N
N

N

HAL

open science

A New Representation of Two-Dimensional Patterns and
Applications to Interactive Programming

[.T. Banu-Demergian, C.I. Paduraru, G. Stefanescu

» To cite this version:

I.T. Banu-Demergian, C.I. Paduraru, G. Stefanescu. A New Representation of Two-Dimensional
Patterns and Applications to Interactive Programming. 5th International Conference on Fundamentals
of Software Engineering (FSEN), Apr 2013, Tehran, Iran. pp.183-198, 10.1007/978-3-642-40213-

5_12 . hal-01514660

HAL Id: hal-01514660
https://inria.hal.science/hal-01514660
Submitted on 26 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01514660
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A new representation of two-dimensional
patterns and applications to interactive
programming

L.T. Banu-Demergian', C.I. Paduraru®, and G. Stefanescu'

Department of Computer Science, University of Bucharest, Romania
th_iulia84@yahoo.com, ciprian.paduraru2009@gmail. com,
and gheorghe.stefanescu@fmi.unibuc.ro

Abstract. Regular expressions and the associated regular algebra pro-
vide a rich formalism for specifying and analysing sequential models
of computation. For parallel computation, extensions to handle two-
dimensional patterns are often required. In this paper we present a new
type of regular expressions for two-dimensional patterns based on con-
tours and their composition. Targeted applications comes from the area
of modelling, specification, analysis and verification of structured inter-
active programs via the associated scenario semantics.

Keywords: regular expressions, two-dimensional patterns, contours, struc-
tured interactive programming, formal methods

1 Introduction

Regular expressions and the associated regular algebra provide a rich formalism
for specifying and analysing sequential models of computation. They were orig-
inally introduced by Kleene [17] in connection with neural networks and finite
automata - Kleene theorem states that finite automata and regular expressions
are equivalent (i.e., they specify the same language). In the meantime, regular
expressions became a core formalism for many other models used in computer
science. In particular, they provide the backbone of a rich algebraic theory of
automata, see, e.g. [28,11, 20, 18,6, 19, 8].

For parallel computation, enrichment of the sequential models with mecha-
nisms for modelling process interaction are needed. We only mention a Kleene
theorem to Petri nets [27,13]: Petri nets and a class of concurrent regular ex-
pressions are equivalent. The result is based on the following procedure: (1)
decompose the behaviour to have separate components where each transaction
has no more than one input and one output place; (2) decompose the behaviour
of a component to have an independent run for each initial token; (3) use the
classical Kleene theorem for these sequential runs; (4) use synchronization and
renaming to force the composition of these separate projected runs to behave as
a run of the initial overall system. However, as it was often noticed (see, e.g.,
[18]), renaming has bad algebraic properties and should be avoided.

A natural semantics for parallel computation is provided by a kind of two-
dimensional patterns/languages - for instance, messages sequence charts or sce-
narios fall into this category. A robust class of “regular two dimensional lan-
guages” has been identified in 1990’s [14, 22]; it may be specified by many equiv-
alent formalisms, in particular by a 2-dimensional version of regular expressions
2RE, including intersection and renaming.

In this paper we present a new type of regular expressions for two-dimensional
patterns n2RE based on contours and their composition. It avoids the use of
intersection and renaming, being closer in spirit with classical 1-dimensional
regular expressions. In this approach, the magic way of getting the intended
language by renaming and intersection is replaced by a steady work of tiling
shapes to build up the words step by step.

Our targeted applications comes from the area of modelling, specification,
analysis and verification of structured interactive programs via the associated
scenario semantics. Interactive computation [15] is becoming more and more
important in the recent years, in particular due to the advance of multicore
computation. We use a model rv-IS [35] based on space-time duality. In particu-
lar, finite interactive systems [34] are the space-time invariant extension of finite
automata in this context. Agapia programming [12] is a core interactive program-
ming language based on this model. We use the n2RE expressions to present a
relational semantics for Agapia programs; it may be seen as an extension to two
dimensions of the classical relational semantics of sequential computing models
(23, 24].

The paper is organized as follows. Section 2 presents a known approach us-
ing two sets of regular algebra operators, intersection, and renaming. Section 3
presents the new approach based on contours and Section 4 shows an application
for getting a relational semantics for structured interactive programs. Related
and future works and references conclude the paper.

2 A known approach

2.1 Finite interactive systems (FIS’s) and regular expressions
(2RE’s)

Definition 1. A finite interactive system (FIS) [34,35] is defined by

— two types of nodes: states (denoted by numbers 1,2, ...) and classes (denoted
by capital letters A, B, ...);

— transactions: (A,1)—a — (B,2), where a is a letter of the considered alpha-
bet and A, B, 1,2 are as above;

— specification of the initial/final states and classes. O

A useful cross/tile representation may be used; is is based on showing the
transitions and stating which states and classes are initial/final. An example is

[1] 2] 1
S1: |A221 B| |A§ Al [B[b|B] with 1, A4 initial and 2, B final.
1

rectangular word accepting S1 scenario general word accepting S1 scenario

1] [1] [T (1] [1]

[Ala[B[b[B[b[B] [Ala[B[b]B]

2] |1 |1 2 [1

[Alc]A]a]B][b]B] [Alc]A]alB
alblb | 21 [2] [1 | alb 2] (2] 1 |
clalb A|c|A|c|Ala[B cla Alc[A[a|B
clcla 2] [2] [2] cla] 2] [2]

Fig. 1. FIS recognizing procedure

FIS recognizing procedure. The FIS recognizing procedure is via accepted sce-
narios. A scenario alternates class/state information and letters according to
the FIS transitions. It is an accepting scenario if the northern border has initial
states, the western border has initial classes, the eastern border has final classes,
and the southern border has final states.

Graphically, a scenario may be easily obtained using the crosses representing
the transitions and identifying the matching classes or states of the neighbouring
cells. In Fig. 1 we show a few examples of scenarios for the FIS S1 above. Notice
that the recognizing procedure may be applied to non-rectangular words, as well.

Definition 2. First, simple 2-dimensional reqular expressions (simple 2RE’s)
are defined by two sets of regular operators (one for the vertical, the other for
the horizontal direction) which share the additive part. Formally, they use:

1. the additive operators: 0 (for empty set) and + (for union);

2. the vertical composition operators: I_v (vertical identity), ;_v (vertical com-
position) and *_v (iterated vertical composition); our preferred textual nota-
tion is: |, ; and *;

3. the horizontal composition operators: I-h (horizontal identity), ; h (hori-
zontal composition) and *_h (iterated horizontal composition); our preferred
textual notation is: -, > and ~.

Next, 2-dimensional reqular expressions (2RE’s) are obtained adding intersec-
tion and renaming to simple 2RE’s. Formally, they use the following additional
operators

1. intersection: our preferred textual notation is /\;
2. renaming via a letter-to-letter homomorphism rho:V->V’ (V and V’ are the

old and the new vocabulary, respectively). 0

Ezxamples. A few examples of 2RE expressions and typical specified words are
presented in Fig. 2. They are related to the following expression

E=(Cbx ; a;cx)” /\ (c”>a>b)x*
In Fig. 2.(1)-(4), typical words generated by the following expressions are pre-
sented: bx ; a ; c*; (b*x ; a ; c*x)™;¢c” > a > Db™;and (¢ > a > b7)*.
It can be proved that the intersection (b* ; a ; c*x)~ /\ (¢~ > a > b™)*
has only square words with a on the diagonal, b on the top right area and ¢ on

the bottom left area, see Fig. 2.(5). The first part of the expression constrains the
column patterns, while the second the rows. Intersection does the magic action
of selecting only the square 2-dimensional words.

b[b[bla
[b] b[b[b]c c[c[a[b[b]b a[b[blb
EX alblalc clalb[b[b[b clalb[b
clalc|c cl[c|clalb[b clclalb
clclc]c [c]c]a]b] alb[b[b[b[b clclcla
(1) (2) (3) (4) (5)

Fig. 2. A 2RE expression for the FIS S1

Theorem 1. (connecting 2RE’s to FIS’s [14, 34, 35, 29]) The languages repre-
sented by finite interactive systems (FIS’s) and those specified by 2-dimensional
reqular expressions (2RE’s) are the same.

Proof: (Sketch): As usual, more complicate is the passing from FIS’s to 2RE’s.
It is done in two steps:

— for a FIS S with transitions having distinct letters the procedure is:

e take a usual regular expression Es for the state-projected nondetermin-
istic finite automaton (NFA) of S and another one Ec for the class-
projected NFA of S (these NFA’s are obtained from S ignoring one di-
mension)

e an expression for S is (Es)~ /\ (Ec)*

— for an arbitrary FIS proceed as follows: first rename the transitions with new

letters to apply the above step; then, apply the previous result; finally, use
the renaming operator to rename back the new letters with their original
version in the resulting expression.

For the other part, one can use the result in [29] showing that FIS’s are equiva-
lent with tile systems, then the relation between 2RE’s and tile systems. a

Example: Let us consider the FIS S2 defined by

1]
[Ala|B] [A
2]

[1]
A| [Bla B|, where 1,A are initial and 2,B are final.
1

|t\)m l\)l

The procedure is the following:

1.

rename the 2-nd a as ¢ and the 3-rd a as b to get different letters for tran-
sitions; actually, this way we get the FIS S1 above;
get a 2RE for this new FIS; using the projected NFA’s such an expression is
El = (b*x ; a; cx)” /\ (¢c” >a>b7)x
rename back to get an expression for S2
E2 =rho [(bx ; a ; cx)~ /\ (¢~ > a > b™)x]
with rho mapping a,b,c into a,a,a, respectively.

Problems. There are a few problems with this approach, the main critics being
the following;:

— Intersection is a nonintuitive operator: Indeed, it is difficult to grasp what
you get by intersecting two or more languages.

— The formalism is not robust under renaming: As an example, notice that the
expression E3 = (a*x ; a ; ax)” /\ (a~ > a > a”)*, obtained by syn-
tactically renaming a,b,c as a into the expression E above, represents all
rectangular words of a’s, not only the square ones as one expects.

— Renaming is yet a still more nonintuitive operator: It’s like writing in Chinese
and getting an English text using a letter-to-letter morphism, losing most of
the information.

The solution we propose to the above problems is the following:

— Construct a formalism for handling words of arbitrary shapes in the 2-
dimensional plane;

— Introduce a powerful set of composition operators for these shapes (extending
vertical /horizontal compositions and their iterated versions)

In other word, the magic way of getting the intended language by re-
naming and intersection is to be replaced by a steady work of tiling
shapes to get the words step by step.

3 A new approach

3.1 General 2-dimensional words

A (pointed) contour is a closed line, with a chosen starting point, on a rectangular
grid Z x Z that divide the space into two disjoint regions: the internal area (which
is required to be finite) and the external area. It will be represented using a
sequence of letters from the set {u,d,1,r} (u stands for “up”, d for “down”, 1
for “left”, and r for “right”) and a placement (x,y) of the starting point. For
simplicity, by default one can consider the starting point to be (0, 0).

A few examples of contours are shown in Fig. 3. A representation for C1 is
1.1 u11.14d.11.1u?2 r_3d_2 Thenumbers after the letters are used to
count repetitions. The contour starts at the chosen (black dot) point and travel
clockwise. The interior area of a contour is the dashed (yellow) one. As the con-
tour is surrounded clockwise, the area on the right is internal, while the one on
the left is external. By changing the starting point, the representation is shifted
circularly; for instance, C2 is represented by 1_1 d_1 1_1 u_ 2 r_.3 d_2 1_1 u_1.
Two slightly more complicate contours are shown in C3 and C4 in Fig. 3. As the
last example shows, one can have contours with distinct disjoint components
in its internal area, connected via lines travelled forth and back in the repre-
sentation. The lines travelling into the internal areas are also called tunnels,
while those sitting in the external areas bridges. As one can see, the tunnels
and the bridges have a lot of freedom regarding both their forms and their

contour C1 contour C2 contour C3 contour C4

I

]

{

Fig. 3. Contours

physical placement; for instance, they may have branches going nowhere. From
the 2-dimensional words point of view, all these representations of contours are
equivalent.

The formal definition of a contour requires quite a lot of preparation and it
is presented below. A closed line C is a string over the set {u,d,1,r}, obeying
the conditions no(C,u) = no(C,d) and no(C,r) = no(C,1), where no(C,x)
denotes the number of occurrences of x in C.

For a point p = (,y) € Z?, p specifies the information that C passes exactly
k time through p; notice that k& > 0. A vertical line segment ((z,y), (xz,y + 1))
is specified by its middle point [= (z,y + 0.5); the notation lg specifies that
the difference between the “up” and the “down” times C' passes through this
segment is k; notice that £ € Z may be both positive or negative. Similarly,
for an horizontal line segment ((x,y), (x + 1,y)), denoted I = (x + 0.5,y), the
notation l’("j says that k is the difference between the “right” and the “left” times
C passes through [. Finally, a unit cell with the corners {(z,y), (z + 1,y), (z +
1,y+1),(z,y + 1)} is specified by its center point ¢ = (z 4+ 0.5,y + 0.5).

For a cell ¢ = (z + 0.5,y + 0.5), the notation c(kj’w specifies how c¢ is seen
in C from a western perspective. Formally, let z = maz{w € Z : w < x and
I = (w,y+0.5) is such that I, is true with & # 0}; then ¢f, , is true if ¢, is true
for the line I = (z,y + 0.5). In words, starting from the center of the cell and
travelling horizontally towards the west there is a first line crossed and having a
unequal up/down passings and, moreover, the difference between the “up” and
the “down” passings along that line is k. The notations cf, , c'&n, and c’&s are
similarly introduced for the eastern, northern, and southern directions.

A cell is seen as internal if c’&w and k£ > 0. For the external property the
condition is slightly different: either c’aw and k < 0 (i.e., going horizontally
towards west, the there is a first line crossed with more down than up passings) or
there is no line crossed with unequal up/down passings. This additional condition
is needed to ensure the internal area of a valid contour is finite; for instance, drul
is not a valid contour (see below the formal definition of valid contours).

With these notations, the correctness criteria for a string to represent a valid
contour are the following: a closed line C' represents a valid contour if:

— each cell is either internal from all directions, or external from all directions;
— for the internal cells, the conditions c’é’w, c’é’e, c’é’n, and CI&S are all satisfied
with k£ = 1.

C1 C2 C3 Cl.C3 C2.C3

mmcﬁ%%

Fig. 4. Contours composition

The last condition is needed to avoid overlapping by multiple surroundings of
the same internal area; for instance rdlurdlu is not valid, while rdlu is.

It is possible to replace the conditions here with conditions on the string
itself, rather than on the lattice cells. However, such an approach is less intuitive
(it is based on forbidden string configurations) and the details are quite complex;
see [3].

A general 2-dimensional word is specified by a contour and a filling of its
internal area with letters from the given alphabet. In the following we will mostly
ignore this additional information as most of the difficulties are posed by the
handling of the contours/shapes and not by the contents of their internal areas.

3.2 General composition

A general composition operator ‘. on contours may be defined as follows: given
two contours, get a new contour by putting them together and identifying their
starting points (the black dots). This means, one has to travel along the first con-
tour and when he arrives back to the starting point, to travel along the next. In
the string representation of the contours, the operation actually is concatenation
Cl . C2 =C1 C2.

Comments: The condition to have a definite composite is to have a valid
non-overlapping contour after the concatenation of the representations of the
given contours (for instance, a pointed contour cannot be composed with itself).
In particular, this implies that there is no constraint on the contents of the
internal areas of the contours, hence the operation is straightforwardly extended
to general 2-dimensional words. This is a very powerful and general composition
operator, indeed.

For a graphical example, C1 . C3 in Fig. 4 shows a composition leading to
a valid contour, while C2 . C3 leads to a string representation which does not
represent a valid contour (it has overlapping areas).

This composition is extended to two-dimensional words as follows. For two
words W1, W2, consider arbitrary contours C1, C2 representing them (having
as internal areas the shapes of the words) and arbitrary positions as starting
points of these contours. Then, W1 . W2 consists of all words resulting from
valid compositions of such contours and placing the letters of the words W1, W2

in the corresponding positions of the resulting composites. E.g., the composite

n ool alen
a . a contains the Words la | [a] , etc.

3.3 Particular composition operators

The new type of 2-dimensional regular expressions, to be defined below, put
constraints on the contact elements of the composed words. These constraints
acts on the following three types of elements: side borders, land corners (turning
points on the contour having 3 neighbouring cells outside the word and one
neighbouring cell inside), and golf corners (turning points on the contour with at
least 2 neighbouring cells inside and one neighbouring cell outside). An example
is shown in Fig. 5(1). The resulting restricted composition operators extend the
usual vertical and horizontal composition operators used on rectangular words.

Points of interest on the words borders. Let us use the following notation (their
meaning is explained right after the listing):

— side borders: elements in C1={w,e,n,s}, where w stands for “west border”,
e for “east border”, n for “north border”, and s for “south border”;

— land corners: elements in C2={nw,ne,sw,se}, where nw stands for “north-
west land corner”, ne for “north-east land corner”, sw for “south-west land
corner”, and se for “south-east land corner”;

— golf corners: elements in C3={nw’ ,ne’ ,sw’,se’ }, where nw’ stands for “north-
west golf corner”, ne for “north-east golf corner”, sw for “south-west golf
corner”, and se for “south-east golf corner”.

A line ! = (z,y+0.5) is on the east border of a word f if the cell ¢ = (z—0.5,y+
0.5) is in the internal area of f, while the cell ¢ = (z + 0.5,y + 0.5) is in the
external area of f. For the other west, north, and south directions, the definition
is similar. A point p = (x,y) € Z? is on the south-east land corner border of a
word f if the cell ¢ = (x — 0.5,y + 0.5) is in the area of f, while the other 3
cells around are not in the area of f (they are in the external area of f). For the
other 3 types of land corners the definition is similar. A point p = (x,y) € Z? is
on the south-east golf corner border of a word f if the cell ¢ = (x — 0.5,y + 0.5)
is not in the area of f (it is in the external area of f), while at least 2 of the
other 3 cells around are in the area of f. For the other 3 types of golf corners
the definition is similar.

Glueing combinations. The constraints on glueing the borders of the words in the
composite word are independently put on one or more the following combinations

(z,y):

— z and y are different and either they are both in {e, w}, or both in {s,n}, or
both are land corners in {nw, ne, sw, se}, or both are combinations golf-land
corners for the same directions.

Spelling out the resulting combinations we get the following lists:

— linking side borders: L1={(w,e), (e,w), (n,s),(s,n) };

— linking land corners: L2={ (nw,ne) , (nw,se) , (nw,sw) , (ne,nw) , (ne,se),
(ne,sw), (se,nw), (se,ne) , (se,sw), (sw,nw), (sw,ne) , (sw,se) };

— linking golf-land corners: L3={(aw’ ,nw) , (nw,nw’), (ne’ ,ne), (ne,ne’),
(se’,se), (se,se’), (sw’,sw), (sw,sw’)}.

The set of all combinations in L1 U L2 U L3 is denoted by Connect.

Constricting formulas. On each of the above eligible glueing combination (x,y)
we put a constrain given by a propositional logic formula* F' € PL(¢1, ¢2, ¢3, ¢4),
i.e., a boolean formula built up starting with the following atomic formulas:

¢1(l',y) = ‘r< y”a ¢2(x7y) =‘r= y”a ¢3(£L’,y) =z > y”a ¢4(l’,y) =‘z # y”'
The meaning of the connectors is the following: “<” - left is included into the
right; “=" - left is equal to the right; “>” - left includes the right; “x # y” - left
and right overlaps, but no one is included in the other.

For instance: f(e = w)g means “restrict the general composition of f and g
such that the east border of f is identified to the west border of ¢”; f(e > w)g -
the east border of f includes all the west border of g, but some east borders of
f may still be not covered by west borders of g; etc.

We also use the notation

«y

¢o(z,y) = “z ! y”, where means empty intersection.

Actually, this is a derived formula —(¢1(x,y) V d2(x,y) V ¢3(2,y) V da(x,y)).

Particular composition operators. We are now in a position to introduce the
particular composition operators induced by the above constricting formulas.

Definition 3. (restricted compositions)

A restriction formula ¢ is a boolean combination in PL(F}, ..., F},), where F; are
constricting formulas involving certain eligible glueing combinations (z;,y;) €
Connect. A restricted composition operation _(F')_is the restriction of the general
composition to composite words satisfying F'. A word h € f . g belongs to f (F) g
if for all glueing combinations (z;, y;) occurring in F the contact of the x; border
of f and y; border of g satisfies Fj. O

This interpretation shows the constricting formulas act on the involved glue-
ing combinations, while for the glueing combinations (z;,y;) not occurring in
the formula no constraints are imposed, at all. Other default conventions are
possible, too; for instance stating that what is not specified should not touch.

Notice that the restricted composition operations are not always associative;
e.g., ((a (s=n) a) (e>w) b) (e>w) c¢ # (a (s=n) a) (e>w) (b (e>w) c).
When some parentheses are missing, we suppose a left-parentheses order applies,
as in ((C1 op C2) op C3).

! PL(Atom) denotes the set of propositional logic formulas built up with atomic for-
mulas in Atom. For typing reasons, the boolean operations “not”, “and”, and “or”
are denoted by “!”, “&”, and “|”, respectively.

10

nw land corner % E
_nlcirthborder _g_ g
[] g[b b| [b] blg[b] [b] [b
g|blb] b|b bb b|b
L__Inw'golf corner g b 2 R Q
(1) (2) (3) (4) (5)
[y] b| [b] - [y]
y bib _ Y y
[y[b] [b] [y[b ly] [b] [B] [b] [bly] [b]y[b
bib y vIblBl [BIBly[[blb
D] L] ly] [b] D] b

(6) (7) (8) (9) (10)

Fig. 5. Particular composition operators

Ezxamples. A few examples are shown in Fig. 5. Let g, b, and y represent the
green, blue, and yellow areas, respectively. Then, {(2)} (the word described in
Fig. 5(2)) is the result of g (e=w) b. Similarly: g (s<n) b is the set of words
{(3),(4),(5)}; b (ne>ne’) yis{(9)};y (s#n & w#e) bis {(9),(10)}. The words
for y (e#w) Db strictly include the set {(6),(7),(8),(10)}; one can use the expres-
sion y (e#w & ne!nw & se!sw) b to exclude two words from y (e#w) b and
to get precisely the set {(6),(7),(8),(10)}.

Definition 4. (iterated composition operators) The iterated composition oper-
ators are denoted by #(F), for a restriction formula F. a

Definition 5. The set of expressions obtained using the operators defined so
far are denoted by n2RE’s; they represent our new type of reqular erpressions
for two-dimensional patterns/words. O

Ezamples, related to S1. The examples in Fig. 6 are related to S1, the origi-
nal FIS we have considered in the beginning of the section. We first show the
expressions, then include samples of typical words associated to these expres-
sions. Combined with the constraint to have rectangular words, the final regular
expression Eabc specifies the language of S1.

Observation. The formalism is robust, in particular it commutes with renaming:
renaming letters either in the associated words or in the given expression leads
to the same set of general 2-dimensional words.

4 A relational semantics for structured interactive
programs

In this section we show how the introduced regular expressions can be used to get
a relational semantics for structured interactive programs presented in the rv-IS

11

Eal = a (se=nw) a Ea2 = (a)*(se=nw) Ebl =b (.) b

(@]

. : 8
. lal, @ [BHb.
Eb2 = (b)*(.) Ecl =c¢c (.) ¢ Ec2 = (c)*(.)
[b] [b] [b] -
b[b] [b] [b c| [c [c]
[b[b] _ [b].. E [clcl, [clecllc]-.
[b] [clc][c].- clc
Eab = Ea2 (e>w & n>s) Eb2 Eabc = Ec2 (e<w & n<s) Eab
[a[b]b] [a] [a]b]b] [a
[a[b] [alb alblb alb] [a[b alblb
al. al , |a]b]. clal, [cla] ., [c]a]b]..
- E 18] cla] [c[c]a
Fig. 6. A n2RE expression for the FIS S1
x=6 . . x=T . .
[1P] tx=6 [ID] tx—6 [IM] . [1P] et [1D] txe7 [I] .
x=3 y=6 z=6 x=3 y=T7 z="7
. @ tx=3 tx=3 . . E] tx=3 @ tx=0 .
x=2 y=6 z=3 x=2 y=T7 z="7
(a) . @ tx=2 @ tx=2 . (b) . tx=2 @ tx=0 .
x=1 y=6 z=1 x=1 y=T7 z="7
. @ tx=1 @ tx=1 . . E] tx=1 @ tx=1 .
x=0 y=06 z=0 x=0 y="7 z=6
| TP | tx=-1|TD | tx=-1|TM]. | TP tx=-1[TD | tx=-1[TM].
z=0 . . 7z=6

Fig. 7. Two scenarios for computing perfect numbers

formalism [35,12]. The operational semantics of structured programs is given
in terms of scenarios. In Fig. 7(a) we illustrate an rv-IS scenario for deciding
whether the number 6 is a perfect number (i.e., it is equal to the sum of its
proper divisors); in (b) it is a scenario for testing if 7 is a perfect number.

In this representation, the actions to be performed are placed in the square
cells. One example is the cell with the identifier P placed in the 2nd row and
the 1st column in (a). On the top and the bottom of this cell there is the same
state variable x with its concrete values 3 and 2. Actually, the effect of P on the
memory state is to decrease x by 1. With respect to the interaction part, this cell
has no variables for its left border (a fact specified by the ‘.” inserted there) and
has a variable tx at its right border. The effect of P on the interaction part is to
set in tx the input value 3 of x in order to be used in other columns/processes.

In Fig. 8 we present relational specifications for the cells used in Fig. 7. All
these cells have functional behaviour, hence the corresponding relations may be

12

specified as partial functions in the following way:
Cell(west,north) = (east,south), if Condition.

4.1 Example - imperative programming style

We start with the following expression specifying scenarios checking if a number
n is perfect

[((IP (e=w) ID) (e=w) IM)
(s=n) (((P (e=w) D) (e=w) M) *(s=n))]
(s=n) ((IP (e=w) ID) (e=w) IM)

In this model we can imagine that we have three processes: one generates all
the numbers in the set {n/2,...,1} (with module P), one checks if a number is a
divisor of n (module D) and the last one updates a variable z (module M). Modules
IP, ID and IM are used for initializations and TP, TD and TM for termination. At
the end of the program, if the variable z is 0, then the number n is perfect.

In order to show how we can construct a scenario using the expression above
let us consider a concrete example for n = 6. The scenario for n = 6 is presented
in Fig. 7 (a).

IP((.), (%)) = ((tx?),(x?)) with tx’ = x and x’ = x/2; defined if x > 2
ID((tx), (D) = ((tx’),(y’)) with tx’ = txand y’ = tx
IM((tx), () = ((.),(2?)) withz’ = tx

P((.),(x)) = ((tx?),(x?)) with tx’> = x and x’ = x-1; defined if x > 0
D((tx), (y)) = ((tx’), (y’)) with y’ = y and

tx’ = if(y/%tx=0) then tx else 0

M((tx),(z2)) = ((.),(z’)) withz’ = z-tx

TP((.),(x)) = ((tx’),(.)) with tx’ = -1; defined if x = 0
TD((tx), (y)) = ((tx’),(.)) withtx’ = -1
TM((tx),(2)) = ((.),(2?)) withz’ =z

Fig. 8. Relational semantic specifications for the cells used in Fig. 7

In the first line of the scenario we initialize the processes with the needed
informations: module IP is reading the value n = 6 and provides the first process
with x = 3 and declare a temporal variant of n, namely tn = 6, that will be
used by modules ID and IM for the other initializations; modules ID and IM use
the temporal variable ¢tn for initializing the other two processes with the initial
value of n, namely y = 6, z = 6, respectively.

In the next step, module P produces a temporal data tx = 3 (tx is equal
with the data x of the first process) and decrease x. Module D verifies if ¢tz is a
divisor of y and, if no, it resets the value of tx to 0. Finally, module M decreases
the value of z by tx. Notice that module M decreases the value of z only with
the divisors of the initial variable n. We continue this steps until the variable x
becomes 0.

13

A final line contains terminating modules that rearrange some interfaces,
keeping only the relevant result z.

4.2 Dataflow and mixed imperative-dataflow programming styles.

The above model corresponds to the construction of scenarios by rows and it
exhibits a (parallel) imperative programming style, illustrated in Fig. 9(a).

r Ve \ \

ig

i

\ J\ J
e ———————

(a) imperative style (b) dataflow style (c) (mix) rv-IS programming style

Fig. 9. Programming strategies

The same computing scenarios may be generated in many other ways. Below
is a model which constructs the same scenarios by columns, exhibiting a dataflow
computing style, illustrated in Fig. 9(b):

[((IP (s=n) (P *(s=n)) (s=n) TP)
(e=w) ((ID (s=n) (D *(s=n)) (s=n) TD)]
(e=w) ((IM (s=n) (M *(s=n)) (s=n) TM)

In this implementation, the processes corresponding to the 2nd and the 3rd
columns act as “services”: they receive initialization data (here the value of n),
then a stream of data to act individually on each one according to the service
function (for the 2nd process this function is the check for divisibility, while for
the 3rd is subtraction), and finally a termination token (represented here by -1).

Finally, we present a last model, illustrated in Fig. 9(c), which mizes the
imperative and dataflow styles

((IP (e=w) ID) (e=w) IM)
(s=n) [(((P (e=w) D) *(s=n)) (s=n) (TP (e=w) TD))
(e=w) (M *(s=n)) (s=n) TM)]

In this version the construction of the scenarios is as follows. It starts by con-
structing the 1st line of the scenarios. Then, the remaining parts of the first two
columns are generating in the same way as with the initial model (that is, by an
imperative style). Moreover, the same is done separately for the remaining part
of the third column. Finally, these parts are composed horizontally (following a
dataflow style).

14

5 Related and future works

Related work. Regular expressions are introduced in the seminal paper by Kleene
[17] on the representation of events in neural nets and automata; it was published
in the early 1950s. Kleene theorem (i.e., the equivalence between finite automata
and appropriate regular expressions) was extended to cover other computing
models of interest and is a basis for the development of algebraic theories for
those models.

The algebraic theory of finite automata is based on semirings enriched with
an axiomatic iteration operator; often the term Kleene algebra is used in this
context. It was steadily developed since 1960s till now, including deep results
as Krob’s solution [19] for two deep conjectures of Conway [11]. We notice the
interest in getting complete equational axiomatizations; see, e.g., [28,18, 6,19,
8]. A few books recording the results are [11] and [20].

When (matrices over) semirings are replaced by more general algebraic struc-
tures as symmetric (strict) monoidal categories, the iteration operators may have
different expressive powers and axiomatisations. Trace monoidal categories [30,
9,16, 33] are now recognized as a powerful formalism for iterative processes,
with wider applications than Kleene algebras; in particular they apply to cir-
cuits, dataflow computation, quantum computation, etc. Translations between
various formalisms using axiomatic iteration operators may be found in [31, 32,
7,10, 33]. Axiomatic iteration operators are also present in process calculi; a few
papers are [25, 5, 26].

Parallel computation often requires the enrichment of the sequential compu-
tation models with mechanisms for modelling process interaction. We mention
three examples of extensions of Kleene theorem into such a context: Kleene the-
orems for tile systems [14], for Petri nets [27,13], and for timed automata [1, 2].
In all these contexts, the Kleene theorem is based on the following procedure: (1)
decompose/project the behaviour to have separate sequential runs; (2) use the
classical Kleene theorem for these sequential runs; (3) use synchronization and
renaming to force the composition of these separate projected runs to behave as
the initial overall system. It was noticed (see, e.g., [18]) that renaming has bad
algebraic properties and should be avoided.

The study of two dimensional languages has started in 1960’s; see [14, 22]. In
1990’s, a robust class of “regular two dimensional languages” has been identified;
it may be specified either by tile systems, or by a type of cellular automata, or by
a class of monadic second-order formulas, etc. Unfortunately, the class is quite
complex - for instance, emptiness property is not decidable, see [21].

Interactive computation [15] is becoming more and more important in the
recent years, in particular due to the advance of multicore computation. We use
a model rv-IS [35] based on space-time duality. In particular, finite interactive
systems [34] are the space-time invariant extension of finite automata in this con-
text. A Kleene theorem for finite interactive systems follows directly from their
equivalence with tile systems [29]. Agapia programming [12] is a core interactive
programming language based on this model. The relational semantics described
in the present paper for Agapia programs may be seen as an extension to 2

15

dimensions of the classical relational semantics of sequential computing models
(23, 24].

Future work. There are many directions to continue the research presented in
this paper. We are particularly interested to develop the theoretical basis of
the model (e.g., to prove a Kleene theorem for finite interactive systems?; to
look for an associated algebraic theory; etc.) and to provide a software tool for
manipulating n2RE’s. Among the possible applications we mention:

— the study of massively parallel, interactive OO-programs (semantics, specifi-
cation, verification, etc.), in particular the programs written in the structured
interactive programming language Agapia;

— applications to image processing, in particular learning n2RE as a image
recognition procedure;

— modelling discrete physical or biological systems.

Acknowledgements. The research reported in this paper was partially supported
by Deploy Project, an FP7 Integrated Project supported by European Commis-
sion (Grant No. 214158). We thank the anonymous reviewers for their sugges-
tions for improving the presentation of the results.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126,
183-235 (1994)

2. Asarin, E.; Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49, 172-206
(2002)

3. Banu-Demergian, 1., Stefanescu, G.: On the contour representation of two-
dimensional patterns (2013), draft

4. Banu-Demergian, ., Stefanescu, G.: Representation of scenarios in finite interactive
systems (2013), draft, submitted

5. Bergstra, J., Bethke, 1., Ponse, A.: Process algebra with iteration. The Computer
Journal 60, 109-137 (1994)

6. Bloom, S., Esik, Z.: Equational axioms for regular sets. Mathematical Structures
in Computer Science 3, 1-24 (1993)

7. Bloom, S., Esik, Z.: Iteration Theories: The Equational Logic of Iterative Processes.
Springer-Verlag, Berlin (1993)

8. Bonsangue, M., Rutten, J., Silva, A.: A Kleene theorem for polynomial coalgebras.
In: Proc. FSSCS’09. pp. 122-136. LNCS, Springer-Verlag (2009)

9. Cazanescu, V., Stefanescu, G.: Towards a new algebraic foundation of flowchart
scheme theory. Fundamenta Informaticae 13, 171-210 (1990)

10. Cazanescu, V., Stefanescu, G.: Feedback, iteration and repetition. In: Paun, G.
(ed.) Mathematical aspects of natural and formal languages, pp. 43-62. World
Scientific, Singapore (1995)

2 Recently, the first and the last authors presented a characterization theorem for FIS
languages in [4]. Their result shows that a slightly extended class of n2RE expressions
and a mechanism for solving recursive equations suffice to represent FIS languages.

16

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

Conway, J.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
Dragoi, C., Stefanescu, G.: Agapia v0. 1: A programming language for interactive
systems and its typing system. Electronic Notes in Theoretical Computer Science
203(3), 69-94 (2008)

Garg, V., Ragunath, M.: Concurrent regular expressions and their relationship to
Petri nets. Theoretical Computer Science 96, 285-304 (1992)

Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Handbook of formal
languages, pp. 215-267. Springer (1997)

Goldin, D., Smolka, S., Wegner, P.: Interactive computation: The new paradigm.
Springer (2006)

Joyal, A., Street, R., Verity, D.: Traced monoidal categories. In: Proceedings of the
Cambridge Philosophical Society. vol. 119 (1996)

Kleene, S.: Representation of events in nerve nets and finite automata. Automata
Studies (34), 3 (1956)

Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. In: LICS’91. pp. 214-225. IEEE (1991)

Krob, D.: Complete systems of S-rational identities. Theoretical Computer Science
89, 207-343 (1991)

Kuich, W., Salomaa, A.: Semirings, automata and languages. Springer-Verlag,
Berlin (1985)

Latteux, M., Simplot, D.: Context-sensitive string languages and recognizable pic-
ture languages. Information and Computation 138(2), 160-169 (1997)

Lindgren, K., Moore, C., Nordahl, M.: Complexity of two-dimensional patterns.
Journal of statistical physics 91(5-6), 909-951 (1998)

Maddux, R.: Relation-algebraic semantics. Theoretical Computer Science 160, 1-85
1996

1(\/[ane2, E., Arbib, M.: Algebraic approaches to program semantics. Springer-Verlag,
Berlin (1986)

Milner, R.: Flowgraphs and flow algebras. Journal of the ACM (JACM) 26(4),
794-818 (1979)

Milner, R.: Action calculi V : Reflexive molecular forms (1994), draft, Department
of Computer Science, University of Edinburgh

Petri, C.: Kommunikation mit automaten. Ph.D. thesis, Instituts fur Instrumentelle
Mathematik, Bonn, Germany

Salomaa, A.: Two complete axiom systems for the algebra of regular events. Journal
of the ACM (JACM) 13(1), 158-169 (1966)

Sofronia, A., Popa, A., Stefanescu, G.: Undecidability results for finite interactive
systems. Romanian Journal of Information Science and Technology 12(2), 265-279
(2009), also: Arxiv, CoRR abs/1001.0143, 2010

Stefanescu, G.: Feedback Theories (A Calculus for Isomorphism Classes of
Flowchart Schemes). No. 24 in Preprint Series in Mathematics, INCREST (1986),
also in: Revue Roumaine de Mathematiques Pures et Applique, 35:73-79, 1990
Stefanescu, G.: On flowchart theories: Part I. The deterministic case. Journal of
Computer and System Sciences 35(2), 163-191 (1987)

Stefanescu, G.: On flowchart theories: Part II. The nondeterministic case. Theo-
retical Computer Science 52(3), 307-340 (1987)

Stefanescu, G.: Network algebra. Springer Verlag (2000)

Stefanescu, G.: Algebra of networks: Modeling simple networks as well as complex
interactive systems. In: Proof and System-Reliability, pp. 49-78. Springer (2002)
Stefanescu, G.: Interactive systems with registers and voices. Fundamenta Infor-
maticae 73(1), 285-305 (2006)

