected at run time) vetting C’ before
trusting the current connection to it.

The absence of such conflicts does not mean, of course, that the system is
secure. But the presence of conflicts reliably indicates it is not secure.

Designing Secure Systems Based on Open Architectures 15
7.2 Rights and obligations calculations

The rights available for the entire system (the right to read and update data
in containment vessel T, the right to replace components with other compo-
nents, the right to update component security licenses, etc.) are calculated
as the intersection of the sets of security rights available for each component
of the system. If a conflict is found involving the obligations and rights of
interacting components, it is possible for the system architect to consider an
alternative scheme, e.g. using one or more connectors along the paths between
the components that act as a security firewall. This means that the architec-
ture and the automated environment together can determine what OA design
best meets the problem at hand with available software components. Compo-
nents with conflicting security licenses do not need to be arbitrarily excluded,
but instead may expand the range of possible architectural alternatives if the
architect seeks such flexibility and choice.

8 Conclusion

This paper introduces the concept and initial scheme for systematically spec-
ifying and analyzing the security requirements for complex open architecture
systems. We argue that such requirements should be expressed as operational
capabilities that can be collected and sequenced within a new information
structure we call a security license. Such a license expresses security in terms
of capabilities that provide users or programs obligations and rights for how
they may access data or control information, as well as how the may update
or evolve system elements. These security license rights and obligations thus
play a key role in how and why an OA system evolves in its ecosystem of
software component producers, system integrators and consumers.

We note that changes to the license obligations and rights, whether for
control of intellectual property or software security, across versions of com-
ponents is a characteristic of OA systems whose components are subject to
different security requirements or other license restrictions. A structure for
modeling software licenses and automated support for calculating its rights
and obligations in the context of its ecosystem are needed in order to manage
an OA system’s evolution.

We have outlined an approach for achieving these and sketched how they
further the goal of reusing components in developing software-intensive sys-
tems. Much more work remains to be done, but we believe this approach
turns a vexing problem into one for which workable, as well as robust formal,
solutions can be obtained.

16

Walt Scacchi and Thomas A. Alspaugh

9 Acknowledgments

This research is supported by grants #N00244-10-1-077 and #N00244-12-
1-0004 from the Acquisition Research Program at the Naval Postgraduate
School, and by grant #0808783 from the U.S. National Science Foundation.
No review, approval, or endorsement implied.

References

1.

2.

10.

11.

12.

13.

T. A. Alspaugh and A. I. Antén. Scenario support for effective requirements.
Information and Software Technology, 50(3):198-220, Feb. 2008.

T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. Analyzing software licenses in
open architecture software systems. In 2nd International Workshop on Emerging
Trends in FLOSS Research and Development (FLOSS), pages 1-4, May 2009.

. T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. Intellectual property rights

requirements for heterogeneously-licensed systems. In 17th IEEE International
Requirements Engineering Conference (RE’09), pages 24-33, 2009.

. T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. Presenting software license

conflicts through argumentation. In 28rd International Conference on Software
Engineering and Knowledge Engineering (SEKE 2011), pages 509-514, July
2011.

. T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. The challenge of heteroge-

neously licensed systems in open architecture software ecosystems. In S. Jansen,
M. Cusumano, and S. Brinkkemper, editors, Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry. 2012. To appear.

. T. A. Alspaugh, W. Scacchi, and H. U. Asuncion. Software licenses in context:

The challenge of heterogeneously-licensed systems. Journal of the Association
for Information Systems, 11(11):730-755, Nov. 2010.

. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

. T. D. Breaux and A. I. Anton. Analyzing goal semantics for rights, permis-

sions, and obligations. In 13th IEEE International Requirements Engineering
Conference (RE’05), pages 177-188, 2005.

. T. D. Breaux and A. I. Anton. Analyzing regulatory rules for privacy and

security requirements. IEEE Transactions on Software Engineering, 34(1):5-20,
2008.

N. Falliere, L. O Murchu, and E. Chien. W32.Stuxnet dossier. Technical report,
Symantec, Oct. 2010. http://www.symantec.com/content/en/us/enterprise/
media/security_response/whitepapers/w32_stuxnet_dossier.pdf.

K. Feldt. Programming Firefox: Building Rich Internet Applications with XUL.
O’Reilly Media, Inc., 2007.

D. Firesmith. Specifying reusable security requirements. Journal of Object
Technology, 3(1):61-75, Jan.—Feb. 2004.

R. Fontana, B. M. Kuhn, E. Moglen, M. Norwood, D. B. Ravicher, K. Sandler,
J. Vasile, and A. Williamson. A legal issues primer for open source and free
software projects. Technical report, Software Freedom Law Center, Mar. 2008.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Designing Secure Systems Based on Open Architectures 17

D. M. German and A. E. Hassan. License integration patterns: Addressing li-
cense mismatches in component-based development. In 28th International Con-
ference on Software Engineering (ICSE ’09), pages 188-198, May 2009.

W. N. Hohfeld. Some fundamental legal conceptions as applied in judicial rea-
soning. Yale Law Journal, 23(1):16-59, Nov. 1913.

F. Kuhl, R. Weatherly, and J. Dahmann. Creating computer simulation systems:
an introduction to the high level architecture. Prentice Hall, 1999.

B. C. Meyers and P. Oberndorf. Managing Software Acquisition: Open Systems
and COTS Products. Addison-Wesley Professional, 2001.

L. Nelson and E. F. Churchill. Repurposing: Techniques for reuse and integration
of interactive systems. In International Conference on Information Reuse and
Integration (IRI-08), page 490, 2006.

P. Oreizy. Open Architecture Software: A Flexible Approach to Decentralized
Software FEvolution. PhD thesis, University of California, Irvine, 2000.

L. Rosen. Open Source Licensing: Software Freedom and Intellectual Property
Law. Prentice Hall, 2005.

W. Scacchi and T. A. Alspaugh. Emerging issues in the acquisition of open
source software within the U.S. Department of Defense. In 5th Annual Acquisi-
tion Research Symposium, pages 230-214, May 2008.

S. S. Yau and Z. Chen. A framework for specifying and managing security
requirements in collaborative systems. In Third International Conference on
Autonomic and Trusted Computing (ATC 2006), pages 500-510, 2006.

