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Abstract. Instruction traces play an important role in analyzing and
understanding the behavior of target applications; however, existing trac-
ing tools are built on specific platforms coupled with excessive reliance
on compilers and operating systems. In this paper, we propose a precise
thread level instruction tracing approach for modern chip multi-processor
simulators, which inserts instruction patterns into programs at the begin-
ning of main thread and slave threads. The target threads are identified
and captured in a full system simulator using the instruction patterns
without any modifications to the compiler and the operating system. We
implemented our approach in the GEM5 simulator and evaluations were
performed to test the accuracy on x86-Linux using standard benchmarks.
We compared our traces to the ones collected by a Pin-tool. Experimental
results show that traces extracted by our approach exhibit high similar-
ity to the traces collected by the Pin-tool. Our approaches of extracting
traces can be easily applied to other simulators with minor modification
to the instruction execution engines.
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1 Introduction

Instruction trace characterizes a program’s dynamic behavior and is widely used
for program optimization, debugging and new architecture evaluation. Particu-
larly, memory traces, which are subsets of instruction traces, are frequently used
for new memory system evaluation. Program traces are also necessary for trace
driven simulators, which is a well known method for evaluating new computer
architectures. Prevailing tools for collecting application execution traces include
tools built based-on Pin [1] and Linux-process-tracker provided by the full sys-
tem simulator Simics [2]. There are also a number of simulators and emulators
available to generate traces on some platforms [3, 4]. Theoretically, instruction
traces can be extracted at virtually every system level, from the circuit and mi-
crocode levels to the compiler and operating-system levels [5]. However, existing
trace collectors suffer from at least one of the following three limitations:

– Being highly dependent on operating systems and compilers and only avail-
able for one or two exiting platforms. It is difficult to add a new platform;



– Only supporting several existing ISAs, severely limiting the usage in new
architecture exploration;

– Generating mixed instruction traces, which include instructions from other
applications and operating system modules.

Tools built on Pin are efficient to collect traces for a single application, but
it is only available for Windows and Linux running on IA-32 and x86-64. It is
possible to port Pin to other platforms hosting a different operating system; and
it is also possible to add a new back-end to Pin targeting a new processor fam-
ily. However, this work would be time consuming and laborious. Pin-tools run as
applications on existing platforms and this limits the usage when researchers are
exploring new architectures. Some simulators, such as Simics features the func-
tionality of single-process profiling only for Linux, while others, such as Solaris,
are not supported at present. Besides, the techniques of instruction tracing in
Simics are operating system dependent and the execution of scheduling module
in the operating system triggers the tracing on and off. In case of an operating
system update, the tracing functionality may lost their last straw to clutch at.
The new simulator GEM5, which becomes increasingly popular in full system
simulation, generates mixed instruction traces at present.

Uhlig [5] defines three aspects of metrics to evaluate the quality of traces
and shows that the collected traces should be as close as possible to the actual
stream of instructions made by a workload when running on a real system.
In particular, the authors emphasize on the portability of trace collector. It
should be easy to move the collector to other machines of the same type and
to machines that are architecturally different. Finally, an ideal trace collector
should be fast, inexpensive and easy to operate. In this paper, we propose a new
approach to extract threaded traces in full system simulation environments that
matches these criteria. This approach does not need to inspect the internal state
of operating systems and does not need to change existing compilers.

In summary, this paper makes the following contributions:

– A new approach to extracting program traces in simulation environments.
It generates separated traces for each target thread and filters the noisy
instruction sequences out.

– An efficient implementation of our approach in simulator GEM5 on x86-
Linux. Evaluations on a suite of 7 benchmarks indicate that our approach is
feasible and can be easily applied to other simulators.

The rest of this paper is organized as follows: Section 2 presents our new
approach to extract thread level traces for applications in simulation environ-
ments. Section 3 shows our experimental results. Section 4 discusses the related
work on trace extracting, and Section 5 concludes the paper.



2 Extracting Threaded Traces in Simulation

Environments

2.1 Basic Idea

The basic idea of our approach lies in that a process is composed of one or
more threads, and instructions executed on processors can be separated if all
the threads of one process can be identified from the view of simulators. In
general, thread IDs are software concepts and they are transparent to underline
hardware in most implementations. Therefore, two issues should be addressed
in this approach: (1) how to identify threads for a given process, and (2) how to
find instructions executed by these threads.

In state-of-art operating systems, a process is a collection of virtual memory
space, code, data and system resources. Although the internal presentation of
threads and processes in operating system may differ from one to another, a
process always has at least one thread of execution, known as the main thread or
primary thread. Additionally, one or more threads can be created by the main
thread and live within the same process. These slave threads share the same
resources with the main thread. The running of a single process is represented
as the execution of both main thread and slave threads. Namely, the traces of a
process is actually the instruction sequences that are executed in these threads.
One of the key issues is how to find the main thread and salve threads without
the help of the operating system and compiler. We work out a solution to this
problem using the stack pointer register (SP), which is explicit or implicit defined
in most processors. Usually, at the creation stage, each thread is associated to a
memory region referred to as thread stack. The primary purpose of this thread
stack is used to store return address, pass parameters to the callee, store function
local variables and so on. On the occasion of a function invocation, a new stack
frame will be allocated for the execution of that function. When function returns,
the caller or the callee is responsible to deallocated this stack frame by increasing
or decreasing the stack pointer. Hence, the top of the stack dynamically changes
from time to time and memory locations within the stack frame are typically
accessed via indirect addressing.

For most operating systems and third-party thread libraries, a large memory
block is usually allocated for each thread from the virtual memory space. The
virtual address of the stack is not enough to distinguish the target threads from
other threads created by other applications, as all the applications have the
same size of virtual spaces starting from the same virtual address. However,
these stack regions are mapped to different locations in the physical memory
space. In general, the allocated virtual regions are large enough and programs
do not change their location and size during runtime, and therefore threads
can be distinguished using their stack positions in the physical memory space.
However, this does not mean that all the physical addresses allocated to the stack
can be considered as the unique identifiers of the target threads. The reason for
this is that the virtual-to-physical mapping may change as the stack grows back
and forth. Moreover, some of the physical pages may be swapped out and in



during execution. However, we find that the first page at the bottom of the
stack is always in use during the whole lifetime of a thread and most of existing
operating systems provide APIs to prevent that part or all of the calling process’s
virtual address space from being paged to the swap area. If the first page at the
bottom of the stack is locked into RAM and it is not remapped during execution,
then virtual-to-physical mapping will not change. It is natural that we can use
the first physical pages of stacks to distinguish threads of running processes.
So long as we know which thread is running on the core, instructions can be
captured and directed into different output streams.

2.2 How to Obtain Traces

The following presents a step-by-step explanation of the methodology for trace
extraction in a simulated full system environment.

1. An instruction pattern is defined for the target program, which is delicately
designed and composed of several instructions supported by target proces-
sors;

2. A predefined small function is executed at the beginning of every target
thread. This function is used to: (1) lock the first page of thread stacks in
memory and (2) execute the predefined instruction pattern;

3. The source code of the program is compiled using an existing compiler and
translated into machine binary;

4. At the very beginning of thread execution, the first page at the bottom of
each thread stack is locked in RAM, so that the physical page will not be
swapped out at runtime;

5. The simulator snoops the instruction stream of each processor core and cap-
tures the patterns that are inserted into the application;

6. When the exact instruction sequence defined in the instruction pattern is
captured, the starting address vaddrs and ending address vaddre of current
stack in the virtual space are calculated according to the content of SP

and the stack size. The physical address paddrs of vaddrs is also obtained
through virtual-to-physical translation in the execution context of the pro-
cessor core. We pack vaddrs, vaddre and paddrs up in a structure and insert
it into a target thread list(ttl).

7. For each instruction executed by a processor core, the simulator reads the
register SP to find out the virtual address where the top of current stack is.
Then we go through the ttl and test the content of SP against each virtual
stack regions recorded previously. If we find that SP is pointing to one of the
virtual stack regions, we translate the vaddrs of the matched stack into its
physical address paddrs′ according to current execution context. If paddrs′

is valid and equal to paddrs, which is obtained when the pattern is captured,
then the instruction is included in the output trace.

In following discussion, we assume the starting address of a stack points to
the location where the bottom of the stack resides, no matter which direction the



stack grows to. Therefore, the mapping from virtual address vaddrs to physical
address paddrs does not change for a thread from the beginning to the end
and this paddrs can be used as the unique identifier of the target thread. Here,
we need one more words for the calculation of vaddrs and vaddre before we
proceed further. Given that the stack grows towards the lower address of the
virtual space, these two addresses are calculated when the pattern is captured
by:

vaddrs = vaddrsp − (vaddrsp mod ps) + (k × ps) − 1 (1)

vaddre = vaddrs + 1 − ss (2)

where ps is page size and ss is stack size. k is an optional parameter and
it is set to 1 in default. The reason why we can do this is that the instruction
patterns are inserted at the beginning of both main and slave threads. We are
certainly sure that the bottom of the stack is not far away from the address
stored in the SP register when the pattern is captured. In general, there are 2 or
3 stack frames from the bottom to the frame that the pattern is capture. Hence,
the distance from stack bottom to SP is no more than k pages. In most cases,
the frame size of the thread function dose not exceeds the page size and k is set
to 1. The starting address and the ending address of the stack can be calculated
according to the size of the stack and the growing direction. The size of memory
pages and the size of stacks are configurable and they can be easily figured out
according to the version of the operating system and thread libraries.

To further present our idea clearly, a runtime scenario is given in Figure 1.
As shown in the left part of this figure, two applications (App1 and App2) are
started in the same operating system and run concurrently with 3 threads in
total( 2 for App1 and 1 for App2). In this case, the virtual stack of thread T1

may overlap the virtual stack T3 because both App1 and App2 have private vir-
tual spaces, which start from the same address and spread out for the same size.
However, the three virtual pages at the bottom of these stacks are mapped to
different physical pages as threads do not share stacks. Given App1 is our target
application and instruction patterns will be captured by the simulator at the
beginning of threads T1 and T2. At that moment, both SP1 and SP2 point to
the first virtual page at the bottom of their stacks which are locked into RAM.
Thus, vaddr1s, vaddr1e, vaddr2s, and vaddr2e can be calculated using equation
1 and 2. Meanwhile, paddr1s and paddr2s are obtained by address transla-
tion using vaddr1s and vaddr2s respectively. Right now, the target thread list
ttl looks like {{vaddr1s, vaddr1e, paddr1s}, {vaddr2s, vaddr2e, paddr2s}}. The
right part of this figure shows the extracting context of an instruction. Every
time when an instruction is executed by some core in the simulator, only SP4 is
read and it is used to search ttl. In the case of virtual stack overlapping, the first
element {vaddr1s, vaddr1e, paddr1s} in ttl is tested and vaddr1s is translated
into physical address paddr1′

s
in current execution context. However, it turns

out that paddr1′
s
6= paddr1s, which means current instruction is not belonged

to any target threads. Therefore, the instruction is not included in the trace.
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Fig. 1. Stack mapping and identification in simulation

2.3 Instruction Patterns

The instruction pattern should be delicately designed, as the same sequence of
instructions may appear in the execution of both applications and operating sys-
tem modules. However, if the instruction sequence in the pattern is long enough,
then there will be a small possibility that the same sequence of instructions exists
in the original binaries. For example, following instruction sequence in Figure 2
is an example designed for programs running on x86.

As multi-core processors are widely accepted and used now, applications
running on an operating system tend to create multiple threads to fully utilize the
hardware resource. It is important to have separated trace outputs for different
threads, so that we get a precise instruction sequence for each thread. For this
purpose, we pass the thread ID(tid in the last line of Figure 2) to the runtime in
the pattern in a known register. This tid can be read from that register at the
time when the pattern is captured by the simulator. Then it is stored in the ttl

and used as an identifier for a target thread. Similarly, it is also possible to assign
different thread IDs to different applications. In such a way, we can start and run
multiple applications simultaneously in a system and have separated traces for
all the threads created by all target applications. This feature is especially useful
to analyze the dynamic execution interferences among multiple applications.

Our approach requires the user to insert instruction patterns into their source
code and start the simulator with the pattern as an input. It can be implemented
in most full system simulators without modifications to the compiler and the
operating system, as the default size of thread stacks usually does not change.
Even though the size is changed or the thread function has a very large stack
frame, setting a new size in the configuration file will be able to extract correct



__asm__ __volatile__ (“move %0, %%eax\n\t” 

                   “add $0x0, %%eax\n\t” 

                   “add $0x0, %%eax\n\t” 

                    : : “r”(tid) 

);

Fig. 2. Instruction pattern for x86-Linux

traces. Our approach still work well in case of system updates, because it is not
necessary to inspect the internal state operating systems.

3 Evaluation

3.1 Evaluation Method

GEM5 is a modular platform for computer system architecture research, en-
compassing system-level architecture as well as processor microarchitecture [3].
GEM5 provides a highly configurable simulation framework, multiple ISAs, and
diverse CPU models. Our experiments were performed on x86-Linux, as it is well
supported and widely used. We lock some pages of a process’s virtual address
space into RAM, preventing these pages from being paged to the swap area. In
our implementation, mlock is invoked at the very beginning of each thread to
lock the identification pages at the bottom of thread stacks in RAM, so that
each identification page is guaranteed to be resident in RAM and mapped to a
same physical page before thread termination.

We also built an instruction tracing tool based-on the framework provided
by Pin. In our experiments, we compared our traces to the ones obtained by
the Pin-tool on x86-Linux. To further verify the effectiveness of our approach,
we run multiple benchmarks together and generate separated traces for each
application in GEM5. These traces are then compared with the traces generated
by the Pin-tool. Taking 4 applications (a, b, c and d) for example, we run the
applications in the simulator one at a time and get four traces(a1, b1, c1 and
d1), then we partition the benchmarks into 2 groups( (a,b), (c,d)), and start the
two benchmarks in the same group at the same time in the simulator. Then
we extracted another four traces(a2, b2, c2 and d2) from the hybrid instruction
streams. After that, we compared the two traces of each benchmark with their
Pin-tool counterparts to see how similar they are.

Even though the simulated x86-Linux is different from the host machine in
many aspects, we expect highly similar traces for a same executable binary.
This is because the difference in microarchitecture dose not changes the order
of instructions in the same thread; however, in effect, they are not exactly the
same due to thread scheduling and synchronization. The operating system im-
ages and compilers are all provided by the GEM5 team and we didn’t make
any modifications to these system software. All the benchmarks are compiled
with the ”-static” options to make sure that no differences will be introduced



into the traces by using different dynamic loaded libraries. Meanwhile, the in-
struction patterns are labeled by the #pragma OPTIMIZE OFF and #pragma

OPTIMIZE ON pair to turn off GCC optimizations in these regions. This op-
timization restriction prevents the instructions in the pattern being removed or
reordered, otherwise, the patterns can not be captured in the simulator while
applications are running.

We use the standard multi-thread benchmarks to evaluate our approach, and
all of the programs are selected from SPLASH2 [14]. For each application, only
three lines of codes are inserted into the original sources: 1) including a head
file defining the patterns, 2) inserting the pattern at the beginning of the main
thread, and 3) inserting the same pattern at the beginning of slave threads. After
that, all the benchmarks are compiled and each binary is executed on the host
machine and the simulated full system in GEM5 separately. All the benchmarks
we used are listed in table 1.

Table 1. Benchmarks

Benchmark Description Group

fft A 1-D version of six-step FFT algorithm. 1

lu-non Dense matrix factoring kernel. 1

radix Integer radix sort kernel. 2

lu-con Dense matrix factoring kernel. 2

fmm Body interaction simulation. 3

ocean Large-scale ocean movements simulation. 3

ocean-non Large-scale ocean movements simulation. 3

3.2 Results

Figure 3 and 4 show the calculated similarity between two traces collected
by hacked GEM5 and Pin-tool respectively. Call traces are reduced instruction
traces that only contain instructions of function calls and returns. All the GEM5
traces are collected in solo-runs in the simulated full system. It shows that our
traces are much similar to the ones collected by the Pin-tool. Though the the
similarity of call traces is as high as up to 90% for most benchmarks, the instruc-
tion traces exhibit a relative low similarity around 85%. The reason for this is
that the hacked GEM5 only starts to generate traces after instruction patterns
are captured. Hence, the instructions executed at the startup phase before the
main function are not included in the GEM5 traces, which add up to about 10
thousands in total. Meanwhile, we found that the difference is slightly enlarged
as the number of threads increases. In order to find out the differences for the
two call traces, the edit sequence for the two traces is rebuilt. From the edit
sequence, we found the benchmarks with multiple threads spent much longer
time at the synchronization points than their sequential versions. The threads,



which run faster than others are scheduled out and in from time to time, execute
a number of instructions to check the status of barriers.
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Fig. 3. Instruction trace similarity for solo-runs
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Fig. 4. Call trace similarity for for solo-runs

Even though multiple applications are started to run at the same time, our
approach is capable of distinguishing one application from another with different
thread IDs. We partition all the benchmarks into 3 groups. Each group has 2 or
3 benchmarks and all the benchmarks in one group are started together in the
same simulated full system. The hacked simulator generated separated traces for
each application. The partition of groups is given in table 1 and the calculation
results for the two platforms are shown in Figure 5 and 6. Note that each
instruction and call trace extracted from GEM5 in co-runs are compared with
their counterparts collected by the Pin-tool in solo-runs. All the benchmarks in
the same group were started with 1-16 threads and the simulated system was
configured with 4 physical cores. Hence, target threads are swapped in and out
frequently at runtime because the number of threads is much larger than that
of available cores. The calculated results for instruction traces are very close to
each other.
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Fig. 6. Call trace similarity for co-runs

4 Related Work

Many approaches have been in use for obtaining low level instruction traces for
applications, including dynamic instruction instrumentation, exploiting of hard-
ware performance counters, utilization of the hardware monitor and instruction
simulators or emulators [5].

Anita et. al. built a system for generating and analyzing traces based on
link-time code modification [6], which makes the generation of a new trace easy
in early days. Their system was designed for use on RISC machines and on-the-
fly analysis removes most limitations on the length of traces. Binary dynamic
instrumentation tools such as Pin [7], and other similar tools can collect appli-
cation instruction traces by modifying the application instruction stream when
running. Some tracing tools can be easily built with Pin and it widely used by
researchers to obtain traces on IA-32 and x86-64.

Full system simulators and emulators, such as Simics [2], GEM5 [3], and
QEMU [4], have the ability to collect instruction traces. But limitations can
be found as well. The Linux-process-tracker is a Simics-provided module that
allows tracking user-specified processes by either process id (pid) or file name
in Linux [8], which inspects the simulated operating system and calls the call-
back functions when interesting things occur. The GEM5 simulator is a modular
platform for computer system architecture research, encompassing system-level
architecture as well as processor microarchitecture [3]. It is widely adopted in ar-



chitecture research and does offer detailed instruction trace functionality mainly
for debugging purpose. QEMU is a fast processor emulator using a portable dy-
namic instruction translator [4]. It supports many ISA(x86, ARM, MIPS,etc)
both on host and guest sides and also can run in full system emulation mode.
QEMU has the ability to generate memory traces.

Researchers in application profiling and performance optimization have pro-
posed several tools and frameworks that exploit hardware devices such as hard-
ware performance counters to collect performance data [9]; while others built
hardware devices [10] [11] [12] [13] to accomplish this work. With the help of
these tools, researchers can collect application traces fast and accurately. Unfor-
tunately, these equipments are either expensive or complicated to be set up and
therefore cannot be widely used.

5 Conclusion

Traces record all the information about a program’s execution in the form of
instruction sequences. In this paper, we propose a new approach to extract
threaded traces for applications in full system simulation environments. Traces
of each application are extracted from the instruction stream blended with in-
structions from operating system modules and other applications. Each thread
in a given application is identified by an instruction pattern without inspect-
ing the internal state of the operating system. Our approach can be applied to
existing full system simulators with no changes to compilers. We implemented
our instruction extraction approach in the simulator GEM5 and performed a
number of experiments on the simulated full system x86-Linux. Experimental
results show that traces extracted by our approach exhibit high similarity to the
traces collected by a Pin-tool.
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