
HAL Id: hal-01518666
https://inria.hal.science/hal-01518666

Submitted on 5 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Verified Computation with Probabilities
Scott Ferson, Jack Siegrist

To cite this version:
Scott Ferson, Jack Siegrist. Verified Computation with Probabilities. 10th Working Conference on Un-
certainty Quantification in Scientific Computing (WoCoUQ), Aug 2011, Boulder, CO, United States.
pp.95-122, �10.1007/978-3-642-32677-6_7�. �hal-01518666�

https://inria.hal.science/hal-01518666
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Verified computation with probabilities

Scott Ferson and Jack Siegrist

Applied Biomathematics

Abstract. Because machine calculations are prone to errors that can
sometimes accumulate disastrously, computer scientists use special strate-
gies called verified computation to ensure output is reliable. Such strate-
gies are needed for computing with probability distributions. In prob-
abilistic calculations, analysts have routinely assumed (i) probabilities
and probability distributions are precisely specified, (ii) most or all vari-
ables are independent or otherwise have well-known dependence, and
(iii) model structure is known perfectly. These assumptions are usually
made for mathematical convenience, rather than with empirical justi-
fication, even in sophisticated applications. Probability bounds analysis
computes bounds guaranteed to enclose probabilities and probability dis-
tributions even when these assumptions are relaxed or removed. In many
cases, results are best-possible bounds, i.e., tightening them requires ad-
ditional empirical information. This paper presents an overview of prob-
ability bounds analysis as a computationally practical implementation of
the theory of imprecise probabilities that represents verified computation
of probabilities and distributions.

Keywords: probability bounds analysis, probability box, p-box, veri-
fied computation, imprecise probabilities, interval analysis, probabilistic
arithmetic

1 Introduction

Many high-profile disasters are attributable to numerical errors in computer
calculations. The self-destruction of the Ariane 5 rocket on its maiden test flight
was caused by integer overflow (ESA 1996). The crash of the Mars Climate
Orbiter during orbital insertion resulted from a units incompatibility (Isbell et
al. 1999). The Sleipner A offshore drilling platform sank because of an inaccurate
finite element approximation (Selby et al. 1997). The Aegis cruiser USS Yorktown
was dead in the water for several hours because of a propagated divide-by-zero
error (Slabodkin 1998). The Flash Crash in which the Dow Jones Industrial
Average plunged 9% almost instantaneously was due to runaway computerized
trading mediated by the interacting algorithms used by high-frequency traders
(CFTC/SEC 2010). These errors can be worse than costly or embarrassing.
The failure of a Patriot missile to intercept the SCUD missile that killed 28
people and injured 100 more was supposedly due to accumulated round-off error
(GAO 1992). Miscalculations arising from a race-condition error in the medical
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software controlling the Therac-25 used for radiation therapy caused multiple
fatal radiation overdoses to patients (Baase 2008, 425).

The corny adage “To err is human, but to really foul things up requires a
computer” is not merely bitterness of the underemployed. Because computers
are so fast, errors can propagate and accumulate very quickly, and because they
often lack a machine analog of human contextual common sense, dramatic er-
rors can go unnoticed until damage is unavoidable. Subtle, even minor features
can, in unlucky situations, interact to create disastrously bad numerical results.
Ironically, the appearance of precision in computer results can often induce a
human error in which users place undue trust in the computer’s output.

To overcome these problems, computer scientists have developed methods for
‘verified computing’ by which users will always get reliably accurate results, or at
least will be made aware of the problem when their results are not reliable. One
basic task in verified computing is to find an enclosure that surely contains the
exact result of a calculation. This problem is often addressed using the methods
of interval analysis, which is a mathematically rigorous form of arithmetic that
can be implemented in software even though computers can represent numbers
with only finite precision (Kulisch et al. 1993; Hammer et al. 1997; Popova 2009;
Tucker 2011). In fact, these interval calculations can have rigor corresponding
to that of a mathematical proof, in spite of the fact that they are done auto-
matically by machine. The approach guarantees that rounding error is limited,
integer overflow is prevented, and division by zero as well as similar impossi-
ble operations are handled appropriately to ensure the integrity of the affected
calculation. Of course, this means that real-valued answers cannot generally be
represented precisely in finite machine number schemes. Instead, the answers
are represented by enclosures consisting of two bounding machine-representable
values. If this enclosure interval is narrow, we know the answer reliably and accu-
rately. If the interval is wide, we have a transparent warning that the associated
uncertainty is large, which implies that a more careful reanalysis may be useful.

Interval analysis is often offered as the primary—and one might think the
only—method for verified computation, but verified computing requires a panoply
of methods. Consistent application of mathematical rigor in the design of the
algorithm, in the arithmetic operations it uses, and in the execution of the pro-
gram allow an analyst to guarantee that a problem has a solution somewhere
in the computed enclosing interval (or that no solution exists). To enable such
consistency, methods must be developed for the wide variety of numerical and
other operations that computers do for us. For instance, basic mathematical op-
erations on floating-point numbers are replaced by interval analysis on intervals
guaranteed to enclose scalar real values. Likewise, methods for vector and ma-
trix operations have been developed that extend and generalize interval analysis
with multidimensional arrays of interval ranges.

Similar methods of verified computing are needed for representing and cal-
culating with probabilities and probability distributions on finite-precision ma-
chines. Unfortunately, the properties of probability distributions and the features
of the laws of probability complicate the effort considerably. For instance, even
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representing a univariate continuous distribution is an infinite-dimensional prob-
lem, because it is a continuous function whose values at an infinity of points must
be captured in the finite storage accessible by the computer. The critical role
of assumptions about the stochastic dependence among variables is particularly
complicating, and this is an issue even for total probabilities that can be repre-
sented by single scalar values. For example, if two events have probabilities 0.2
and 0.3 respectively, the AND operator commonly used in fault trees would only
yield the product 0.06 when the probabilities are independent. Without specify-
ing the dependence between the events, the result of the operator is undefined
(although it can be bounded). The role of dependence assumptions is much more
complicated still for distributions of random variables (Ferson et al. 2004; Nelsen
1999).

Nevertheless, we must undertake the effort, whatever its complexity. There is
a pronounced need for verified computing methods to use with probabilities and
probability distributions because they are becoming more and more pervasively
used in engineering calculations including uncertainty analyses, risk assessments,
sensitivity studies, and modeling of quantities with intrinsic aleatory uncertain-
ties. They are being used across a host of fields as diverse as financial planning
(Hertz 1964; Boyle 1977), human health risk analyses (McKone and Ryan 1989),
ecological risk assessments (Suter 1993), materials and weapons safety calcula-
tions (Elliott 2005; Cooper 1994), extinction risk analysis for endangered species
(Burgman et al. 1993; Ferson and Burgman 2000), and probabilistic risk as-
sessment for nuclear power (Hickman et al. 1983) and other engineered systems
(Vick 2002).

Engineers routinely face three crucial issues when they develop probabilistic
models. The first is that their model uncertainty, i.e., their doubt about the
proper mathematical form the model should have, is almost never articulated,
much less accounted for in any comprehensive way. Modelers may recognize and
acknowledge the limitations induced by this problem, yet they rarely conduct
the sensitivity studies needed to fully assess the consequences of the uncertainty
on model results. The second crucial problem is that there is often little or no
quantitative information about possible correlations among the input variables,
and in many cases the nature of the intervariable dependencies may not have
been empirically studied at all. The typical response of analysts, even if they
are aware of their uncertainty, is to nevertheless assume independence among
variables, even though this assumption may be neither realistic nor conservative.
In fact, using an incorrect assumption about dependence can strongly distort the
output distributions, especially in their tails (Ferson et al. 2004; contra Smith
et al. 1992).

The third crucial problem faced by engineers developing probabilistic models
is that it is often impossible to fully justify a precise probability distribution to
be used as input in the model, and sometimes the family of the distribution is
only a guess. There is a huge literature on the subject of estimating probabil-
ity distributions from empirical data, and there are several methods available
for use including the method of matching moments, maximum likelihood es-
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timation, the maximum entropy criterion and Bayesian methods to compute
posterior predictive distributions. But these standard approaches are of limited
practical reliability when few relevant data exist. Even when confidence limits
are computed, little use can be made of them without an elaborate sensitivity
study that is cumbersome to organize, computationally intense, and difficult to
interpret. With limited empirical information, all of these methods for select-
ing input distributions require assumptions that cannot be justified by appeal
to evidence and therefore may be false. These unsubstantiated assumptions can
make a difference in the results. As Bukowski et al. (1995) showed, the choice
about distribution shape can have a sizeable effect on the output distributions,
especially at the tails.

It is generally assumed that the only solution to incomplete information is
additional empirical effort to measure correlations, develop input distributions,
and validate the model. As a practical matter, since such empirical information
is typically incomplete—and indeed often quite sparse—analysts are forced to
make assumptions without empirical justifications, leading to diminished credi-
bility for the assessment and any subsequent decisions. There are, however, com-
putational methods that allow analysts to sidestep a lack of information about
the correlation and dependency structure among variables to obtain partial or
complete solutions in many practical cases without having to make unjustified
and possibly false assumptions. Likewise, when empirical information about the
input distributions is limited, far more appropriate representations of uncer-
tainty can be developed than are currently obtainable using techniques such as
the maximum entropy criterion. These new methods allow us to compute bounds
on estimates of probabilities and probability distributions that are guaranteed
to be correct even when one or more of the assumptions is relaxed or removed.
In many cases, the results obtained are the best possible bounds, which means
that tightening them would require additional empirical information. This paper
reviews probability bounds analysis (PBA, Ferson et al. 2003), as a computa-
tionally practical calculus of the theory of imprecise probabilities (IP, Walley
1991), that combines ideas from both interval analysis and probability theory
to sidestep the limitations of each. Probability bounds analysis is logically and
morally equivalent to a sensitivity analysis. Objecting to PBA implies an objec-
tion to sensitivity analysis. PBA uses exactly the same mathematical approach
used in sensitivity analysis, but its computational methods are applicable to
broader questions and are vastly more efficient.

2 Kinds of uncertainty

In the past, uncertainty analysis considered the source of uncertainty to be its
salient aspect, so modelers talked, for example, about their parametric uncer-
tainty or their model-form uncertainty. A more modern view is that the nature
of the uncertainty, rather than its source, is a more important characteristic. We
can distinguish between two main forms of uncertainty: variability and incerti-
tude. Variability refers to the stochastic fluctuations in a quantity through time,
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variation across space, manufacturing differences among components, genetic or
phenotypic differences among individuals, or similar heterogeneity within some
ensemble or population. Engineers often refer to variability as aleatory uncer-
tainty, harkening to alea, the Latin word for dice. This is considered to be a
form of uncertainty because the value of the quantity can change each time one
looks, and one cannot predict precisely what the next value will be (although
the distribution of values may be known). Incertitude, on the other hand, refers
to the lack of full knowledge about a quantity that arises from imperfect mea-
surement, limited sampling effort, or incomplete scientific understanding about
the underlying processes that govern a quantity. Many engineers refer to incer-
titude as epistemic uncertainty. We might simply and non-euphemistically call
it ‘ignorance’, except for the embarrassment or confusion that word might evoke
should professionals need to mention it in front of their bosses or the laity.

These two forms of uncertainty have important differences. Incertitude can in
principle be reduced by empirical effort; investing more in measurement should
yield better precision. Variability, in contrast, can perhaps be better character-
ized, but cannot generally be reduced by empirical effort. Incertitude depends
on the observer and the observations made. Variability does not depend on an
observer at all. It exists whether or not anyone witnesses it, like the sound
waves emanating from the proverbial tree falling unseen in the forest. Although
variability and incertitude can sometimes be like ice and snow in that their dis-
tinction can be difficult to discern through complicating details, and sometimes
one can change into the other depending on the scale and perspective of the
analyst, the macroscopic differences between these two forms of uncertainty are
usually obvious and often significant in practical settings.

There is a crucial difference between a quantity actually varying and our
simply not being sure about its magnitude, and this difference affects how we
should do calculations. Consider, for example, the following elementary ques-
tion: Suppose we are told that a quantity A is some value or values between 2
and 4, and that B is a quantity inside the range between 3 and 5. What can
be said about their sum A + B? When this exemplar question was posed on
the Riskanal electronic mailing list, half the respondents suggested the proper
answer can be computed by modeling A as a uniform distribution between 2
and 4, and modeling B with another uniform distribution between 3 and 5, and
convolving these two uniforms together with Monte Carlo simulation to obtain
the triangular distribution ranging between 5 and 9 with a mode at 7 shown
as a probability density function in Fig. 1. This is the traditional answer from
probabilists for such a question. Indeed, it is the answer that Laplace (1820)
himself would have suggested. This answer says that the value 7 is the most
likely magnitude of the sum, and also that the extreme values of 5 and 9 have
vanishing probabilities. There is more than two-thirds probability that the sum
falls in the middle interval [6.1, 7.9].

But what exactly justifies this concentration of probability mass in the central
range? There is nothing in the statement of the elementary question that suggests
that 2 is not a perfectly possible value of A, and likewise nothing to suggest that
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Fig. 1. Triangular distribution which is the traditional probabilist answer to the ele-
mentary question “What is the sum A+B where A and B are in the respective intervals
[2,4] and [3,5]?”

B might not simply just be 3. If so, then the sum is the scalar value 5, and the
triangular distribution seems hard to explain. Given what is expressly known
about the inputs, there is no reason to deprecate any of the possible values of
the sum, or to distinguish one value as more probable than any other. But that
may be a far cry from saying that all the values are equally probable. The other
half of the respondents to the Riskanal poll said that the proper answer to the
elementary question can be computed simply by adding together the intervals
[2,4] + [3,5] using interval arithmetic (Moore 1966) to yield the interval [5,9].
Notice that this answer offers no concentration of mass in the central range, and
suggests that the sum might simply be 5, and likewise might simply be 9, and
there is nothing to suggest that these values, although extreme, are in any way
unlikely.

The interval answer is a much looser statement than is any probability distri-
bution. For instance, modeling the sum with a uniform probability distribution
would say that all possible values within the range [5,9] are equally probable.
Taking such a model seriously would suggest that one could profitably make bets
about future values of the sum based on the probability. For instance, a prob-
abilist would presumably be disposed to bet favorably, and big, on a gamble
that the sum is larger than 5.01. A more sanguine view is that one had better
not place any such bets, other than those that can be actually justified by the
given knowledge. All that can be justified is that the probability distribution of
the sum has its support within the range [5,9], but this admits a whole host of
possible distributions. The interval answer can be identified with the entire class
of such distributions.
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Our view is that only one of these two answers to the elementary question
is correct. We think the right answer is clearly the interval and not the trian-
gular distribution, at least in practical contexts such as risk analysis and most
uncertainty assessments. The triangular distribution traditionally given by prob-
abilists is wrong because it implies or appears to imply more is known than is
actually justifiable. It is the incertitude in the elementary problem that must
be propagated by interval analysis or other bounding methods. Although these
assertions are commonly met with nodding agreement from engineers and bi-
ologists, they sometimes evoke agitated criticism from probabilists. So let us
hasten to point out some important tempering caveats. We are surely not saying
we should only use intervals in risk or uncertainty analysis. We are not even
saying that all uncertainty is incertitude. In fact, we would not be surprised that
most of the uncertainty in some setting is not incertitude, and we agree that
sometimes incertitude is entirely negligible, in which case probability theory is
perfectly sufficient for modeling uncertainties and risks.

What we are saying, however, is that some analysts face non-negligible incer-
titude and handling this incertitude with standard probability theory requires
assumptions that may not be tenable, including unbiasedness, uniformity or
equiprobability, and independence. Because it will often be useful in practical
situations to know what difference incertitude might make, it is important to
have methods that can make probabilistic calculations without requiring the
traditional assumptions. It turns out that this is possible with the theory of
imprecise probabilities (Walley 1999) and a practical calculus for making com-
putations with imprecisely specified probability distributions such as probability
bounds analysis (Ferson 2002) which combines probability theory with interval
analysis.

3 P-boxes and probability bounds analysis

A probability box, or p-box, is a characterization of an uncertain number which
may have variability (aleatory uncertainty) or incertitude (epistemic uncertainty),
or both. A p-box is specified by left and right bounds on the cumulative proba-
bility distribution function of a quantity and, optionally, additional information
about the quantity’s mean, variance and distributional shape (family, unimodal-
ity, symmetry, etc.). A p-box represents a class of probability distributions con-
sistent with these constraints. Fig. 2 depicts an example for an uncertain number
X consisting of a left (upper) bound and a right (lower) bound on the proba-
bility distribution for X. The bounds are coincident for values of X below 2
and above 29. The bounds may have almost any shapes, including step func-
tions, so long as they are monotonically increasing and do not cross each other.
A p-box simultaneously expresses incertitude (epistemic uncertainty), which is
represented by the breadth between the left and right edges of the p-box, and
variability (aleatory uncertainty), which is characterized by the overall slant of
the p-box. This p-box suggests that the probability that X is below 10 is less
than 25%. It might be as low as zero. We cannot say more than this because of
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Fig. 2. A p-box specified by left and right bounding cumulative distribution functions
and representing a class of probability distributions whose cumulative distribution
functions can be drawn within the bounds.

the epistemic uncertainty about X’s distribution function. The 95th percentile
is somewhere between 18.5 and 26. We don’t know where in that range it is
because of the associated incertitude.

There are many ways that p-boxes can be constructed from the available
information about uncertain numbers (Ferson et al. 2003). Fig. 3 illustrates six of
these ways. The top, left graph depicts a distributional p-box for which the shape
or family of the distribution is known (e.g., normal, uniform, beta, Weibull, etc.)
but the parameters are known only to within intervals. For example, an analyst
may know from mechanistic or physical considerations that the distribution is
normal, but not be able to precisely identify the two parameters needed to specify
it exactly. If the parameters can be bounded, then a distributional p-box can
easily be constructed from enveloping all the possible distributions.

The top, right graph in Fig. 3 depicts what might be considered the opposite
situation where the analyst is confident about some parameters describing the
uncertain number, but is unsure about what shape or family of distributions
it might be from. Such a situation arises frequently when distributions are de-
veloped from information obtained from scientific publications, where summary
statistics are often reported without further details or the original data. Even
though the available information might seem meager, what is known often suf-
fices to define a nontrivial p-box that can be used in calculation. In some cases,
classical results such as the Markov or Chebyshev inequalities can be used to
derive formulas for p-boxes from a few parameters. In different situations, dif-
ferent sets of parameters may be known. Ferson et al. (2003) gave formulas for
p-boxes for the following common situations:
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Fig. 3. A few ways p-boxes arise.

{min, mean} {min, max, mean}
{min, max, median} {min, max, mean=median}
{min, max, mode} {min, max, median=mode}
{mean, variance} {min, mean, variance}
{min, max, mean, variance} {min, max, mean, variance, mode}

These define what might be called distribution-free p-boxes because they make
no assumption whatever about the family or shape of the uncertain distribu-
tion and yet enclose all distributions which match the given parameters. The
p-boxes are somewhat wider when the parameters are only known to within in-
tervals. When qualitative information is available, such as that the distribution
is symmetric or unimodal, the p-boxes can often be tightened substantially.

The middle, right graph in Fig. 3 depicts a situation in which one of two
distributions is the correct one, but the analyst cannot discern which. By en-
veloping them into a single p-box, the analyst can represent the uncertainty
in a single structure that does not require a cumbersome sensitivity analysis to
propagate. This facility can become very important when there are multiple pos-
sible distributions and several variables have such uncertainty because exploring
them in a sensitivity study requires a combinatorially complex effort. Collaps-
ing the uncertainty into a single p-box per variable can simplify the problem
considerably.
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The middle, left graph in Fig. 3 shows a p-box from a situation in which
there is no sampling uncertainty because the entire population has been mea-
sured, but there is substantial mensurational uncertainty that comes from our
inability to measure individual values precisely. A similar p-box with both sam-
pling and mensurational uncertainty can be formed by enclosing the empirical
histogram of interval data with Kolmogorov–Smirnov confidence bands. These
bands are distribution-free and merely assume independence of the sample data.
Alternatively, there are potentially tighter confidence bands that can be used
which do make assumptions about the shape of the distribution.

P-boxes include the special cases of intervals and precise probability distribu-
tions too. For example, in some situations an analyst may have no information
about a distribution except its potential range, that is, knowledge that its values
must be larger than min and smaller than max. In this case, Laplace (1820) used
the Principle of Insufficient Reason (sometimes called the Principle of Indiffer-
ence) to select a uniform distribution for the variable but, as argued above, an
interval is a fuller characterization of this uncertainty than any particular prob-
ability distribution could be. An interval, illustrated in the bottom, left graph of
Fig. 3, is a special case of a p-box whose left and right bounds are step functions
at min and max respectively. Finally, it is also possible that the distribution for
some variable actually is well specified. The bottom, right graph illustrates this
case where the left and right bounds of the p-box are coincident.

This idea of bounding probability has a very long tradition throughout the
history of probability theory. Indeed, George Boole (1854; Hailperin 1986) used
the notion of interval bounds on probability. The classical inequality attributed
to Chebyshev (1874) described bounds on a distribution when only the mean
and variance of the variable are known, and the related inequality attributed
to Markov (1886) found bounds on a positive variable when only the mean is
known. Keynes (1921) argued that probabilities of some propositions cannot be
ordered because they overlap due to uncertainty. Fréchet (1935) discovered how
to bound calculations with total probabilities without assuming independence
or making other dependence assumptions. Bounding probabilities has continued
to the present day (e.g., Berger 1985; Walley 1991). Kyburg (1999) reviewed the
history of interval probabilities and traced the development of the critical ideas
over the last century.

Several authors have described strategies for computing with bounds on dis-
tribution functions (e.g., Makarov 1981; Yager 1986; Frank et al. 1987; Williamson
and Downs 1990; Berleant 1993; 1996; 1998; Ferson 2002; Ferson et al. 2003;
inter alia). Williamson and Downs (1990) described explicit algorithms to com-
pute sums, products, differences and quotients. Since their effort, algorithms for
essentially all the standard mathematical operations have been derived and im-
plemented (Ferson 2002). These methods, collectively called probability bounds
analysis (PBA), have been used to propagate p-boxes through mathematical ex-
pressions of widely varying complexity, ranging from simple arithmetic formulas
common in risk analyses and logical expressions summarizing fault or event trees
to finite-element computations (Zhang et al. 2010; 2012) and evaluations of non-
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linear ordinary differential equations (Enszer et al. 2011). The calculations made
with these methods can be shown to be rigorous, i.e., they are guaranteed to
enclose the true outcome distribution whenever the input p-boxes enclose their
respective distributions. In many cases, the calculations can also be shown to be
pointwise best-possible in the sense that they could not be any narrower without
excluding distributions that might arise as results given the inputs.

These calculations account for, and preserve the integrity of, both the incer-
titude and variability expressed by a p-box. Combining a p-box with a scalar,
interval, probability distribution or other p-box in any arithmetic or logical cal-
culation generally yields another p-box. Combining an interval with a probability
distribution also generally yields a p-box, as the incertitude of the interval com-
bines with the variability of the probability distribution. P-boxes also arise when
two precise probability distributions are combined whenever their intervariable
dependency is unknown or only partially known. Such combinations produce
precise probability distributions only when the dependence function or copula
(Nelsen 1999) is completely specified.

The approach of Williamson and Downs (1990) includes a way to rigorously
represent continuous probability distributions by using outward-directed round-
ing on finitely many interval discretizations of the bounds on cumulative distri-
bution functions. Bounding in the cumulative domain, rather than the density
domain, allows representation error to be completely contained and propagated
using the same algorithms that handle mathematical combinations. When op-
erations on the interval discretizations are handled with interval analysis, the
method constitutes verified computation for probability distributions.

The methods of probability bounds analysis are available in several software
implementations, including multiple free demonstration programs (e.g., Berleant
and Zhang 2004), a full-featured stand-alone commercial program (Ferson 2002),
an advanced add-in for Microsoft Excel developed for NASA (Ferson et al. 2011),
and a package in development for the statistical computing language R (R De-
velopment Core Team 2010).

4 Correlations and dependencies

Independence can be a dangerous assumption for analysts to make. Stochastic
dependence is far more pervasive—and important—than many analysts seem to
recognize. For instance, placing backup generators side by side makes their fail-
ure probabilities dependent and reduces the redundance they were intended to
provide because they become susceptible to the common-cause failure from flood-
ing, as was realized too late in New Orleans and Fukushima. Even in relatively
sophisticated analyses of uncertainty, the most common assumption about the
dependence among variables is independence, although there may be no actual
empirical evidence or serious theoretical justification to support this assumption.
In truth, despite warnings about falsely assuming statistical independence, some
analysts routinely ignore correlations for the sake of computational convenience.
And conscientious analysts who would like to include them in analyses are often
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stymied by the difficulty of measuring correlations when data are sparse. As a
consequence, correlations are commonly omitted from analyses and the default
assumption of independence is used even when there is no evidence whatsoever
in support of this assumption.

Although central tendencies may be generally insensitive to correlations of
small to moderate strength (Smith et al. 1992), the tails of distributions can be
extremely sensitive to even small or moderate correlations. Of course, decision
makers are often especially concerned with these tails. They represent the risks
of extreme events, which might be the probability of some mechanical stress
exceeding the engineered strength intended to resist it, or the probability of
exposing people to large doses of a carcinogen, or perhaps the risk of extinction
for an endangered species. It is these extreme adverse events in the distribution
tails that are often the whole focus of the analysis, so it may be very important
that the tail probabilities not be underestimated. Unfortunately, the common
practice of assuming independence among all input variables can lead directly
to such underestimations.

Moreover, many analysts seem to be unaware that consideration of corre-
lation is only the tip of the iceberg. The issue of dependence is much broader
than correlation because it includes all nonlinear relationships. This is the rea-
son, of course, that lack of correlation does not guarantee independence. What
we might call linear dependence, which can be fully characterized by a single
correlation coefficient, is only a small subspace of the forms of statistical depen-
dence. Consequently, it is impossible to use a sensitivity study to characterize
the effect of uncertainty about dependence on an uncertainty projection. Varying
correlations, even all the way from +1 to –1, over a single family of dependence
functions does not come close to capturing the diversity of possible interactions
the variables may have. This is similar to supposing that one has characterized
the variability of all possible functions through a point simply by representing
all linear functions through a point. (And there is no analog of Taylor’s theorem
for dependence, so the mistake is severe on all scales.) We note that no popu-
lar software packages for probabilistic calculations support more than a single
family of dependence functions, if they support intervariable dependence at all.

Makarov (1981) and Frank et al. (1987) showed, however, that it is possi-
ble to compute bounds on results of probabilistic calculations no matter what
correlations or statistical dependencies may exist among the variables. The algo-
rithms of Williamson and Downs (1990) include this no-assumptions case. The
top, left-hand graph of Fig. 4 shows an example calculation. In this example, X
and Y are random variables each drawn from uniform distributions between 1
and 25. Any distribution of the sums X +Y that could result from adding these
uniformly distributed random values together must lie entirely inside the p-box
shaped like a parallelogram ranging between 2 and 50. This does not mean of
course that any distribution within the bounds could be the sum of these two
distributions, but the bounds are pointwise best-possible, which means the black
region could not be any smaller without excluding some distributions that could
arise as sums of these two uniform variables. This elementary calculation shows
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that the probability that X +Y is smaller than 10 could be as high as one third,
or as low as zero. This is a very different characterization of the distribution
tail than what comes from a conventional Monte Carlo analysis that falsely as-
sumes independence which, in this case, would suggest the chance the sum is
less than 10 is about 5%. The PBA result makes no false assumptions about
independence because it makes no assumptions at all about dependence, which
potentially makes it very useful in applications such as risk analysis where it is
critical not to underestimate tail risks.
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Fig. 4. The effect of various assumptions about the dependence between X and Y on
the convolution X + Y , where X and Y are both uniformly distributed over the range
[1, 25]. For comparison, the no-assumptions p-box is shown in gray.

The simple parallelogram shape of the example result is a consequence of
the uniformity of the marginal distributions and the simplicity of the addition
function that combines them. The algorithms can be applied equally well to vir-
tually any finite distributions, including theoretically infinite distributions such
as the normal that are truncated to some practical range, and extend beyond ad-
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dition to all the basic mathematical operations. Surprisingly, the algorithms for
the no-assumptions cases are computationally less expensive than Monte Carlo
simulation methods that assume independence. More importantly, Monte Carlo
methods cannot generally compute these no-assumptions bounds, no matter how
many replications are used. Strategies that vary the correlation coefficient in a
Monte Carlo sensitivity study will be limited to outputs like the cone shown in
the top, right graph of Fig. 4, which grossly understates the uncertainty including
possible tail risks.

Partial knowledge about the dependence can tighten the output p-box sub-
stantially (Ferson et al. 2004). For example, the left-hand graph in the second
row of Fig. 4 shows the bounds on the distribution than can be inferred from
the qualitative knowledge that the dependence function has positive sign. It is
also possible to compute bounds on the result implied by a given correlation co-
efficient, which might have been reported among summary statistics published
without original data. Berleant and Goodman-Strauss (1998) showed how the
bounds in this case can be computed using mathematical programming. The
right-hand graph of the second row of Fig. 4 shows an example with correla-
tion zero. Remarkably, the resulting p-box almost fills up the no-assumptions
parallelogram, which confirms the intuition that knowing only that variables are
uncorrelated actually tells us very little about their possible dependence. In fact,
the bounds are widest when the correlation is close to zero. When the correla-
tion is extremal, corresponding to the third row of graphs in the figure, and
the dependence is either perfect (comonotonic) or opposite (countermonotonic),
then the resulting p-box becomes very tight. In the case of the example with
precise addends, the result is also a precise distribution. This is true whenever
the dependence function (copula) is precisely specified, as when it is given by
some particular function such as that yielding the result shown in the bottom,
left graph, or when it is taken to be independence as in the bottom, right graph.
If the addends had been p-boxes rather than precise uniform distributions, the
lower four graphs would also depict p-boxes rather than distributions.

As required in verified computation, all of these outputs are rigorous so they
are sure to enclose the true output distribution even when the dependence is not
precisely known, and their representations are pointwise best-possible so they
could not be any tighter without excluding some possible distributions. It is
possible to mix and match dependence assumptions within an analysis, assuming
independence where it really is appropriate and making weaker assumptions
where it is not.

5 A calculus for uncertainty beyond probability

It is possible to conceive of probability bounds analysis as an entirely traditional
application of sensitivity analysis for conventional probability theory. Indeed, the
same can be said of the whole of the theory of imprecise probability. Although
this conception should therefore be acceptable even to strict Bayesians, PBA
and IP are sometimes met with distrust by probabilists. The reason is that they
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recognize in it an essential heterodoxy: that there exists a kind of uncertainty
that should not be characterized by a unique probability measure, which is a
notion they perceive as wrong, or subversive.

There are many misconceptions about what justifies what we might call the
precisionist school of probability. Some people have argued that probability the-
ory is the only logically possible calculus of uncertainty (e.g., Lindley 1982).
Lindley (2006, 71) asserted, “Whatever way uncertainty is approached, proba-
bility is the only sound way to think about it.” Neapolitan (1992) pointed out,
however, that the arguments about the inevitability of probability theory say
nothing to deny the utility of interval bounding. Some in the precisionist school
mention a ‘proof’ due to Cox (1946), but Cox’s theorem has been proven to be
incorrect (Halpern 1999), and perhaps more importantly it has been shown to
be irrelevant to the question of whether probability is the only possible calculus
for uncertainty because it uses as assumptions the very questions that are at
stake in the debate (Colyvan 2004).

Some critics of p-boxes and imprecise probabilities in general argue that pre-
cisely specified probability distributions are in any case sufficient to characterize
uncertainty of all kinds. These critics argue that it is therefore meaningless to
talk about ‘uncertainty about probability’ and that traditional probability is a
complete theory. Under this criticism, users of p-boxes have simply not made the
requisite effort to identify the appropriate precisely specified distribution func-
tions. This argument may have been reasonable when probability distributions
were only used to characterize uncertain scalar values, that is, real numbers. In
modern uncertainty analyses, however, the objects of study are often themselves
probability distributions deployed in risk assessments already involving aleatory
uncertainty. In such cases, a richer characterization of uncertainty seems useful.

Other people think that requiring inferences to be consistent and coherent is
logically equivalent to requiring the use of precise probabilities. This is not the
case, as was suggested in the expansive review of the axiomatics of decision the-
ory under subjective probability by Fishburn (1986). Walley (1991) showed how
the theory of imprecise probabilities enjoys the same properties of consistency
and coherence championed by probabilists as the definition of rationality, and
how proper inferences in the IP context also avoid sure losses from Dutch books
just as coherent Bayesian decisions do.

Luce (1992) noted that a major finding in the theory of subjective expected
utilities is that humans do not make decisions according to the theory of subjec-
tive expected utilities. One of the reasons for this is that a traditional probabilist
must always be able to discern which of two events is more probable, unless they
are equally probable, and which of two options is preferable, unless she is in-
different to the choice between them. The axiom that this is always possible is
called “completeness” by Fishburn (1986), or the “ordering postulate” by Sei-
denfeld (1988). A relaxed, more general theory of uncertainty recognizes that
some events or options may be incomparable and does not demand an agent be
able to distinguish between any two, even beyond indifference. The notion that
one might not be able to compare every two probabilities dates back at least to
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Keynes (1921), and it is another of his great ideas that has remarkable salience
today.

Getting rid of the completeness axiom—which some might argue is far from
self-evident anyway—induces the theory of imprecise probabilities. In this case,
the definition of the probability of an event can be operationalized as the interval
between the highest buying price and the lowest selling price for a gamble that
pays one dollar if the event occurs (but nothing otherwise). This generalizes
de Finetti’s notion of a fair price to an interval whenever the probability is
uncertain. Traditional Bayesians in principle must agree to either buy or sell any
gamble at the same fair price. Under a relaxed theory, an agent may elect to
neither buy nor sell a gamble if the price is not sufficiently favorable. Of course,
if one knows all the probabilities (and utilities) perfectly, then IP reduces to
Bayes.

Seidenfeld (1988) holds that a relaxed theory based on imprecise probabili-
ties can provide a unified treatment of group decisions, where Bayesians admit
their theory does not apply. This is important because most engineering deci-
sions cannot be described as personal decisions, but rather must be in line with
collective verdicts by teams of collaborators. Under IP, their decisions can be
rational and coherent so long as indecision is admitted occasionally.

A parallel to the status of imprecise probability today can be found in the
non-Euclidean revolution in geometry nearly two hundred years ago (Bardi
2009). The basic question at the time was this: Given a line in a plane, how
many parallel lines in the plane can be drawn through a point in the plane not
on the line? This was the subject of Euclid’s fifth axiom, which had prescribed
the answer ‘one’. For over twenty centuries in mathematics since Euclid, this
was the only answer to the question. Although the answer ‘one’ was itself never
in doubt, the fifth axiom had long been controversial because it did not seem to
be self-evident in the same way the other axioms were.

Many geometers attempted to prove the fifth axiom as a consequence of the
other Euclidean axioms, and, in the early 1800s, tried a proof by reductio ad
absurdum in which they denied the fifth axiom and looked for logical inconsis-
tencies. But they found no logical inconsistencies from denying the fifth axiom,
and, almost accidentally, they developed non-Euclidean geometries in which the
answer to the question about the number of parallels could also be either ‘zero’
or ‘many’ rather than ‘one’.

The advent of non-Euclidean geometry created a tumult in mathematics.
Because it rests on what seemed to many to be an obvious fallacy, it was con-
troversial and maddening to some mathematicians. Some proponents of the new
geometry were ignored or faced condescension, and others, including even the
eminent Gauss, hid what they had realized for fear of ridicule (Bardi 2009). Nev-
ertheless, the new non-Euclidean geometries were in time accepted as legitimate
and eventually heralded as greatly enriching the discipline of geometry by vastly
expanding its scope and broadening its applications. Famously, Einstein used
non-Euclidean geometry in his general theory of relativity.
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We believe that probability theory may be in the early throes of a revo-
lution similar in some ways to the non-Euclidean revolution in geometry. The
debate today between the traditional precisionists and the imprecise probabil-
ity community hinges on the adoption or rejection of a single axiom. Omitting
that axiom relaxes the earlier, unnecessarily strict theory and opens it up to a
richer perspective on a wider array of applications. The new theory, although an
obvious generalization of the older theory, has met some strong and sometimes
dismissive criticism. The advantages of the newer theory arise because of its
greater flexibility, and its usefulness will likely be cemented by applications to
significant problems beyond the reach of the older theory, even though the older
theory persists as an important and still extremely widely used special case.

6 Conclusions

Given the increasing and critical use of Monte Carlo simulation and other prob-
abilistic calculations, it is important to be able to assess the reliability of their
numerical outputs as a function of the error in finite computer representation
of probabilities and distributions, as well as the express uncertainty about the
input distributions, their interdependencies, and model assumptions. Until re-
cently, the only way to assess this reliability has been to develop an elaborate
sensitivity study, which, because of its combinatorial complexity, is rarely even
attempted. Consequently, in practice residual uncertainties about the selection
of input probability distributions and the nature of interdependencies among the
variables in an analysis are usually neglected, and the sufficiency of the numerical
methods used in the calculations is not even addressed.

Practical computational methods in probability bounds analysis now exist
to assess the potential impact on probabilistic calculations from (i) computer
representation error of distributions, (ii) incomplete knowledge about the pa-
rameters and shapes of input distributions, (iii) imperfect understanding of the
correlation and dependency structure among variables, and (iv) several kinds
of model-form uncertainty. Probability bounds analysis is essentially an efficient
and comprehensive form of sensitivity analysis that is compatible with both fre-
quentist and Bayesian perspectives. Its methods allow many analysts to make
routine and relatively inexpensive bounding estimates for calculations involving
probabilities or probability distributions. In many cases, the bounds will be ex-
act in the sense that they are the pointwise best-possible bounds. In all cases,
the bounds will enclose the probability distributions and therefore provide a
conservative expression of the reliability of the results.

The Panglossian view that every probabilistic calculation can be solved with
precisely specified inputs determined from available information does not seem
plausible in many cases, especially in new environments or novel situations
with highly constrained scientific knowledge and limited engineering experience.
When there is insufficient empirical information available to justify precise prob-
abilistic calculations, the methods of probability bounds analysis naturally yield
bounds on output distributions. Different input variables can be specified either
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as particular distributions or as wide or narrow bounds on distributions as appro-
priate to represent the state of empirical information, whatever it may be, that
is available about each variable. Likewise, dependence functions can be precisely
modeled with a specific copula, qualitatively modeled with available informa-
tion, or discharged entirely by making no assumptions about the dependence.
The degree of specificity about the marginal distributions and dependencies does
not affect how they are combined in subsequent arithmetic operations, and the
result appropriately represents its own level of uncertainty, rather than a false
precision gained by unjustified assumptions.

Sound scientific and engineering analyses ought to be based on objective,
documented, and verifiable information. Whenever assumptions are used to make
up the difference between what is empirically known and what is needed to
obtain a working answer, those assumptions should be subjected to quantitative
assessment with methods such as probability bounds analysis. Without such
assessment, the calculations are unsound, and the resulting answers are merely
wishful thinking.
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13. Burgman, M., Ferson, S., Akçakaya, H.R.: Risk Assessment in Conservation Biol-
ogy. Chapman & Hall, London (1993)

14. Burmaster, D.E., Harris, R.H.: The magnitude of compounding conservatisms in
superfund risk assessments. Risk Analysis 13: 131–134 (1993)

15. CFTC/SEC [U.S. Commodity Futures Trading Commission / U.S. Securities
and Exchange Commission]: Findings Regarding the Market Events of May 6,
2010: Report of the Staffs of the CFTC and SEC to the Joint Advisory Com-
mittee on Emerging Regulatory Issues, http://www.sec.gov/news/studies/2010/
marketevents-report.pdf (2010)

16. Chebyshev [Tchebichef], P.: Sur les valeurs limites des intégrales. Journal de
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DISCUSSION

Speaker: Scott Ferson

Jon Helton : What is the current status of computational capability to prop-
agate p-boxes through complex models, e.g., long running and/or containing
repeated variables?

Scott Ferson : I would say it is significantly better than the computational
capability currently available for propagating Dempster–Shafer (DS) structures,
and in some instances, better than that for Monte Carlo simulations. There are
several reasons for this. Firstly, as a bounding approach it can effectively prop-
agate some kinds of uncertainties that cannot be comprehensively addressed
by sampling approaches even with infinitely many samples. For instance, if an
analyst does not know the distribution family for some input, she can use a
distribution-free p-box that bounds all possible distribution families consistent
with the other information available about that variable. Zhang et al. (2012)
noted that the computational burden for p-box propagation when no assump-
tions are made about intervariable dependencies is actually smaller than even
that for simple Monte Carlo simulation, because it does not require a full con-
volution of all possible combinations of values for the various input variables.

There are also a variety of tricks and shortcuts available for p-box calcula-
tions, including and extending the conjugacy rules familiar to Bayesians. If a
problem is computationally challenging when p-boxes are used to characterize
the inputs, one or more of the p-boxes can be coarsened in a way that preserves
conservativism yet radically lessens the computational burden. This coarsening
is also possible with DS structures, but it will alter the internal features of the
output uncertainty structure, the elucidation of which is the whole point of using
DS structures in the first place.

The computational capability to propagate p-boxes can be judged by its
practical applications. Probability bounds analysis has been used in cases with
many dozens of inputs, although I have seen no practical applications yet with
many hundreds of inputs. It has been used in uncertainty analyses of substantial
complexity in a wide variety of contexts ranging from Superfund human health
and ecological risk assessments (EPA 2005a; 2005b; 2006) to finite element mod-
els in engineering (Oberguggenberger et al. 2007; Zhang et al. 2010; 2012), and
on scales from lab bench chemistry and pharmacokinetics (Enszer et al. 2011;
Nong and Krishnan 2007) to the planet’s climate in global circulation models
(Kriegler and Held 2005).

Certainly there are challenges in computing with p-boxes, especially concern-
ing the appearance of repeated uncertain quantities, and developing strategies to
meet these challenges is a current area of research. There are no particular com-
putational challenges associated with “long-running” calculations per se, and
p-box operations can be applied iteratively in a straightforward way. However,
in cases where sequential iterations involve repeated uncertain quantities such
as in calculating solutions to differential equations, difficulties can arise. Enszer
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et al. (2011) described special methods to solve nonlinear ordinary differential
equations with parameters or initial conditions expressed as p-boxes. This is an-
other area where what we can do computationally with p-boxes exceeds what
can be done with Monte Carlo simulation which quickly runs into instability in
such problems.

William Kahan : Your acceptance of diverse bounds upon probabilities (wher-
ever those bounds may come from) reminds me of the “degrees of belonging” of
fuzzy sets and Lotfi Zadeh’s fuzzy logic; but you do not mention fuzzy sets at
all. Why not?

Scott Ferson : The theory I’m talking about here is purely probabilistic and
conforms with the Kolmogorov (1933) axioms. Of course the bounds can come
from many places just because there are many sources of information and data
and many disparate reasons for uncertainty, but the quantities we work with are
bounds on probabilities which are interpreted in only one way, as Kolmogorov
probabilities.

I have considered fuzzy sets and possibility theory in the past, and many
colleagues still use these ideas extensively (Möller and Beer 2004; Beer 2009).
I don’t use them now myself mostly because they evoke such a very negative
reaction among probabilists. I do not think the visceral reaction from probabilists
is legitimate at all, but this is not my battle. My objection to fuzzy numbers and
their arithmetic as proposed by Kaufmann and Gupta (1991) is that there is still
no way to ensure that the result will be meaningful from level-wise combining
fuzzy numbers that came from different formulations with distinct possibility
scales. This is the same objection I have for possibility theory and, by the way,
for info-gap decision theory (Ben-Haim 2001).

Pasky Pascual : How does one use p-boxes to formulate priors within a Bayesian
framework?

Scott Ferson : The most common way is to use p-boxes to characterize an
analyst’s uncertainty about the appropriate prior to employ. Consider, for ex-
ample, the problem of estimating a binomial probability which is perhaps the
most elementary and fundamental problem in all of risk or uncertainty analysis.
Amazingly, Bayesians cannot agree on the prior to use for this problem, even
in the basic case when they all agree no relevant prior information is available
(Tuyl et al. 2009; Berger 1985, page 89). The search for a so-called “uninforma-
tive prior” has produced several candidates, including Haldane’s improper prior
beta(0,0), Jeffreys’ reference prior beta( 1

2 , 12 ), the uniform distribution favored
by Laplace which can be modeled as beta(1,1), and other distributions such as
Zellner’s binomial prior (which is not from the beta family). Unless the sample
size is pretty large, which is rare in many practical situations, these different
priors yield noticeably different results.

Peter Walley (1991; Walley et al. 1996) has suggested using an imprecise beta
model (IBM) which is effectively a p-box of all beta distributions that could be
good priors. In the degenerate case, when the sample size is zero, the IBM yields
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a vacuous posterior that says the probability could be anywhere in the interval
[0,1]. Isn’t that a reasonable result for an analysis that uses no data at all?
When the sample size is very large, the posterior is a tight p-box that tends
to the observed frequency, as most all Bayesian analyses do. In the practical
intermediate cases of small sample sizes, the posterior from the IBM is a p-box
containing a range of beta distributions whose breadth reflects the uncertainty
about the prior that a traditional Bayesian analysis ignores. Contrary to what
Tony O’Hagan suggests in his comment below, this breadth is not too wide to be
useful, but yields answers whose imprecision is roughly what one might expect
to see across a community of competent Bayesians.

The imprecise beta model generalizes in the multivariate case to an impre-
cise Dirichlet model (IDM, Walley 1996). The IBM and IDM are examples of
Bayesian sensitivity analysis (Lavine 1991) or robust Bayes analysis (Berger
1985), the idea of which originated with Jeffreys (1931) and de Finetti (1974).
Walley (1991) has demonstrated that robust Bayes analysis is part of a more gen-
eral theory based on imprecise probabilities of very broad scope and flexibility,
for which there is a firm theoretical foundation based on respecting consistency
and coherence requirements but which avoids making unwarranted assumptions
to obtain quantitative answers. Probability bounds analysis is a computationally
convenient method within this general theory

Michael Goldstein : While I agree that notions of imprecision have a valuable
role in considering uncertainty, I am not convinced that the approach advocated
by the speaker can be viewed as a complete theory. In particular, it is quite
possible for the analyst to face a situation where there is available data which,
for every possible outcome, will increase uncertainty about some key quantity in
such a way that the information has negative value to the analyst. Effectively,
this turns the analyst into a money-pump, as the analyst appears to need to keep
paying to avoid receiving the data. This is counter-intuitive to me, and makes
me uncomfortable about the notion that the theory is sufficient to deal with all
uncertainty models.

Scott Ferson : Michael is talking about a phenomenon described by Seidenfeld
and Wasserman (1993) known as dilation. It occurs when new evidence leads
different Bayesian investigators into greater disagreement than they had prior to
their getting the new evidence. Such evidence is not merely surprising in the sense
that it contradicts one’s prior conceptions; it expands everyone’s uncertainty. It
is counterintuitive because it does not depend on what the new information is
actually saying. Michael’s criticism is perhaps the pot calling the kettle black,
because dilation occurs among Bayesians too. They simply don’t recognize it
because Bayesians don’t have to agree with each other (or with the world for
that matter).

It’s hard to explain dilation with a simple example, but let me try. Suppose
Lucius Malfoy tosses a fair coin twice, but the second ‘toss’ depends on the
outcome of the first toss. It could be that Malfoy just lets the coin ride, and
the second outcome is exactly the same as the first outcome. Or he could just
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flip the coin over so that the second outcome is the opposite of the first. You
don’t know what he will do. The outcome of the first toss is either heads H1
or tails T1. Because the first toss is fair (and no spells are cast midair), you
judge the probability P(H1) = 0.5. Whether Malfoy lets the coin ride or flips
it, you judge the probability the second ‘toss’ ends up heads to be the same,
P(H2) = 0.5. What happens when you see the outcome of Malfoy’s first toss?
Suppose it was a head. What is your probability now that the second ‘toss’ will
also be a head? It turns out that once you condition on the first observation,
the probability of the second toss being a head dilates. It is now either zero or
one, but you don’t know which. It doesn’t depend on chance now; it depends
on Malfoy’s choice, about which you have no knowledge (unless perhaps you too
dabble in the dark arts). Dilation occurs because the observation H1 has caused
the earlier precise unconditional probability P(H2) = 0.5 to devolve into the
vacuous interval P(H2 | H1) = [0,1].

This issue may be a pretty esoteric theoretical concern. I have yet to see
examples of dilation in practice that would create any problems for analysts or
decision makers. Although dilation seems highly counterintuitive to some people,
others consider it a natural consequence of the interactions of partial knowledge
(Walley 1991, 298f). My attitude is far from Michael’s worry that the theory of
imprecise probabilities might somehow be incomplete because it recognizes this
phenomenon. Instead, I think it is rather evidence of its being a richer theory.

One way to avoid dilation is not to use conditionalization as the updating
rule for new information. Interestingly, it is possible to do this with imprecise
probabilities. Grove and Halpern (1998) point out that the standard justifications
for conditionalization may no longer apply when we consider sets of probabilities.
And it may turn out that conditionalization may not be the most natural way
to update sets of probabilities in the first place. Instead, a constraint-based
updating rule may sometimes be more sensible. We note that dilation does not
occur in interval analysis (Seidenfeld and Wasserman 1993), which is a kind of
constraint analysis.

Anthony O’Hagan : First I would like to thank Scott for an entertaining
presentation. Unfortunately, much of what he says is in my opinion wrong–
entertainingly wrong, but nonetheless wrong. In these comments I would just
like to pick out what seem to me to be the two most important errors.

First he repeatedly confuses epistemic uncertainty with what he calls incer-
titude. Epistemic uncertainty relates to a quantity that has a unique (albeit
unknown) value but which is not random in the usual sense of that word. In
particular, we cannot observe a series of repetitions or ‘trials’ and so its un-
certainty cannot be described by the conventional relative frequency form of
probability. Bayesian statistics quantifies epistemic uncertainty with subjective
probabilities. Frequentist statistics cannot do this because it only acknowledges
relative frequency probability, so its “quantifications” of epistemic uncertainty
are oblique, using such convoluted devices as confidence intervals.

What Scott calls incertitude is not completely clear, but I think I can de-
fine it as those things that he would represent using intervals of probabilities
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or p-boxes. His primary idea of a p-box is to express incertitude about a prob-
ability distribution. In his examples, those distributions are often conventional
frequency probability distributions (for quantities with aleatory uncertainty or
randomness), but he also discuss putting p-boxes on Bayesian prior and posterior
distributions, which relate to epistemic uncertainty.

To my mind, his incertitude is an attempt to do something that is perfectly
sensible, namely to quantify in some way the fact that when we specify probabil-
ity distributions (whether they be aleatory sampling distributions or epistemic
prior distributions, for instance) we can never do so precisely. All judgments are
imprecise, and probability distributions are nearly always specified partly by con-
venience. So what he calls incertitude seems to me to be addressing imprecision
in judgments. And that’s an important issue.

My second point, however, is that I have reservations about whether p-boxes
and interval arithmetic are the way to handle incertitude. His approach is a kind
of half-way house between formal treatment of imprecision with a second-order
(or hierarchical) probability quantification on the one hand, and on the other a
purely informal ‘sensitivity analysis’ in which we simply explore a few possible
alternative distributions. As such, it is certainly more comprehensive than sen-
sitivity analysis and may indeed have a role to play. However, it requires one to
specify bounds, and these bounds are almost always arbitrary. If set very wide
so as to be quite sure of encompassing whatever the ‘true’ distributions might
be, then the resulting derived bounds on quantities of interest and decisions
are likely to be hopelessly wide. If set narrower so as to encompass just the
more likely ‘true’ distributions, then he can no longer claim that the p-boxes are
exhaustive.

Despite these reservations, I welcome the basic idea of p-boxes and interval
arithmetic. I just wish that Scott would not oversell it. These are not tools for
quantifying epistemic uncertainty (although they may have a role in addressing
the imprecision in subjective distributions that do quantify epistemic uncer-
tainty). I might also add that they have nothing to do with utility theory or
prospect theory.

Scott Ferson : Tony seems to want to dismiss the presentation as wrong, wrong,
wrong, yet he agrees that my concern with incertitude is “perfectly sensible” and
that it is an “important issue”. Moreover he concedes that p-boxes “may indeed
have a role to play” and “welcome[s] the idea of p-boxes”. So let us try to clarify
the sources and details of our differences.

The first of two disagreements that Tony highlights is my use of the phrase
‘epistemic uncertainty’. I’m not at all sure why Tony insists that a quantity
about which we are epistemically uncertain must be a unique, fixed quantity.
There is nothing in the definition of the phrase that requires the quantity to be
fixed underneath all our uncertainty about it. A quantity might be a fixed value,
but it also might not be, and indeed our epistemic uncertainty about a quantity
might often include whether it is in fact fixed or varying. Whether we know it
is fixed or not, we could still have epistemic uncertainty about it.
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It is true that Bayesians use probability distributions to model epistemic un-
certainty, but it is simply not true that these objects represent the only possible
way to model epistemic uncertainty. Clearly, intervals and p-boxes are general
and flexible tools to quantify and propagate epistemic uncertainty, the latter
specifically designed to do so, even when the nature of the underlying quantity
is itself unknown. PBA can also handle Tony’s case where the unknown quantity
does have some unique fixed (but unknown) value. A p-box conveniently repre-
sents this case as extra information that the quantity’s variance is zero. This is
a special case compared to the general situation in which the possible range of
the variance includes zero. Knowing a p-box’s variance is exactly zero may have
implications for the left and right bounds of the p-box, and it will usually have
implications for mathematical results that depend on the p-box. You might also
know the quantity must vary, in which case the p-box’s variance might exclude
zero as a possible value, even though you may not know its distribution precisely.
Knowing a minimum range for the quantity or knowing a lower bound on its
variance can improve the p-box and calculations that depend on it.

I do not know the origin or purpose of Tony’s restrictive definition of ‘epis-
temic uncertainty’. Our view is more expansive, and perhaps more useful. In
addition to our not requiring the underlying value to be fixed, our usage of
the phrase need not refer to a quantity at all, but includes uncertainty about
the mathematical form of the model, which can also be captured in probability
bounds analysis.

The second of Tony’s two complaints is about whether intervals and p-boxes
are a practical way to handle incertitude (epistemic uncertainty). He asserts
that the bounds of p-boxes are “almost always arbitrary” and suggests that
setting them very wide to be sure to encompass the true distribution will make
the results vacuous, and narrowing them will lose the claim that p-boxes are
comprehensive. In fact, however, there are many ways to construct p-boxes, and
many of these ways constitute constraint analyses that are best-possible and in
no way arbitrary. They don’t even depend on parameters that might be varied
arbitrarily. The subsequent calculations are also essentially constraint analyses
that include no arbitrariness.

There are other ways to construct p-boxes that do involve decisions by the
analyst that might have to be made arbitrarily. For instance, picking the confi-
dence level in a p-box defined as a confidence band. Most analysts consider these
decisions to be part of the modeling task and therefore to be the responsibility of
the analyst, as they are in many exercises involving modeling or analysis. There
are various strategies to avoid arbitrariness including appealing to conventions
such as Fisher’s 0.05 level, or considering would-be arbitrary parameters to be
part of the analysis by nesting p-boxes at different levels (Ferson and Tucker
2008) or enveloping all tenable levels. Whether the uncertainty overwhelms the
analyst’s ability to make decisions depends on the details of the application and
the available empirical information. In practical cases, analysts have generally
found that useful inferences and decisions can be obtained.
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One further fundamental point should be emphasized in reaction to Tony’s
complaint. Uncertainty analysis shouldn’t be a game. Analysts are invited to
be honest in expressing what they know and what they don’t know. If it turns
out that so little is known about a system that the p-boxes characterizing it
are wide to the point that the results are vacuous, then it seems to me that a
proper uncertainty analysis should reveal this fact. It is, after all, the very point
of an uncertainty analysis. The alternative—which is to squeeze unwarranted
conclusions or decisions out of a tenuous model that is not actually supported
by evidence—is of course possible, but does not seem desirable, especially in an
engineering context.
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