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Abstract. We propose a type system for a calculus of contracting pro-
cesses. Processes may stipulate contracts, and then either behave honestly,
by keeping the promises made, or not. Type safety guarantees that a
typeable process is honest — that is, the process abides by the contract
it has stipulated in all possible contexts, even those containing dishonest
adversaries.

1 Introduction

Most approaches to the formal specification of concurrent systems typically
assume that components behave honestly, in that they always adhere to some
agreed specification (e.g., a behavioural type), under the assumption that the
static behaviour safely over-approximates the dynamic one. We argue that this
assumption is unrealistic in scenarios where competition prevails against coopera-
tion. Indeed, in a competitive scenario components may act selfishly, and diverge
from the agreed specification.

We envision a contract-oriented computing paradigm [2], for the design of
distributed components which use contracts to discipline their interaction. In
CO2 [2], a process may advertise contracts; a session is established processes
advertising compliant contracts, similarly to other session-centric calculi. This
session dictates the actions needed to realise their contracts to processes. A
distinguished feature of CO2 is that processes are not supposed to respect their
contracts, nor are they bound to them by an enforcing mechanism.

More realistically, dishonest processes may avoid to perform some actions
they have promised in their contracts. This may happen either intentionally, e.g.
a malicious process trying to swindle the system, or unintentionally, e.g. because
of some implementation bug (possibly exploited by some adversary). In both
cases, the infrastructure can determine which process has caused the violation,
and adequately punish it. A crucial problem is how to guarantee that a process
will behave honestly, in all possible contexts. If such guarantee can be given, the
process is protected both against unintentional bugs, and against (apparently
honest) adversaries which try to make it sanctioned.

A negative result in [3] is that determining if a process is honest is an
undecidable problem for a relevant class of contracts (introduced in [10], and
refined in [11], for modelling WSDL and WSCL contracts). The problem is how
to find a computable approximation of honesty, which implies the dynamic one.



Example. Let us consider an on-line store (participant A), which sells apples
(a) and bottles of an expensive italian Brunello wine (b). Selling apples is quite
easy: once an order is placed, A accepts it (with the feedback ok) and waits
for a payment (pay) before shipping the goods (ship-a). However, if expensive
bottles of Brunello are ordered, the store is entitled to either decline the order
(by answering no), or accept it (and, as above, ship the item after the payment).
Using external (+) and internal (⊕) choice, the store contract can be modelled as

c = a.ok. pay.ship-a + b.
(
no ⊕ ok.pay.ship-b

)
External choice requires the other party to decide how to drive the contract
evolution; in this case, the customer chooses between apples a and bottles b.
Internal choice, instead, allows the advertising party to choose; in this case, the
store selects either ok or no.

Intuitively, contract compliance hinges on the duality between internal and
external choices. Hence, to sell its goods, the store needs to find an agreement
with a participant advertising a contract compliant with its contract c, such as:

d = b . (ok.pay.ship-b + no)

A buyer B advertising d wants to buy Brunello: she promises to select b (dual of b
in the store contract), and then offers an external choice that lets the store choose
between ok or no; in the first case, she promises to pay and wait for shipment.

In CO2, the behaviour of each participant is a process capable of advertising
contracts and executing the actions required to honour them. For instance, the
store A can advertise its contract c by firing the prefix tellK ↓x c, where the index
x in ↓xc is the name of a channel of A, and K is the name of an external broker,
whom the contract is being advertised to. We shall not specify the behaviour of
K, and just assume that when it finds a contract compliant with c, a session is
established between A and another participant, say B. Technically, x is replaced
with a fresh session name s. Participants A and B will then use such session to
perform the actions required by their contracts.

A possible specification of the store A is e.g.:

PM = (x) (tellK↓x c . (dox a . XM (x) + dox b . XM (x)))

XM (x)
def
= dox ok . dox pay . askx ship-a? . dox ship-a

Here, A creates a private channel x, and advertises the contract c. Once a session
starts, PM can accept an order for a or b on x. This is modelled by the guards
dox a and dox b of the choice operator + (not to be confused with + of contracts).
In both cases, the process XM (x) is invoked. There, A accepts the transaction
with ok, and waits for payment. Then A checks whether the contract requires to
ship apples: if the query askx ship-a? passes, the goods are shipped. Otherwise,
when the customer B orders Brunello, A maliciously gets stuck, and so B has
paid for nothing. This store is dishonest : it does not respect its own contract c.

Consider now a non-malicious implementation of the store. Before accepting
orders, the store requires an insurance to cover shipment damages. With the



contract cp = payP .
(
cover ⊕ cancel

)
, A promises to pay (payP) and then choose

between getting the coverage, or cancelling the request. The new store process is:

PN = (x, y)
(
tellC ↓y cp . doy payP . tellK ↓x c .(
dox a . dox ok . XN (x) + dox b . YN (x, y)

))
XN (x)

def
= dox pay .

(
askx ship-a? . dox ship-a + askx ship-b? . dox ship-b

)
YN (x, y)

def
= doy cover .

(
dox ok . XN (x) + τ . dox no

)
The store A first requests an insurance by advertising cp to an insurance company
(say C); once C agrees, A pays the premium (on channel y), and then advertises
c; once an agreement with a customer B is reached, A waits for a or b orders. If
apples are requested, A acknowledges (ok) and invokes XN (x); there, A waits for
payment, checks which good has to be shipped, and actually ships it. Otherwise,
if Brunello is requested, YN (x, y) is invoked: there, A requests the insurance
coverage paid in advance; then, either the order is accepted and XN (x) is invoked
for payment and shipment (as above), or the transaction is declined after an
internal action τ (e.g. a wake up after a timeout).

This implementation is not malicious as the first attempt: it is keen to ship
the goods, but it is not honest either due to the interaction between A and the
insurance company. If C does not execute cover, A gets stuck on doy cover, unable
to honour c by providing the expected ok/no. Furthermore, A is dishonest w.r.t.
cp: the premium is paid in advance, but A may never perform doy cover nor
doy cancel — e.g. if no agreement on c is found, or if the customer B is stuck, or
if B simply chooses to buy apples. Thus, due to implementation näıveties, A may
be blamed due to the unexpected (or malicious) behaviour of other participants.

Contributions. Our main contribution is a type discipline for statically ensuring
when a CO2 process is honest. The need for a static approximation is due to
the fact that honesty is an undecidable property [3]. Our type system associates
behavioural types to process channels. Checking honesty on these abstractions is
decidable (Th. 1). We establish subject reduction (Th. 2) and progress (Th. 3),
which are then used to prove type safety: typeable processes are honest (Th. 4).

Due to space constraints, we publish the proofs and further examples in a
separate report [1].

2 A Calculus of Contracting Processes

The calculus CO2 is parametric on the contract model, i.e. on the language of
contracts. Contract models for CO2 have been defined based e.g. on formulae
of Propositional Contract Logic [4], and on CCS processes [2]. In this paper we
focus on the two-party contracts of [11], as in [3]. Due to space limits, here we
only give the main definitions, and refer the reader to [1] for the full details.

We assume a set of participants A,B, . . ., and a set of atoms a, b, . . ., that
represent the actions performed by participants. We use an involution ā, as in



CCS, and assume a distinguished atom e, modelling a successfully terminated
participant, such that e = ē.

A unilateral contract of [11] is a CCS-like process c which models the promised
behaviour of a single participant. An internal sum c =

⊕
i∈I ai ; ci requires a

participant (say, A) to choose one of the actions ai, do it, and then behave
according to its continuation ci. An external sum c =

∑
i∈I ai . ci requires A to

offer a choice among all the branches; if ai is chosen by the other participant,
then A must continue according to ci. Finally, c = ready a.c′ models an obligation
of A to do a, and then to proceed as c′. We denote (guarded) recursive contracts
with rec X . c, and we let E = rec X . e ; X.

A bilateral contract γ = A says c | B says d combines the contracts of two
participants. Its behaviour is given in [3] as a LTS. Its main rules regulate the
interaction between the internal choices of A, and the external choices of B:

A says (ā ; c⊕ c′) | B says (a . d+ d′)
A says a−−−−−→→ A says c | B says ready a.d (1)

A says c | B says ready a. d
B says a−−−−−→→ A says c | B says d (2)

By (1), if A chooses branch ā in her internal sum, then B is committed to the
branch a in his external sum. We mark the selected branch with ready a, and
discard the others. This enables (2) where B takes the marked branch. When an
internal choice is not matched by an action in the external choice of the partner,
the contract gets stuck. Intuitively, two contracts c, d are compliant, c ./ d in
symbols, when this situation cannot occur. The formal definition of compliance
builds upon that of ready sets. For a contract c, the ready sets RS(c) are:

{{ready a}}, if c = ready a.c′ RS(c′), if c = rec X . c′

{{ai} | i ∈ I}, if c =
⊕

i∈I ai ; ci and I 6= ∅ {{ai | i ∈ I}}, if c =
∑
i∈I ai . ci

Then, the relation ./ on contracts is the largest relation preserved by contract
transitions such that, whenever c ./ d,

∀X ∈ RS(c),Y ∈ RS(d).
(
{ā | a ∈ X}∩Y 6= ∅ or ∃a. ready a ∈ (X∪Y)\(X∩Y)

)
We now briefly review CO2 . Let V and N be disjoint sets of, respectively,

session variables x, y, . . . and session names s, t, . . .. Let u, v, . . . range over V∪N .
Systems S, processes P , prefixes π, and latent contracts K are defined below.

Definition 1 (CO2 syntax). The syntax of CO2 is given by:

P ::=
∑
i πi.Pi

∣∣ P |P ∣∣ (~u)P
∣∣X(~u) π ::= τ

∣∣ tellA↓u c ∣∣ fuse ∣∣ doua ∣∣ askuφ
K ::= ↓u Asays c

∣∣ K |K S ::= 0
∣∣ A[P ]

∣∣ A[K]
∣∣ s[γ]

∣∣ S |S ∣∣ (~u)S

Processes specify the behaviour of participants. A process can be a prefix-
guarded finite sum

∑
i πi.Pi, a parallel composition P | Q, a delimited process

(~u)P , or a constant X(~u). We write 0 for
∑
∅ P , and π1.Q1+P for

∑
i∈I∪{1} πi.Qi

provided that P =
∑
i∈I πi.Qi and 1 6∈ I. We omit trailing occurrences of 0.



We stipulate that each X has a unique defining equation X(u1, . . . , uj)
def
= P s.t.

fv(P ) ⊆ {u1, . . . , uj} ⊆ V, and each constant occurring in P is prefix-guarded.

Prefixes include the silent action τ , contract advertisement tellA ↓u c, contract
stipulation fuse, action execution dou a, and contract query asku φ. In each prefix
π 6= τ , the identifier u refers to the target session involved in the execution of π.
As in [3], we leave the syntax of observables φ unspecified.

A latent contract ↓x A says c represents a contract c advertised by A but not
stipulated yet. The variable x will be instantiated to a fresh session name upon
stipulation. K simply stands for the parallel composition of latent contracts.

A system is composed of participants A[P ], sessions s[γ], sets of latent contracts
advertised to A (denoted by A[K]), and delimited systems (~u)S. Delimitation (~u)
binds session variables and names, both in processes and systems. Free variables
and names are defined as usual, and denoted by fv( ) and fn( ). A system/process
is closed when it has no free variables. Each participant may have at most one
process, i.e. we forbid systems of the form A[P ] | A[Q]. We say that S is A-free
when it does not contain the participant A[P ], nor latent contracts of A, nor
sessions with A’s contracts. Note that sessions cannot contain latent contracts.

The semantics of CO2 is formalised by a reduction relation on systems (Def. 2).
This relies on a standard structural congruence relation — of which we just point
out that (~u)A[(~v)P ] ≡ (~u~v)A[P ] allows to move delimitations between systems
and processes, while A[K] | A[K ′] ≡ A[K | K ′] allows A to collect latent contracts.

In order to define honesty in § 3, here we decorate transitions with labels, by

writing
A : π,σ−−−−→ for a reduction where participant A fires prefix π. Also, σ is a

substitution which accounts for the instantiation of session variables upon a fuse.

Definition 2 (CO2 semantics). The relation
A : π,σ−−−−→ between systems (con-

sidered up-to structural congruence ≡) is the smallest relation closed under the
rules of Fig. 1. The relation K Bσ γ holds iff (i) K has the form ↓x A says c |
↓y B says d, (ii) c ./ d, (iii) γ = A says c | B says d, and (iv) σ = {s/x,y} maps
x, y ∈ V to s ∈ N . The substitution σ 6=u in rule [Del2] is defined as σ(v) for all
v 6= u, and it is undefined on u.

The rules in Fig. 1 are a minor variation of those presented in [3]. Their
intuitive meaning is sketched in the introductory example (Sec. 1): [Tell] advertises
a contract c, [Fuse] creates a new session s upon contractual compliance, [Do]

performs a contractual action, [Ask] blocks until session s satisfies observable φ.

Example 1. A possible execution of S = A[(x)X(x)] | B[(y)Y (y)] | C[fuse],

where X(x)
def
= tellC ↓x (a ; E) . dox a and Y (y)

def
= tellC ↓y (a .E) . doy ā, is:

S
B : tellC ↓y ā,∅−−−−−−−−→ A[(x)X(x)] | C[fuse] | (y) (B[doy ā] | C[↓y B says ā .E])
A : tellC ↓xa,∅−−−−−−−−→(x)(A[dox a] | (y)(B[doy ā] | C[fuse] | C[↓xAsays a;E |↓yBsays ā.E]))
C : fuse,∅−−−−−→ (s) (A[dos a] | (y) (B[dos ā] | C[0] | s[A says a;E | B says ā.E]))
A : dos a,∅−−−−−−→ (s) (A[0] | B[dos ā] | s[A says E | B says ready ā .E])



A[τ.P + P ′ | Q]
A : τ,∅−−−−→ A[P | Q] [Tau]

S
A : π,σ−−−−→ S′ ranσ ∩ fn(S′′) = ∅
S | S′′ A : π,σ−−−−→ S′ | S′′σ

[Par]

A[tellB ↓u c.P + P ′ | Q]
A : tellB ↓uc,∅−−−−−−−−→ A[P | Q] | B[↓u A says c] [Tell]

K Bσ γ ranσ = {s} s fresh

A[fuse.P + P ′ | Q] | A[K]
A : fuse,σ−−−−−→ A[P | Q]σ | s[γ]

[Fuse]

γ
A says a−−−−−→→ γ′

A[dos a.P + P ′ | Q] | s[γ]
A : dos a,∅−−−−−−→ A[P | Q] | s[γ′]

[Do]

γ ` φ
A[asks φ.P + P ′ | Q] | s[γ]

A : asks φ,∅−−−−−−−→ A[P | Q] | s[γ]
[Ask]

S
A : π,{s/x}−−−−−−−→ S′

(x)S
A : π,∅−−−−→ (s)S′

[Del1]

S
A : π,σ−−−−→ S′ u 6∈ ranσ σ6=u 6= ∅

(u)S
A : π,σ6=u−−−−−−→ (u)S′

[Del2]
X(~u)

def
= P A[P{~v/~u} | Q] | S A : π,σ−−−−→ S′

A[X(~v) | Q] | S A : π,σ−−−−→ S′
[Def]

Fig. 1. Reduction semantics of CO2 .

3 On Honesty

A participant A is honest when she realizes every contract she advertises, in every
session she may be engaged in. If a system S contains a session s with a contract
c advertised by A, such as A[P ] | s[A says c | · · ·] | · · ·, then A must realize c,
even in a system populated by adversaries who play to cheat her. To realize c, A
must be “ready” to behave according to c. For instance, if A[P ] has advertised
a contract c with an internal choice ci = a⊕ b, then P must be ready to do at
least one of the actions a, b. Instead, if c is an external choice ce = a + b, then P
must be ready to do both the actions a and b.

Realizability requires the readiness property to be preserved by all transitions
of S. In other words, in any reduct of S containing a reduct P ′ of P and a reduct
c′ of c, the process P ′ must be ready for c′. To formalise when “P is ready for c”
we inspect the ready sets RS(c), which reveal whether c is exposing an internal or
an external choice. At the process level, we consider the reachable actions in P .

Example 2. Let ci = a⊕ b, and let ce = a + b. Then, RS(ci) = {{a}, {b}}, and
RS(ce) = {{a, b}}. Consider now the following processes:

– P0 = dos a is ready for ci, because {a} ∈ RS(ci) and dos a is enabled in
P0. Instead, P0 is not ready for ce, since the ready set {a, b} of ce also
contains b, which is not enabled in P0.

– P1 = dos a+ dos b+ dos z is ready for both ci and ce. Indeed, P1 enables
dos a and dos b, thus covering the ready sets of ci and ce. The branch dos z
is immaterial: rule [Do] blocks actions not expected by the contract.

– P2 = τ.dos a + τ.dos b is ready for ci, because whatever branch is taken
by P2, it leads to an unguarded action which covers one of the ready sets



in ci. Instead, P2 is not ready for ce, because after one of the two branches
is chosen, one of the two actions expected by ce is no longer available.

– P3 = dot w.dos a + dot z.dos b is a bit more complex than the above
cases. Readiness w.r.t. ci depends on the context. If the context eventually
enables one of the dot, then either dos a or dos b will be enabled, hence P3

is ready for ci. Otherwise, P3 is stuck, hence it is not ready for ci. Notice
that P3 is not ready for ce, regardless of the context.

To formalise readiness, we start by defining the set RDA
u(S) (for “Ready Do”),

which collects all the atoms with an unguarded action dou of A in a system S.

Definition 3 (Ready do). For all S, A and u, we define the set RDA
u(S) as:

RDA
u(S) = {a | ∃~v, P, P ′, Q, S′ . S ≡ (~v) (A[dou a.P + P ′ | Q] | S′) ∧ u 6∈ ~v}

As seen for P2 and P3, readiness may also hold when the actions expected in
the contract ready sets are not immediately enabled in the process. To check if
A[P ] is ready for s (in a system S), we need to consider all actions which (1) are
exposed in P after some steps, taken by P itself or by the context, and (2) are
not preceded by other dos performed by A. These actions form the set WRDA

s (S).

Definition 4 (Weak ready do). We define the set of atoms WRDA
u(S) as:

WRDA
u(S) = {a | ∃S′ : S

6=(A : dou)−−−−−−→∗ S′ and a ∈ RDA
u(S′)}

where S
6=(A : dou)−−−−−−→ S′ iff ∃B, π, σ. S B : π,σ−−−−→ S′ ∧ (B 6= A ∨ ∀a. π 6= dou a).

Example 3. For S = A[dox ā . doy b + τ . doy a . doy c | (x) dox b̄], we have:

WRDA
x(S) = {ā} = RDA

x(S) WRDA
y (S) = {a} ⊇ RDA

y (S) = ∅

On channel y, the action a is weakly reachable through its τ prefix. Action b is
not weakly reachable, because guarded by a stuck dox. Action c is not weakly
reachable as well, because preceded by another do on the same channel.

Example 4. Let P3 as in Ex. 2, and consider the following system:

S = A[P3] | B[τ . dos ā . dos b̄] | C[dot w + dot z̄ + τ ]

| s[A says a + b | B says ā⊕ b̄] | t[A says w + z | C says w ⊕ z̄]

In session t, A is immediately ready to do either w or z, so her ready do set
coincides with her weak ready do set in t. The same for C, with the dual atoms
w and z̄. Thus:

WRDA
t (S) = RDA

t (S) = {w, z} WRDC
t (S) = RDC

t (S) = {w, z̄}

In session s, the ready do sets of both A and B are empty, because their actions
are not immediately enabled. Before they can be reached, the whole system S



must first reduce, either with the contribution of C on session t (in the case of
A), or through a τ action (in the case of B). These reductions fall within the
definition of their weak ready do sets, which are accordingly non-empty.

WRDB
s (S) = {ā} ⊇ RDB

s (S) = ∅ WRDA
s (S) = {a, b} ⊇ RDA

s (S) = ∅

Notice that b̄ 6∈WRDB
s (S): in fact, b̄ is guarded by dos ā. Also, if C chooses to

perform τ , then the actions in WRDA
s (S) would not be reached. Indeed, Def. 4

requires that each element in the set becomes reachable at the end of a suitable
reduction trace — but it does not prevent S from reducing along other paths.

A participant A is ready in a system S with a session s[A says c | · · · ] iff A
is (weakly) ready to do all the actions in some ready set of c. Note that A is
vacuously ready in systems not containing sessions with A’s contracts.

Definition 5 (Honesty). We say that A is ready in S iff, whenever S ≡ (~u)S′

for some ~u and S′ = s[A says c | · · ·] | S0,

∃X ∈ RS(c) . ∀a 6=e .
(
a∈X ∨ ready a∈X =⇒ a∈WRDA

s (S′)
)

A[P ] is honest iff ∀ A-free S and ∀ S′ such that A[P ] | S →∗ S′, A is ready in S′.

The A-freeness requirement in Def. 5 is used just to rule out those systems
already carrying stipulated or latent contracts of A outside A[P ], e.g. A[P ] |
B[↓x A says pay | · · ·]. In the absence of A-freeness, the system could trivially
make A[P ] dishonest.

Example 5. In the system below, A might look honest, although she is not.

S
def
= A[(x, y) (PA | fuse | fuse)] | B[PB ] | C[PC ]

PA
def
= tellA (↓x a .E) . tellA (↓y b ; E) . dox a . doy b

PB
def
= (z) (tellA (↓z b̄ .E) . doz b̄) PC

def
= (w) (tellA (↓w ā ; E) .0)

In fact, if we reduce S by performing all the tell and fuse actions, we obtain:

S′ = (s, t) ( A[dot a . dos b] | B[dos b̄] | C[0] |
t[A says a .E | C says ā ; E] | s[A says b ; E | B says b̄ .E]

)
Here, S′ cannot reduce further: A is stuck, waiting for ā from C, which (dishonestly)
avoids to do the required internal choice. So, A is dishonest, because she does
not perform the promised b. Formally, A is dishonest because RS(b ; E) = {{b}},
but b 6∈WRDA

s (S′). Thus, A is not ready in S′, hence not honest in S.

Our definition of honesty subsumes a fair scheduler, eventually allowing
participants to fire persistently (weakly) enabled do actions. For instance, let
c = a⊕ b, and let:

P
def
= (x)

(
tellA ↓x c . fuse . X(x)

)
where X(x)

def
= τ . X(x) + τ . dox a + τ . dox b

Let S = A[P ] | S0, and assume that the fuse in P passes. Under an unfair
scheduler, A could always take the first branch in X, while neglecting the others.
Intuitively, this would make A not respect her contract, which expects a or b.
However, a fair scheduler will eventually choose one of the other branches.



4 A Type System for CO2

We now introduce a type system for CO2. The main result is type safety (estab-
lished in Th. 4), which guarantees that typeable participants are honest.

The type of a process P is a function f , which maps each channel to a channel
type. Channel types are behavioural types which essentially preserve the structure
of P , while abstracting the actual prefixes and delimitations. Mainly, the prefixes
of channel types distinguish between nonblocking and possibly blocking actions.

4.1 Channel types

Channel types are Basic Parallel Processes (BPPs [14]) with standard semantics.
Their prefixes can be atoms (a, b, . . .), contract advertisement actions (〈c〉),
nonblocking (τ), possibly blocking (τ?), and conditional (τφ) silent actions.

Definition 6 (Channel types). Channel types T and prefixes α are:

T ::= 0
∣∣ α . T ∣∣ T + T

∣∣ T | T ∣∣ rec X . T
∣∣X α ::= a

∣∣ τ ∣∣ τ? ∣∣ τφ ∣∣ 〈c〉
Example 6. Let P = tellB ↓x ci |

(
tellB ↓y d . dox ā

)
, where ci = ā ⊕ b̄, and d is

immaterial. We anticipate that the channel types associated by our type system
to P on channels x and y are, respectively, Tx = 〈ci〉 | τ . ā, and Ty = τ | 〈d〉 . τ?.
Note that the advertisement of ↓x ci is recorded in Tx, while that of ↓y d is
abstracted there as a τ . Instead, the τ? in Ty represents the fact that dox ā is not
visible from channel y, and may potentially block.

The execution of CO2 systems relies both on processes and contracts. Thus, we
use an abstraction of the contract/process interplay to define abstract processes.

Definition 7 (Abstract processes). An abstract process is a pair (C, T ) or
(c, T ), where C is a set of contracts, c is a contract, and T is a channel type.

An abstract process (C, T ) represents a process abstracted by T on some
channel x, after the contracts in C have been advertised. Instead, (c, T ) represents
a process abstracted by T on channel x, after the contract c has been stipulated.

The semantics of abstract processes is given in Fig. 2. The set C grows when
a channel type T in (C, T ) performs a transition with label 〈c〉. After a contract
c ∈ C has been stipulated, the set is reduced to c. A label a models a do a action
performed by T , while rule ctx models an (unknown) action performed by the
context. Further advertisements after contract stipulation are neglected.

The relation −→→] abstracts the contract semantics −→→, by considering only the
contract advertised by P (instead of the whole bilateral contract). We leave the
relation −→→] unspecified (see [3] for a possible instantiation), and we just require
that −→→] is decidable, and for all γ = A says c | B says d such that c ./ d,

γ
A says a−−−−−→→ A says c′ | B says d′ =⇒ c

a−→→] c
′

γ
B says b−−−−−→→ A says c′ | B says d′ =⇒ c

ctx−−→→] c
′



T
〈c〉−−−→ T ′

(C, T )→ (C ∪ {c}, T ′)
T

〈d〉−−−→ T ′

(c, T )→ (c, T ′)

c ∈ C
(C, T )→ (c, T )

c
ctx−−→→] c

′

(c, T )→ (c′, T )

T
α−−→ T ′ α ∈ {τ, τ?, τφ}
(C, T )→ (C, T ′)

c
a−→→] c

′ T
a−−→ T ′

(c, T )→ (c′, T ′)

T
α−−→ T ′ α ∈ {τ, τ?, τφ}

(c, T )→ (c, T ′)

T
a−→ T ′

T
a

=⇒ T ′
T

τ−→ T ′′
a

=⇒ T ′

T
a

=⇒ T ′
T
〈d〉−−→ T ′′

a
=⇒ T ′

T
a

=⇒ T ′

T
τφ−→ T ′′

a
=⇒ T ′ c `A] φ

T
a

=⇒ T ′

Fig. 2. Abstract processes semantics and channel type semantics.

We now introduce the abstract counterpart of the dynamic notion of honesty
in § 3. We shall follow the path outlined for concrete processes: first we define
when a channel type T is “ready for a contract”, and then when T is honest.

Weak transitions abstract the weak ready do. They are defined in Fig. 2 as
a labelled relation

a
=⇒c

A (simply written as
a

=⇒ when unambiguous). The first
two rules are standard: they just collapse the τ actions as usual. The third rule
also collapses contract advertisement actions, which are nonblocking as well.
Possibly blocking actions τ? are not collapsed, while τφ (which abstract asku φ
prefixes) are dealt with the last rule: they abstract the CO2 prefix asku φ, and
they are collapsed only if such ask is nonblocking. The relation `A] safely (under-)

approximates this condition. We leave `A] unspecified (just like ` in § 2), and we
only require that it respects the constraint in Def. 8 below. Unlike in the concrete
case, the context is immaterial in determining weak transitions.

Definition 8 (Abstract observability). We write c `A] φ for any decidable

relation satisfying: c `A] φ =⇒ ∀B . ∀d . (c ./ d =⇒ A says c | B says d ` φ).

Below we relate the weak transitions of a channel type with the ready sets of
a contract, similarly to what we did in Def. 5 for CO2 processes. Weak transitions
under-approximate the weak ready do set. Thus, if an abstract process is honest
then also the concrete one will be such (while the vice versa is not always true).

Honesty of abstract processes is defined similarly to Def. 5. In order to be
honest, a process must keep itself (abstractly) ready upon transitions. Readiness
must be checked against all the contracts that may be stipulated along the
abstract process reductions.

Definition 9 (Abstract honesty). We say that channel type T is abstractly

ready for contract c iff ∃X ∈ RS(c).∀a 6= e.
(
(a ∈ X ∨ ready a ∈ X ) =⇒ T

a
=⇒

)
.

An abstract process (−, T ) is honest iff, whenever (−, T )→∗ (c, T ′), then T ′ is
ready for c. A channel type T is honest iff (∅, T ) is honest.

Example 7. Let Tx = 〈ci〉 | τ . a, and recall the contract ci = a ⊕ b from Ex. 2.
To prove Tx is honest, we examine all the reducts of the abstract process (∅, Tx)
to check for readiness. We have the following cases:



1. (∅, Tx). Nothing to check, because no contracts have been advertised yet.
2. (∅, 〈ci〉 | a). Similar to the previous case.
3. ({ci}, τ . a). Nothing to check, since no contracts have been stipulated yet.
4. ({ci}, a). Similar to the previous case.
5. (ci, τ .a). Here τ .a is ready for ci, as {a}∈RS(ci) = {{a}, {b}} and τ .a

a
=⇒.

6. (ci, a). We have that a is ready for ci, similarly to the previous case.
7. (E,0). We have that 0 is vacuously ready for E.

Th. 1 below establishes that checking the honesty of a channel type T is
decidable. Indeed, abstract readiness and abstract dishonesty are reachability
properties. Abstract processes are the product of a finite state system (C and c
only admit finitely many states), and a BPP T . This product can be modelled as
a Petri net. Decidability follows since reachability is decidable for Petri nets [17].

Theorem 1. Abstract honesty is decidable.

4.2 Process types

A CO2 process type associates session names/variables to channel types, thus
abstracting the behaviour of a process on all channels. Here, we introduce a
“dummy” channel ∗ 6∈ N∪V , for collecting type information about unused channels.
Formally, a process type is a function f from N ∪ V ∪ {∗} to channel types.

Our type system abstracts concrete prefixes of CO2 processes as actions of
channel types. We observe the behaviour of a process P on each channel, say u.
When P performs an action on one of its channels, say v, we have two cases:

v 6= u: we will only observe a silent action, either nonblocking (τ) or blocking
(τ?), depending on the concrete prefix fired.

v = u: we may observe more information, depending on the concrete prefix.

For instance, if P advertises a contract c with a tell ↓v c, then the action 〈c〉
will be visible if v = u, while we shall just observe a τ if v 6= u (because tell is
nonblocking). Similarly, if P performs dov a we shall observe the action a if v = u
and τ? if v 6= u (because do is blocking). Finally, if P executes a query asku φ we
shall observe the conditional silent action τφ if v = u and τ? otherwise.

Definition 10 (Prefix abstraction). For all u ∈ N ∪ V ∪ {∗}, we define the
mapping [·]u from CO2 prefixes to channel type prefixes as follows:

[τ ]u = τ [fuse]u = τ? [tellA ↓v c]u = if v = u then 〈c〉 else τ
[dov a]u = if v = u then a else τ? [askv φ]u = if v = u then τφ else τ?

The typing judgments for processes have the form Γ ` P : f , where Γ is a
typing environment, giving types to processes of the form X(~v).

Definition 11 (Typing environment). A typing environment Γ is a partial
function associating process types to constants X(~v).



Γ ` Pi : fi ∀i ∈ I
Γ `

∑
i∈I πi . Pi : λu .

∑
i∈I [πi]u . fi(u)

[T-Sum]
Γ ` P : f Γ ` Q : g

Γ ` P | Q : λu . f(u) | g(u)
[T-Par]

X(~u)
def
= P Γ{f/X(~v)} ` P{~v/~u} : f

Γ ` X(~v) : f
[T-Def]

Γ (X(~v)) = f

Γ ` X(~v) : f
[T-Var]

Γ6=u ` P : f f(u) honest

Γ ` (u)P : f{f(∗)/u} [T-Del] where Γ6=~v(Y (~w)) =

{
Γ (Y (~w)) if ~w ∩ ~v = ∅
undefined otherwise

Fig. 3. Typing rules for processes.

In Fig. 3 we introduce the typing rules for CO2 processes. Rule [T-Sum] abstracts
the prefixes which guard the branches of a summation, according to Def. 10. The
resulting process type is expressed through the usual λ-notation. The type of a
parallel composition is the pointwise parallel composition of the component types
(rule [T-Par]). Rules [T-Def] and [T-Var] are mostly standard. Rule [T-Var] retrieves
the type of a process variable from the typing environment, which is populated
by [T-Def]. The rule for typing delimitations ([T-Del]) is worth some comments.
Assume that P is typed with f . Since u in not free (u)P , the actions on channel
u must not be observable in the typing of (u)P . To do that, in the typing of (u)P
we discard the information on u, by replacing it with the typing information on
the “dummy” channel ∗. However, since this might hide a dishonest behaviour on
u, the rule also checks that f(u) is honest. Moreover, if the environment Γ has
typing information on channel u, this cannot be used while typing P . The typing
environment Γ6=u, which discards the information on u, is used to this purpose.

Example 8. Recall process P2 = τ .dos a+τ .dos b from Ex. 2. Its typing derivation
is:

` dos a : λu . [dos a]u = f1
[T-Sum]

` dos b : λu . [dos b]u = f2
[T-Sum]

` P2 : f = λu . [τ ]u . f1(u) + [τ ]u . f2(u)
[T-Sum]

We have f(s) = τ . a + τ . b, and for all u 6= s, f(u) = f(∗) = τ . τ? + τ . τ?. In
other words, the process type f performs some visible actions when observed at
channel s, while remaining “silent” on other channels.

The type system assigns the same type (up-to structural congruence) to all
non-free session names/variables, and to ∗; such type may only contain τ and τ?.

Lemma 1. For all P , ` P : f =⇒ f(∗) only contains τ and τ? actions.

Lemma 2. z 6∈ fnv(P ) ∧ Γ ` P : f =⇒ f(z) = f(∗)

A process type f takes a transition on a CO2 prefix π when all its points f(u)
agree to take a transition on the abstract prefix [π]u.

Definition 12. We write f
π−−→ f ′ whenever ∀u ∈ N∪V∪{∗}.f(u)

[π]u−−−−→ f ′(u).



Example 9. Recall P1 = dos a + dos b + dos z from Ex. 2. Its typing is ` P1 : f =

λu . [dos a]u + [dos b]u + [dos z]u. Let f ′ = λu . 0. We have that f
dos a−−−−→ f ′, since:

– [dos a]s = a and f(s) = a + b + z
a−−→ 0 = f ′(s);

– ∀v 6= s . [dos a]v = τ? and f(v) = τ? + τ? + τ?
τ?−−→ 0 = f ′(v).

Note that, in this case, we also have f
dos b−−−−→ f ′ and f

dos z−−−−→ f ′.

If f is the type of some CO2 process (i.e., f is inhabited), and a single point
f(u) takes an abstract transition, then the whole f can take a transition.

Lemma 3. f(u)
α−−→ T ′∧ f inhabited =⇒ ∃π, f ′ . [π]u=α∧ f ′(u)=T ′∧ f π−→ f ′.

Definition 13 (Type honesty). f is honest iff f(u) is honest, ∀u∈N∪V∪{∗}.

Note that, when ` P : f , checking the honesty of f amounts to checking f(u)
honest only for each u ∈ fnv(P ). In fact, f(v) = f(∗) when v 6∈ fnv(P ), and f(∗)
is trivially honest because it cannot advertise contracts.

4.3 System typing

In this section we establish type safety for CO2 processes: for any typeable
closed P , A[P ] is honest. To prove this result, we have to consider the transitions
of a process within a system. Hence, in order to construct an invariant of the
system transitions (i.e., proving subject reduction), we extend typing to systems.

Type judgments for systems are of two kinds. A judgment of the form `A S : f
guarantees that a participant A in S behaves according to f . Instead, a judgment
of the form `A S B f means that A is not in S, and S is compatible with any
participant A behaving as f . Our notion of compatibility is liberal: intuitively, it
just checks that the context S does not contain forged contracts of A.

Definition 14 (System typing). The relations `A S : f and `A S B f are the
smallest relations closed under the rules in Fig. 4.

Most rules in Fig. 4 are straightforward. Rules [T-SAFree*] tell that A-free
systems are compatible with all f . Rules [T-SFz*] state that an f -compatible
context (where f is the behaviour of A) may contain latent contracts of A if f
realizes them. Rule [T-SFused] is similar, but it deals with stipulated contracts of
A. Rule [T-SDel2] is similar to [T-Del] for typing processes. Rule [T-SDel1] is dual:
while in [T-SDel2] the type f abstracts the behaviour of A within S, in [T-SDel1] it
represents the behaviour of A outside S. Note that if A[P ] is typeable, then it
can be inserted in any A-free system, and the composed system will be typeable.

Example 10. Let S0 = B[Q] | C[↓x A says c], with B 6= A (note that S0 is not
A-free). Assume that ` P : f . Then, a typing derivation of S = A[P ] | S0 is:

` P : f

`A A[P ] : f
[T-SA]

B 6= A

`A B[Q] B f
[T-SAFree1]

f(x) realizes c

`A C[↓x A says c] B f
[T-SFz1]

`A B[Q] | C[↓x A says c] = S0 B f
[T-SPar1]

`A A[P ] | S0 = S : f
[T-SPar2]

Notice that S is typeable with f only if f(x) realizes A’s contract c.



`A 0B f
[T-SAFree0]

B 6= A

`A B[P ] B f
[T-SAFree1]

B 6= A

`A C[↓x B says c] B f
[T-SAFree2]

γ A-free

`A s[γ] B f
[T-SAFree3]

`A B[↓s A says c] B f
[T-SFzS]

f(x) realizes c

`A B[↓x A says c] B f
[T-SFz1]

`A B[K] B f `A B[K′] B f

`A B[K | K′] B f
[T-SFz2]

∅ ` P : f

`A A[P ] : f
[T-SA]

`A S B f{f(∗)/u}
`A (u)S B f

[T-SDel1]
`A S : f f(u) honest

`A (u)S : f{f(∗)/u}
[T-SDel2]

f(s) realizes c

`A s[A says c | · · ·] B f
[T-SFused]

`A S B f `A S′ B f

`A S | S′ B f
[T-SPar1]

`A S : f `A S′ B f

`A S | S′ : f
[T-SPar2]

Fig. 4. Typing rules for systems. Symmetric rules wrt | for [T-SFused], [T-SPar2] omitted.

4.4 Type safety

Subject reduction guarantees that typeability is preserved by transitions. We
need to distinguish two cases, according to which participant moves: either the
participant A under typing, or any other B. If the transition is done by A, then
also its process type must take a transition, otherwise the type is preserved.

The substitution induced when executing a fuse also affects the type of the
reduct system. For instance, consider A[P ] | S, where ` P : f and f(x) = T .
Assume that S fires a fuse, with a substitution σ mapping x to a fresh session
name s. In the type, this is reflected by updating f according to σ, so to map s
to T , and x, which is no longer free, to f(∗). Technically, this is done as follows.

Definition 15. For a type f and a mapping {v/~u}, the partial operator • is:

f • {v/~u} =

{
f if ∀u0 ∈ ~u . f(u0) = f(∗)
f{f(∗)/u0}{f(u0)/v} if ∃!u0 ∈ ~u . f(u0) 6= f(∗)

Theorem 2 (Subject reduction). If `A S : f with f honest, then:

S
A : π,σ−−−−→ S′ =⇒ ∃f ′ . f π−−→ f ′ ∧ `A S′ : f ′ • σ

S
B : π,σ−−−−→ S′ =⇒ `A S′ : f • σ (when B 6= A)

Progress guarantees that if a typeable process has a “non-blocking” type,
then it can take a transition. More precisely, if the type of P on channel u can
take a weak transition with label a, then P will have a in its weak ready do set.

Theorem 3 (Progress). For all S ≡ s[A says c | · · · ] | S′, if `A S : f with f

honest, and f(s)
a

=⇒c
A, then a ∈WRDA

s (S).

The main result of this paper is the type safety of CO2 processes. It ensures
that a participant A with a well-typed process P will always respect her contracts —
both those already advertised, and those that she will publish along her reductions.
Therefore, A will never be considered culpable in any context.

Theorem 4 (Type safety). ∀ A[P ] with P closed, ` P : f =⇒ A[P ] is honest.



5 Concluding Remarks and Related Work

We have given a type system for a calculus of contracting processes. Type safety
establishes honesty : typeable processes honour their contracts in all contexts.

In [3], A is considered “honest” when not definitely culpable (in any session),
i.e., A eventually performs the actions her contract prescribes. In Def. 5, honesty
is based on readiness, rather than culpability; we conjecture that the two notions
are equivalent. The main advantage of this new approach compared to [3] is that
it simplifies the proof of the correctness of the static analysis of honesty, by more
directly relating abstract transitions with concrete ones. Also, the new definition
helps in proving decidability of abstract honesty, which was left open in [3].

In [5] (multiparty) asserted global types are used to adapt design-by-contract
to distributed interactions. In our framework, a participant declares its contract
independently of the others; a CO2 primitive (fuse) tries then to combine adver-
tised contracts within a suitable agreement. In other words, one could think of
our approach as based on orchestration rather than choreography.

In [16] the progress property is checked only when participants engage at
most in one session at a time. Honesty is a sort of progress property, and our
type system allows participants to interleave many sessions as done in [15]. A
crucial difference with respect to [15] is that the typing discipline there requires
the consistency of the local types of any two participants interacting in a session.
Namely, if in a session s, A and B are typed as TA and TB respectively and
they interact then the projection of TA with respect to B must be dual of the
projection of TB with respect to A. In our type system instead, participants are
typechecked ’in isolation’ and to establish the honesty of a participant A our
typing discipline only imposes that the surrounding context is A-free.

Other approaches deal with safety, by generating monitors that check at
runtime the interactions of processes against their local contract (e.g.,[13,12]).

The problem of checking if a contract c, representing the behaviour of a service,
conforms to a role r of a choreography H has been investigated in [6]. Conformance
of c is attained by establishing a should testing pre-order between c and the
projection of H with respect to role r. Similar techniques have been used in [7] to
define contract-based service composition. A main difference w.r.t. our approach,
is that [6,7] do not consider conformance in the presence of dishonest participants.
Actually, they focus on matching a contract as a role within a choreography, while
we establish if a process abides by its own contracts, regardless of the context.

In [8,9], constraints are used to rule out “inconsistent” executions. This is
orthogonal to our approach, since our aim is to blame participants that misbehave.
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