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Index data structure for fast subset and superset queries
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Abstract. A new data structureset-trie for storing and retrieving sets is pro-
posed. Efficient manipulation of sets is vital in a number of systems indudin
datamining tools, object-relational database systems, and rule-bgsed sys-
tems. Data structurget-trieprovides efficient algorithms for set containment op-
erations. It allows fast access to subsets and supersets of a gieengber set.
The performance of operations is analyzed empirically in a series efiexents

on real-world and artificial datasets. The analysis shows that sets cacdgsed

in O(c = |set|) time where|set| represents the size of parameter set aisla
constant.

Keywords: subset queries, set containment queries, partial matching, acetss m
ods, database index.

1 Introduction

Set containment queriege common in various systems including datamining tools,
object-relational databases, rule-based expert systmisAl planning systems. Enu-
meration of subsets of a given universaligas very common irdata miningalgorithms
[10] where sets are used as basis for the representatiorpofiigses and search space
forms a lattice. Often we have to see if a given hypothesisair@ady been consid-
ered by the algorithm. This can be checked by searching thef $g/potheses (sets)
that have already been processed. Furthermore, in someltgsetheses can be easily
overthrown if a superset hypothesis has already been shotwatid. Such problems
include discovery of association rules, functional degemits as well as some forms
of propositional logic [10, 15, 5, 8].

In object-relational database management systéabtes can have set-valued at-
tributes i.e. attributes that range over sets. Set conitmueries can express either
selection or join operation based on set containment dondiEfficient access to rela-
tion records based on conditions that involve set operatwa vital for fast implemen-
tation of such queries [12, 18, 7].

Rule-based expert systemse set containment queries to implement fast pattern-
matching algorithms that determine which rules are firecathecycle of expert system
execution. Here sets form pre-conditions of rules compa$edementary conditions.



Given a set of valid conditions the set of fired rules incluttese with pre-condition
included in this set [6, 4].

Finally, in Al planning systemgoal sets are used to store goals to be achieved from
a given initial state. Planning modules use subset querigocedure that examines if a
given goal set is satisfiable. Part of the procedure repteseierying goal sets that were
previously shown to be unsatisfiable. Here also sets aretadedm basic structure of
hypothesis space [2].

In this paper we propose a novel index data strucsatetriethat implements effi-
ciently basic two types of set containment querggsetandsuperset queriesset-trie
provides storage for sets as well as multisets. Preliminarsion of this paper has been
published in [16].

Set-trieis a tree data structure similartoie [13]. The possibility to extend the per-
formance of usualrie from membership operation to subset and superset opesation
comes from the fact that we are storisgts(multiset3 and not thesequencesf sym-
bols as for ordinary tries. In case of sets (multisets) andeof symbols in a set is not
important as it is in the case of text. As it will be presentethie paper, the ordering of
set elements is used as the basis for the definition of effialgnrithms for set contain-
ment operations. Since the semantics of set containmenratipes is equivalent to the
semantics of multiset containment operations we will inftillwing text sometimes
refer to both, sets and multisets,sets

We analyze subset and superset operations in two types efimgnts. Firstly, we
examine the execution of the operations on real-world ddterevmultisets represent
words from the English dictionary. Secondly, we have te#itedoperations on artifi-
cially generated data. In these experiments we tried to eedliree main parameters:
the size of sets, the size sét-trietree and the size of test-set, affect the behavior of the
operations. Analysis shows that sets can be access@dcin |set|) time where|set|
represents the size of parameter set amgla constant. The constanis up to5 for
subset case and approximatéhp in average case for the superset case.

The paper is organized as follows. The following sectiorsprgs the data structure
set-trietogether with the operations for searching the subsets apersets in a tree.
The Section 3 describes the empirical studysef-trie We present a series of exper-
iments that measure the behavior of operations and the sidat® structure. Related
work is presented in Section 4. We give presentation of extstork from the fields of
algorithms and data structures, Al systems where sets acefas querying hypothe-
ses and states, and object-relational database systems intiexes are used to access
set-valued attributes. Finally, the conclusions and thectibns of our further work are
given in Section 5.

2 Data structure set-trie

Set-trieis a tree composed of nodes labeled with indices fiotm N where N is the
size of the alphabet. The root node is labeled Wittand its children can be the nodes
labeled froml to N. A root node alone represents an empty set. A node labetad
have children labeled with numbers greater than or efjuhch node can have a flag



denoting the last element in the set. Therefore, a set iesepted by a path from the
root node to a node with flag set to true.

Let us give an example dfet-trie Figure 2 presents set-triecontaining the sets
{1,3},{1,3,5}, {1,4},{1,2,4}, {2,4},{2,3,5}. Note that flagged nodes are repre-
sented with circles.

Fig. 1. Example ofset-trie

Since we are dealing with sets for which the ordering of tleeneints is not impor-
tant, we can define a syntactical order of symbols by assigeath symbol a unique
index. Words are sequences of symbols ordered by indicesomdering of symbols is
exploited for theepresentatiorof sets of words as well as in thmplementatiorof the
above stated operations.

Set-trieis a tree storing a set of words which are represented by dnpatithe root
of set-trieto a node corresponding to the indices of elements from wéslsvith tries,
prefixes that overlap are represented by a common path fremotit to an internal
vertex of set-trietree.

The operations for searching subsets and supersets of{aige$ use the ordering
of U. The algorithms do not need to consider the tree brancheghich we know they
do not lead to results. The search space for a gNeand tree representing can be
seen as a subtree determined primarily by the search Wdbodt also with the search
tree corresponding t6.

2.1 Set containment operations

Let us first give formal definition of the basic subset and ssgteoperations. Ldl be
a set of ordered symbols. The subset§/adre denoted asords Given a set of words
S and a subset df namedX, we are interested in the following queries.

1) existsSubséf, X) returnstrue if 3Y € S: Y C X andfalse otherwise.
2) existsSupersgs, X): returnstrue if 3Y € S : X C Y and false otherwise.
3) getAllSubsetsS, X): returns all set§” suchtha” € SAY C X.

4) getAllSupersel(s, X): returns all sety” suchtha” ¢ SAX CY.



Let us now present a data structWrd for storing sets of symbols. Symbols in
words are represented as integer numbers. Elements of gpsesented by ord can
be scanned using the following mechanism. The operationi.gotoFirst Element
sets the current element of word to the first element of odieet. Then, the op-
eration word.existsCurrentElement checks if word has the current element set.
The operationvord.current Element returns the current element, and the operation
word.gotoNextElement goes to the next element in the set.

Using data structur&/ord we can now describe the operations of the data struc-
ture set-trie The first operation isnsertion The operatiorinsert(rootword) enters a
newword into the set-triereferenced by the rootode. The operation is presented by
Algorithm 1.

Algorithm 1 insertqode, word)

1: if (word.existsCurrentElementhen

2:  if (exists child ofnode labeledword.currentElementihen
3 nextNode = child of node labeledword.currentElement;
4: else
5 nextN ode = create child ofvode labeledword.currentElement;
6: endif
7
8
9

insertext N ode, word.gotoNextElement)
: else
node’s flag_last =true;
10: end if

Each invocation of operatioimsert either traverses through the existing tree nodes
or creates new nodes to construct a path from the root to tipgdthnode corresponding
to the last element of the ordered set.

The following operatiorsearch(nodeword) searches for a giveword in the tree
node. It returns true when it finds all symbols from the word, anlddaas soon one
symbol is not found. The algorithm is shown in Algorithm 2trkiverses the treeode
by using the elements of ordered setrd to select the children.

Algorithm 2 searchfode, word)

1: if (word.existsCurrentElementhen
2. if (there exists child ofiode labeledword.currentElementhhen

3 matchNode = child vertex afode labeledword.currentElement;
4 searchfuatch N ode, word.gotoNextElement);

5 else

6: return false;

7 end if

8: else

9 return (node’s last_flag== true) ;

10: end if




Let us give a few comments to present the algorithm in morailddte operation
have to be invoked with the cadearch(rootword.gotoFirstElementso thatroot is
the root of theset-trietree and the current element of therd is the first element of
word. Each activation okearch tries to match the current elementwbrd with the
child of node. If the match is not successful it returfis/se otherwise it proceeds with
the following element ofvord.

The operatiorexistsSubset(nodeword) checks if there exists a subsetwbrd
in the given tree referenced byde. The subset that we search in the tree has fewer
elements thanvord. Therefore, besides that we search for the exact match we can
also skip one or more elementsqdrord and find a subset that matches the rest of the
elements ofvord. The operation is presented in Algorithm 3.

Algorithm 3 existsSubset(node,set)
if (node.last_flag== true) then

2 return true;
3: endif

4: if (notword.existsCurrentElementhen
5:  return false;
6
7
8

:end if

. found = false;

. if (node has child labeledvord.currentElementhen
9:  nextNode = child of node labeledword.currentElement;
10:  found = existsSubset{ext N ode, word.gotoNextElement);
11: endif
12: if (found)then
13: return existsSubset{ode,word.gotoNextElement);
14: else
15:  return true;
16: end if

Algorithm 3 tries to match elements aford by descending simultaneously in tree
and inword. The first IF statement (line 1) checks if a subsetwof-d is found in the
tree i.e. the current node of a tree is the last element ok$ubke second IF statement
(line 4) checks ifword has run of the elements. The third IF statement (line 8) eaxifi
if the parallel descend imord and tree is possible. In the positive case, the algorithm
callsexistsSubset with the next element ab ord and a child ofrode corresponding to
matched symbol (parallel descend). Finally, if match ditd swwceed, current element
of word is skipped anczxistsSubset is called with samewode and next element of
word in line 13.

The operatiorexistsSubset can be easily extended to find all subsets of a given
word in atreenode. After finding the subset in line 15 the subset is stored aeddarch
continues in the same manner as before. The experimentdisre@gth the operation
get AllSubsets(nodeword) are presented in the following section.

The operatiorzistsSuperset(nodeword) checks if there exists a supersetafrd
in the tree referenced byde. While in operatiorexzistsSubset we could skip some el-



Algorithm 4 existsSupersetpde, word)
if (notword.existsCurrentElementhen
2 return true;

3: end if

4: found = false;

5: from =word.currentElement;

6

7

8

. upto =word.nextElement if it exists and N otherwise;
. for (eachchild of node labeledl: from < 1 < upto) & (while not found) do
if (child is labeledupto) then

9: found = existsSuperset(ild,word.gotoNextElement);
10: else
11: found = existsSuperset(ild,word);
12:  endif
13: end for

ements fromword, here we can do the opposite: the algorithm can skip someeelism
in supersets represented hyde. Thereforeword can be matched with the subset of
superset from &ree. The operation is presented in Algorithm 4

Let us present Algorithm 4 in more detail. The first IF statatghecks if we are
already at the end aford. If so, then the parameterord is covered completely with a
superset froniree. Lines 5-6 set the lower and upper bounds of iteration. It gass
we either take currenthild and callexistsSuperset on unchangedord (line 11), or,
descend in parallel on bothord and tree in the case that we reach the upper bound i.e.
the next element imord (line 9).

Again, the operatiorzistsSuperset can be quite easily extended to retrieve all
supersets of a givemord in a treenode. However, aftetword (parameter) is matched
completely (line 2 in Algorithm 4), there remains a subtrégailers corresponding to a
set of supersets that subsumerd. This subtree is rooted in a tree node, let aaye;,
that corresponds to the last elementuafrd. Therefore, after thewodey, is matched
against the last element of the set in line 2, the completeerilbas to be traversed to
find all supersets that go throughdey,.

3 Experiments

The performance of the presented operations is analyzediirekperiments. The main
parameters of experiments are: number of words in treepéittee alphabet, and max-
imal length of words. The parameters are namednTreeW ord, alphabetSize, and
maxSizeWord, respectively. In every experiment we measurerthmber of visited
nodes necessary for an operation to terminate

In the first experimentset-trieis used to store real-world data — it stores multisets
obtained from words of English Dictionary. In the followitigree experiments we use
artificial data — datasets include randomly generated $etsts. In these experiments
we analyze in detail the interrelations between one of thtedttree parameters and the
number of visited nodes.



In all experiments we observe four operations presentetidérptevious section:
existsSubset (abbr.esb) and its extensiopet AllSubsets (abbr.gsb), andexistsSuperset
(abbr.esr) and its extensioget All Supersets (abbr.gsr).

3.1 Experiment with real-world data

Let us now present the first experiment in more detail. Thebmmmof words in test set
is 224,712 which results in a tree with 570,462 nodes. Thgtleof words are between
5 and 24 and the size of the alphahéphabetSize) is 25. The test set contains 10,000
words.

Results are presented in Table 1 and Figure 2. Since thef®&@0 words and 23
different word lengths in the test set, approximately 43&uirwords are of the same
length. Table 1 and Figure 2 present the average numberitdd/isodes for each input
word length (except fogsr where values below word length 6 are intentionally cut off).

word length  es gsnesh gsh
2 5231169694 1| 1

3 3355103844 3| 3

4 12444 64802 6| 6

5 9390 34595 11| 12

6

7

8

1150Q 22327 14| 19
12148 17003 18 32
8791 10405 19, 46
9 6985 7559 19 78
10 3817 3938 21| 102
11 3179 3201 20 159
12 2808 2820 20| 221
13 2249 2244 22| 290
14 1651 1654 19| 403
15 1488 1488 18| 575

16 895 895 19 778
17 908 908 20| 925
18 785 785 18|1137
19 489 489 22/1519
20 522 522 19|1758
21 474 474 192393
22 399 399 17|3044
23 362 362 17|3592
24 327] 327 194167

Fig. 2. Visited nodes for dictionary words

Let us give some comments on the results presented in Tabiesfof all, we can
see that the superset operatioas-(andgsr) visit more nodes than subset operations
(esb andgsb).



The number of nodes visited ¢r andgsr decreases as the length of words in-
creases. This can be explained by more constrained seattod @ase of longer words,
while it is very easy to find supersets of shorter words andhé&umore, there are a lot
of supersets of shorter words in the tree.

Dictonary words
25000 : T

20000

15000

10000

Visited nodes

5000 -

0 5 10 15 20 25
Word length

Fig. 3. Number of visited nodes

Since operatiogsr returns all supersets (of a given set), it always visits nnodes
than the operatiomsr. However, searching for the supersets of longer words almos
always results in failure and for this reason the number sifad nodes is the same for
both operations.

The number of visited nodes fesb in the case that words have more than 5 symbols
is very similar to the length of words. Below this length ofnde bothesb andgsb visit
the same number of nodes, because there were no subset Wirddength in the tree
and both operations visit the same nodes.

The number of visited nodes fgkb linearly increases as the word length increases.
We have to visit all the nodes that are actually used for theeientation of all subsets
of a given parameter set.

3.2 Experiments with artificial data

Three experiments were done by using artificially generatata. Experiments are
namedezperimentl, experiment2 andexperiment3.

1) In experimentl we observe relation between maximal length of words to numbe
of visited nodes oet-trian all four operations.

2) experiment2 shows the relation between number of words storedeftrie and
number of visited nodes iget-trign all four operations.

3) experiment3 investigates the relation between the size of alphabet antbar of
visited nodes oket-trian all four operations.

Let us start withexperimentl. Here we observe the influence of maximal length of
words to the performance of all four operations. We creatadtfees withulphabet Size
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T

35000 T T T T T T T 1.4e+06
3 — treel
30000 1.2e+06 tree? |
25000 | 1.e+06 | tree3 | |
% % — treed
[} [}
g 20000 g 800000
=] =]
9 9
L L
= 15000 | = 600000
> >
10000 400000 |
5000 200000 |
0 1 1 1 1 1 0 \A\ L
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Word length Word length
esb gsb
45 T T T T T T T 80000 T T
40 70000 L T treel
— tree2
35
60000 | tree3
% 30 S — treed
3 B 50000
g 25 g
=] = 40000
22F 8
Z Z
Sos | = 30000
ol 20000 |
s 10000
0

) ! ! ) . . A : . . . .
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Word length Word length

Fig. 4. Experiment 1 - increasingrax SizeW ord

30 andnumTreeW ord 50,000.mazSizeWord is different in each tree: 20, 40, 60
and 80, for treel, tree2, tree3 and tree4, respectivelylériggh of word in each tree is
evenly distributed between the minimal and maximal word.sThe number of nodes in
the trees are: 332,182, 753,074, 1,180,922 and 1,604,6@8teEt set contains 10,000
words.

Figure 3 shows the performance of all four operations oroali frees. The perfor-
mance of superset operations is affected more by the chéngerd length than the
subset operations.

With an even distribution of data in all four treessr visits most nodes for in-
put word lengths that are about half of the sizeneiizSizeWord (as opposed to
dictionary data where it visits most nodes for word lengthpraximately one fifth
of maxSizeWord). For word lengths equal tvax SizeW ord the number of visited
nodes is roughly the same for all trees, but that number &se® slightly as the word
length increases.

esb operation visits fewer than 10 nodes most of the time, but/fe¢3 it goes up
to 44. The experiment was repeated multiple (about 10) tirmed in every run the
operation jumped up in a different tree. As will be seen latetrperiment2, it seems



that numTreeWord 50 is just on the edge of the value wher@ stays constantly
below 10 visited nodes. It is safe to say that the changewirxSizeW ord has no
major effect orexistsSubSet operation.

In contrast taysr, gsb visits less nodes for the same input word length in trees with
greatermaxSizeWord, but the change is minimal. For example for word length 35
in tree2 (maxSizeW ord 40) gsb visits 7,606 nodes, itree3 (maxSizeW ord 60) it
visits 5,300 nodes and imeed (maxSizeW ord 80) it visits 4,126 nodes.

esr asr
16000 T T T T T 600000 T
14000 | — treel
500000 — treed
12000 |- — tree7
P @ 400000 F — treelO |
8 10000 L
=} Q
= =
= 8000 = 300000 |
8 8
26000 2
> 2200000 |
4000
100000 |
2000
0 . . . . 0 I
0 5 10 15 20 25 30 0 5 10 15 20 25 30
‘Word length Word length
esb gsb
40 T T T T T 9000 T T T
35 8000 || — treel
— treed
30 7000 1 tree7
8 o5 % 6000 | — treelO
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2 2 400
L5 b 2z
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0r 2000
5F 1000
0 . . L L L 0 A — L .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
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Fig. 5. Experiment 2 - increasingumTreeW ord

In experiment2 we are interested about how a change in the number of words
in the tree affects the operations. Ten trees are createdthllziphabetSize 30 and
maxSizeWord 30.numTreeW ord increases in each subsequent tree by 10,000 words:
treel has 10,000 words, antreel0 has 100,000 words. The number of nodes in
the trees (fromreel to treel0) are: 115,780, 225,820, 331,626, 437,966, 541,601,
644,585, 746,801, 846,388, 946,493 and 1,047,192. Thedesbntains 5,000 words.

Figure 4 shows the number of visited nodes for each operatidour treestreel,
treed, tree7 andtreel0 (only every third tree is shown to reduce clutter). When in-



creasingnumTreeW ord the number of visited nodes increasesder, gsr andgsb
operationsesb is least affected by the increased number of words in the lme®ntrast
to the other three operations, the number of visited node®dses whenumTreeW ord
increases.

For input word lengths around half the valueratiz SizeW ord (between 13 and
17) the number of visited nodes fesr increases with the increase of the number of
words in the tree. For input word lengths up to 10, the diffiese between trees is
minimal. After word lengths about 20 the difference in themier of visited nodes
between trees starts to decline. Also, trees 7 to 10 havesienjar results. It seems
that after a certain number of words in the tree the opera#orains constant.

The increased number of words in the tree affectsgtheoperation mostly in the
first quarter ofmaxSizeWord. The longer the input word, the lesser the difference
between trees. Still, this operation is affected most byctrenge ofwumTreeW ord.
The average number of visited nodes for all input word lesgthreel is 8,907 and in
treel0 it is 68,661. Due to the nature of operation, this e expected. The more
words there are in the tree, the more supersets can be fouad foput word.

As already noted above, when the number of words in the trereases, number
of visited nodes fokesb decreases. After a certain number of words, in our case this
was around 50,000, the operation terminates with minimagdgjtole) number of visited
nodes for any word length. The increasenafmTreeW ord pushes down the perfor-
mance of operation (from left to right). This can be seen guFé 4 by comparingreel
andtreed. In treel the operation visits more then 10 after word length 15, artddal
it visits more than 10 nodes after word length 23. Overallrthmber of visited nodes
is always low.

The chart ofysb operation looks like a mirrored chart gér. The increased number
of words in tree has more effect on input word lengths wheeeogheration visits more
nodes (longer words). Below word length 15 the differende/ben trees is in the range
of 100 visited nodes. At word length 3@b visits 1,729 nodes itveel and 8,150 nodes
in treel0. Explanation of the increased number of visited nodes islairas for gsr
operation: the longer the word, the more subsets it can fa@enore words in the tree,
the more words with possible subsets there are.

In experiment3 we are interested about how a change of alphabet size affects
operations. Five trees are created withz SizeW ord 50 andnumTreeW ord 50,000.
alphabetSize is 20, 40, 60, 80 and 100, fareel, tree2, treel, treed andirees,
respectively. The number of nodes in the trees are: 869,803,1,369, 1,069,615,
1,102,827 and 1,118,492. The test set contains 5,000 words.

When increasingiphabet Size the tree becomes sparser—the number of child nodes
of a node is larger, but the number of nodes in all five treesughly the same. Op-
erationgsr and more notably;sb operation, visit less nodes for the same input word
length: the average number of visited nodes decreased wipénbet Size increases.
Operationesr on the other hand visits more nodes in trees with larger aiptsize.

Number of visited nodes afsr increases with the increase @phabetSize. This
is because it is harder to find supersets of given words, whemtmber of sym-
bols that make up words is larger. This is more evident forddengths below half
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Fig. 6. Experiment 3 - increasinglphabetSize

maxSizeW ord. The number of visited nodes starts decreasing rapidly aftertain
word length. At this point the operation does not find any ssgis and it returns false.
Operationgsr is not affected much by the changedphabetSize. More evident
change appears wheifphabetSize is increased over 2@«Keel). The number of vis-
ited nodes in trees 2 to 5 is almost the same, but it does derwith the increase of

alphabetSize.

In treel esb visits on average 3 nodes. When we incredgéabet Size the number
of visited nodes also increases, but agdnthe difference between trees 2 to 5 is small.

The change otilphabetSize has more significant effect on longer input words
for the gsr operation. The number of visited nodes decreased wh@mbet Size in-
creased. Here again the most evident change is when goimgueibetSize 20. In
each subsequent increase, the difference in the numbesitdfd/nodes is smaller.

4 Related work

The problem of querying sets of sets appears in various afe@smputer Science.
Firstly, the problem has been studied in the formsobstring searctby Rivest [13],



Baeza-Yates [1] and Charikar [3]. Secondly, the subsetiegia@re studied in various
sub-areas of Al for storing and querying: pre-conditiona t#rge set of rules [6], states
in planning for storing goal sets [8] and hypotheses in datang algorithms [9]. Fi-
nally, querying sets is an important problem in objectiietsal databases management
systems where attributes of relations can range over s&t4217, 19, 20].

4.1 Partial-matching and containment query problem

The data structure we propose is similar to trie [13, 14]c8iwe are not storing se-
quences busetswe can exploit the fact that the order in sets is not importahere-
fore, we can take advantage of this to use syntactical orflefements of sets and
obtain additional functionality of tries.

Our problem is similar to searching substrings in stringsafbich tries and Suffix
treescan be used. Firstly, Rivest examines [13] the problem dfgdanatching with the
use of hash functions and trie trees. He presents an algofithpartial match queries
using tries. However, he does not exploit the ordering ofcesithat can only be done
in the case thagetsor multisetsare stored in tries.

Baeza-Yates and Gonnet present an algorithm [1] for seggakgular expressions
using Patricia trees as the logical model for the index. Tigylate a finite automata
over a binary Particia tree of words. The result of a regutpression query is a superset
or subset of the search parameter.

Finally, Charikar et. al. [3] present two algorithms to deéh a subset query prob-
lem. The purpose of their algorithms is similar doistsSuperSet operation. They
extend their results to a more general problem of orthog@mage searching, and other
problems. They propose a solution for “containment queoblam” which is similar
to our 2. query problem introduced in Section 1.

4.2 Querying hypotheses and states in Al systems

The initial implementation oket-triewas in the context of a datamining togtlep
which is used for the induction of functional from relatiofi, 5]. It has been fur-
ther used in datamining toakdep for the induction of multivalued dependencies from
relations [17]. In both cases sets are used as the basisefoepinesentation of depen-
dencies. Hypotheses (dependencies) are checked aganstdhtive cover ohvalid
dependenciesepresented by means eét-trie Furthermore, positive cover including
valid dependencies is minimized by usisegt-trieas well.

Doorenbos in [4] proposes an index structure for queryirggqumditions of rules
to be matched while selecting the next rule to activate inerlbased system Rete [6].
Index structure stores conditions in separate nodes tbdinked together to form pre-
conditions of rules. Common conditions of rules are sharadray the rules: lists of
conditions with common prefix share all nodes that form prediven a set of con-
ditions that are fulfilled all rules that contain as pre-dtind a subset of given set of
conditions can be activated.

Similar index structure is proposed by Hoffman and Koehjemigans of Unlimited
Branching Tree (abbr. UBTree) to store set of sets. The m#farehce with the repre-
sentation of rules in expert systems is that UBTree does sewariables. Children of



node are stored in a list attached to node. A set is in UBTgesented by a path from
root to final node; path is labeled by elements of a set. Thekgaocedures for subset
and superset problems are similar to those we propose, leowtbe main difference
in procedures is that we explicitly use ordering of sets &arsh while Hoffman and
Koehler give a more general algorithm allowing other heiait be exploited. Our
publication in 1993 [15] evidently presents the indepeicgenf work.

4.3 Indexing set-valued attributes of object-relational dtabases

Sets are among important data modeling constructs in ehlgéational and object-
oriented database systerS&t-valued attributesre used for the representation of prop-
erties that range over sets of atomic values or objects.baagacommunity has shown
significant interest in indexing structures that can be @sedccess paths for querying
set-valued attributes [18, 12,7, 19, 20].

Set containment queriegere studied in the frame of different index structures.
Helmer and Moercotte investigated four index structuresgieerying set-valued at-
tributes of low cardinality [7]. All four index structureseabased on conventional tech-
niques: signatures and inverted files. Index structurespeoed are: sequential signa-
ture files, signature trees, extendable signature hashimyB-tree based implemen-
tation of inverted lists. Inverted file index showed bestf@enance over other data
structures in most operations.

Zhang et al. [20] investigated two alternatives for the iempéntation of contain-
ment queries: a) separate IR engine based on inverted listdbpnative tables of
RDBMS. They have shown that while RDBMS are poorly suitectcfortainment queries
they can outperform inverted list engine in some conditidhgthermore, they have
shown that with some modifications RDBMS can support containt queries much
more efficiently.

Another approach to the efficient implementation of set @immhent queries is the
use of signature-based structures. Tousidou et al. [19bawerthe advantages of two
access paths: linear hashing and tree-structured mefhioelg show through the empir-
ical analysis that S-tree with linear hash partitioningficent data structure for subset
and superset queries.

5 Conclusions

The paper presents a data structseg-triethat can be used for efficient storage and
retrieval of subsets or supersets of a givesrd. The algorithms of set containment
operations are analyzed empirically. It has been demdssdtthat the algorithms are
stable when used on real-world and artificially generatead.dampirical analysis was
used to determine the behavior of each particular set auntit operations. The per-
formance ofset-trieis shown to be efficient enough for storage and retrieval tsf ise
practical applications.

Initial experiments have been done to investigatedf-trie can be employed for
searching substrings and superstrings in texts. For thisoge the data structuset-
trie has to be augmented with the references to the position afsaiartext. As in the



case of indexes used in information retrieval [5&}-triecan be decomposed intlic-
tionary andpostings Empirical analysis which would show memory consumptiod an
efficiency ofset-trieused for indexing huge quantities of texts remains to be ¢eteqp.

References

1. Baeza-Yates, R., Gonnet, G.: Fast text searching for regyteessions or automation search-
ing on tries. Journal of ACM 1996, Vol.43, No.6, pp. 915-936.

2. Blurn, A., Furst, M., Fast planning through planning graph analysisficial Intelligence,
Vol.90, Issue 1-2, pp.279-298, 1997.

3. Charikar, M., Indyk, P., Panigrahy, R.: New Algorithms for SettiQuery, Partial Match, Or-
thogonal Range Searching and Related Problems. LNCS 2002; 0| g3851-462.

4. Doorenbos, R., Combining left and right unlinking for matching adamgmber of learned
rules, AAAI-94, pp.451-458, 1994.

5. Flach, P.A., Savnik, |.: Database dependency discovery: aimadearning approach. Al
Communications, Vol.12, No.3, 10S Press, 1999, pp.139-160.

6. Forgy, C., Rete: A fast algorithm for the many pattern/many objetteamatch problem,
Artificial Intelligence, 19:17-37, 1982.

7. Helmer, S., Moerkotte, G.: A performance study of Four Indenc®tires for Set-Valued At-
tributes of Low Cardinality, The VLDB Journal - The International Jalron Very Large
Data Bases, Volume 12 Issue 3, 2003 pp. 244-261.

8. Hoffmann, J., Koehler, J., A New Method to Index and Query $&@Al, 1999.

9. Mamoulis, N., Cheung, D.W., Lian, W., Similarity Search in Sets anegaical Data Using
the Signature Tree, ICDE, 2003.

10. Mannila, H., Toivonen, H.: Levelwise search and bordersegties in knowledge discovery,
Data Mining and Knowledge Discovery Journal, 1(3), 1997, pp. Za.-2

11. Manning, C.D., Raghavan, P., SchAijtze, H., An Introduction forination Retrieval, Draft,
Cambridge University Press, 2009.

12. Melnik, S., Garcia-Molina, H.: Adaptive Algorithms for Set ContaemtJoins, ACM Trans-
actions on Database Systems, Vol.28, No.2, 2003, pp.1-38.

13. Rivest, R.: Partial-Match Retrieval Algorithms. SIAM Journal onrpaiting 1976; 5(1).

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: thintion to Algorithms, Second
Edition, MIT Press, 2001.

15. Savnik, 1., Flach, P.A.:, Bottom-up Induction of Functional Defsties from Relations.
Proc. of KDD'93 Workshop: Knowledge Discovery from Databas&8Al Press, 1993,
Washington, p. 174-185.

16. Savnik, I., Efficient subset and superset queries, LocaeRaings and Materials of Doc-
toral Consortium of the Tenth International Baltic Conference on Daésbaisd Information
Systems, 2012.

17. Savnik, I., Flach, P.A., Discovery of multivalued dependenfrias relations, Intelligent
Data Analysis Journal, Intelligent Data Analysis Journal, Vol.4, 10S £r2800, pp. 195-
211.

18. Terrovitis, M., Passas, S., Vassiliadis, P., Sellis, T.: A Combinatidnie-trees and Inverted
Files for the Indexing of Set-valued Attributes, Proc. of ACM Internatid®anference on
Information and Knowledge Management, 2006.

19. Tousidou, E., Bozanis, P., Manolopoulos, Y.: Signature-b&berctures for Objects with
Set-valued Attributes, Information Systems 27, 2002, pp. 93-121.

20. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: OppButing Containment
Queries in Relational Database Management Systems, ACM SIGMOLR, 200



