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Abstract. A new data structureset-trie for storing and retrieving sets is pro-
posed. Efficient manipulation of sets is vital in a number of systems including
datamining tools, object-relational database systems, and rule-based expert sys-
tems. Data structureset-trieprovides efficient algorithms for set containment op-
erations. It allows fast access to subsets and supersets of a given parameter set.
The performance of operations is analyzed empirically in a series of experiments
on real-world and artificial datasets. The analysis shows that sets can beaccessed
in O(c ∗ |set|) time where|set| represents the size of parameter set andc is a
constant.

Keywords: subset queries, set containment queries, partial matching, access meth-
ods, database index.

1 Introduction

Set containment queriesare common in various systems including datamining tools,
object-relational databases, rule-based expert systems,and AI planning systems. Enu-
meration of subsets of a given universal setU is very common indata miningalgorithms
[10] where sets are used as basis for the representation of hypotheses and search space
forms a lattice. Often we have to see if a given hypothesis hasalready been consid-
ered by the algorithm. This can be checked by searching the set of hypotheses (sets)
that have already been processed. Furthermore, in some cases hypotheses can be easily
overthrown if a superset hypothesis has already been shown not valid. Such problems
include discovery of association rules, functional dependencies as well as some forms
of propositional logic [10, 15, 5, 8].

In object-relational database management systemstables can have set-valued at-
tributes i.e. attributes that range over sets. Set containment queries can express either
selection or join operation based on set containment condition. Efficient access to rela-
tion records based on conditions that involve set operations are vital for fast implemen-
tation of such queries [12, 18, 7].

Rule-based expert systemsuse set containment queries to implement fast pattern-
matching algorithms that determine which rules are fired in each cycle of expert system
execution. Here sets form pre-conditions of rules composedof elementary conditions.



Given a set of valid conditions the set of fired rules includesthose with pre-condition
included in this set [6, 4].

Finally, in AI planning systemsgoal sets are used to store goals to be achieved from
a given initial state. Planning modules use subset queries in procedure that examines if a
given goal set is satisfiable. Part of the procedure represents querying goal sets that were
previously shown to be unsatisfiable. Here also sets are usedto form basic structure of
hypothesis space [2].

In this paper we propose a novel index data structureset-triethat implements effi-
ciently basic two types of set containment queries:subsetandsuperset queries. Set-trie
provides storage for sets as well as multisets. Preliminaryversion of this paper has been
published in [16].

Set-trieis a tree data structure similar totrie [13]. The possibility to extend the per-
formance of usualtrie from membership operation to subset and superset operations
comes from the fact that we are storingsets(multisets) and not thesequencesof sym-
bols as for ordinary tries. In case of sets (multisets) ordering of symbols in a set is not
important as it is in the case of text. As it will be presented in the paper, the ordering of
set elements is used as the basis for the definition of efficient algorithms for set contain-
ment operations. Since the semantics of set containment operations is equivalent to the
semantics of multiset containment operations we will in thefollowing text sometimes
refer to both, sets and multisets, assets.

We analyze subset and superset operations in two types of experiments. Firstly, we
examine the execution of the operations on real-world data where multisets represent
words from the English dictionary. Secondly, we have testedthe operations on artifi-
cially generated data. In these experiments we tried to see how three main parameters:
the size of sets, the size ofset-trietree and the size of test-set, affect the behavior of the
operations. Analysis shows that sets can be accessed inO(c ∗ |set|) time where|set|
represents the size of parameter set andc is a constant. The constantc is up to5 for
subset case and approximately150 in average case for the superset case.

The paper is organized as follows. The following section presents the data structure
set-trie together with the operations for searching the subsets and supersets in a tree.
The Section 3 describes the empirical study ofset-trie. We present a series of exper-
iments that measure the behavior of operations and the size of data structure. Related
work is presented in Section 4. We give presentation of existent work from the fields of
algorithms and data structures, AI systems where sets are used for querying hypothe-
ses and states, and object-relational database systems where indexes are used to access
set-valued attributes. Finally, the conclusions and the directions of our further work are
given in Section 5.

2 Data structure set-trie

Set-trie is a tree composed of nodes labeled with indices from1 to N whereN is the
size of the alphabet. The root node is labeled with{} and its children can be the nodes
labeled from1 to N . A root node alone represents an empty set. A node labeledi can
have children labeled with numbers greater than or equali. Each node can have a flag



denoting the last element in the set. Therefore, a set is represented by a path from the
root node to a node with flag set to true.

Let us give an example ofset-trie. Figure 2 presents aset-triecontaining the sets
{1, 3}, {1, 3, 5}, {1, 4}, {1, 2, 4}, {2, 4}, {2, 3, 5}. Note that flagged nodes are repre-
sented with circles.
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Fig. 1. Example ofset-trie

Since we are dealing with sets for which the ordering of the elements is not impor-
tant, we can define a syntactical order of symbols by assigning each symbol a unique
index. Words are sequences of symbols ordered by indices. The ordering of symbols is
exploited for therepresentationof sets of words as well as in theimplementationof the
above stated operations.

Set-trieis a tree storing a set of words which are represented by a pathfrom the root
of set-trieto a node corresponding to the indices of elements from words. As with tries,
prefixes that overlap are represented by a common path from the root to an internal
vertex ofset-trietree.

The operations for searching subsets and supersets of a setX in S use the ordering
of U . The algorithms do not need to consider the tree branches forwhich we know they
do not lead to results. The search space for a givenX and tree representingS can be
seen as a subtree determined primarily by the search wordX but also with the search
tree corresponding toS.

2.1 Set containment operations

Let us first give formal definition of the basic subset and superset operations. LetU be
a set of ordered symbols. The subsets ofU are denoted aswords. Given a set of words
S and a subset ofU namedX, we are interested in the following queries.

1) existsSubset(S,X) returnstrue if ∃Y ∈ S : Y ⊆ X andfalse otherwise.
2) existsSuperset(S,X): returnstrue if ∃Y ∈ S : X ⊆ Y andfalse otherwise.
3) getAllSubsets(S,X): returns all setsY such thatY ∈ S ∧ Y ⊆ X.
4) getAllSupersets(S,X): returns all setsY such thatY ∈ S ∧ X ⊆ Y .



Let us now present a data structureWord for storing sets of symbols. Symbols in
words are represented as integer numbers. Elements of a set represented byWord can
be scanned using the following mechanism. The operationword.gotoF irstElement

sets the current element of word to the first element of ordered set. Then, the op-
erationword.existsCurrentElement checks if word has the current element set.
The operationword.currentElement returns the current element, and the operation
word.gotoNextElement goes to the next element in the set.

Using data structureWord we can now describe the operations of the data struc-
tureset-trie. The first operation isinsertion. The operationinsert(root,word) enters a
newword into theset-triereferenced by the rootnode. The operation is presented by
Algorithm 1.

Algorithm 1 insert(node, word)
1: if (word.existsCurrentElement)then
2: if (exists child ofnode labeledword.currentElement)then
3: nextNode = child of node labeledword.currentElement;
4: else
5: nextNode = create child ofnode labeledword.currentElement;
6: end if
7: insert(nextNode, word.gotoNextElement)
8: else
9: node’s flag_last =true;

10: end if

Each invocation of operationinsert either traverses through the existing tree nodes
or creates new nodes to construct a path from the root to the flagged node corresponding
to the last element of the ordered set.

The following operationsearch(node,word) searches for a givenword in the tree
node. It returns true when it finds all symbols from the word, and false as soon one
symbol is not found. The algorithm is shown in Algorithm 2. Ittraverses the treenode

by using the elements of ordered setword to select the children.

Algorithm 2 search(node, word)
1: if (word.existsCurrentElement)then
2: if (there exists child ofnode labeledword.currentElement)then
3: matchNode = child vertex ofnode labeledword.currentElement;
4: search(matchNode, word.gotoNextElement);
5: else
6: return false;
7: end if
8: else
9: return (node’s last_flag== true) ;

10: end if



Let us give a few comments to present the algorithm in more detail. The operation
have to be invoked with the callsearch(root,word.gotoFirstElement) so thatroot is
the root of theset-trie tree and the current element of theword is the first element of
word. Each activation ofsearch tries to match the current element ofword with the
child of node. If the match is not successful it returnsfalse otherwise it proceeds with
the following element ofword.

The operationexistsSubset(node,word) checks if there exists a subset ofword

in the given tree referenced bynode. The subset that we search in the tree has fewer
elements thanword. Therefore, besides that we search for the exact match we can
also skip one or more elements inword and find a subset that matches the rest of the
elements ofword. The operation is presented in Algorithm 3.

Algorithm 3 existsSubset(node,set)
1: if (node.last_flag== true) then
2: return true ;
3: end if
4: if (notword.existsCurrentElement)then
5: return false;
6: end if
7: found = false;
8: if (node has child labeledword.currentElement)then
9: nextNode = child of node labeledword.currentElement;

10: found = existsSubset(nextNode, word.gotoNextElement);
11: end if
12: if (!found) then
13: return existsSubset(node,word.gotoNextElement);
14: else
15: return true ;
16: end if

Algorithm 3 tries to match elements ofword by descending simultaneously in tree
and inword. The first IF statement (line 1) checks if a subset ofword is found in the
tree i.e. the current node of a tree is the last element of subset. The second IF statement
(line 4) checks ifword has run of the elements. The third IF statement (line 8) verifies
if the parallel descend inword and tree is possible. In the positive case, the algorithm
callsexistsSubset with the next element ofword and a child ofnode corresponding to
matched symbol (parallel descend). Finally, if match did not succeed, current element
of word is skipped andexistsSubset is called with samenode and next element of
word in line 13.

The operationexistsSubset can be easily extended to find all subsets of a given
word in a treenode. After finding the subset in line 15 the subset is stored and the search
continues in the same manner as before. The experimental results with the operation
getAllSubsets(node,word) are presented in the following section.

The operationexistsSuperset(node,word) checks if there exists a superset ofword

in the tree referenced bynode. While in operationexistsSubset we could skip some el-



Algorithm 4 existsSuperset(node, word)
1: if (notword.existsCurrentElement)then
2: return true ;
3: end if
4: found = false;
5: from =word.currentElement;
6: upto =word.nextElement if it exists and N otherwise;
7: for (eachchild of node labeledl: from < l ≤ upto) & (while not found) do
8: if (child is labeledupto) then
9: found = existsSuperset(child,word.gotoNextElement);

10: else
11: found = existsSuperset(child,word);
12: end if
13: end for

ements fromword, here we can do the opposite: the algorithm can skip some elements
in supersets represented bynode. Therefore,word can be matched with the subset of
superset from atree. The operation is presented in Algorithm 4

Let us present Algorithm 4 in more detail. The first IF statement checks if we are
already at the end ofword. If so, then the parameterword is covered completely with a
superset fromtree. Lines 5-6 set the lower and upper bounds of iteration. In each pass
we either take currentchild and callexistsSuperset on unchangedword (line 11), or,
descend in parallel on bothword and tree in the case that we reach the upper bound i.e.
the next element inword (line 9).

Again, the operationexistsSuperset can be quite easily extended to retrieve all
supersets of a givenword in a treenode. However, afterword (parameter) is matched
completely (line 2 in Algorithm 4), there remains a subtree of trailers corresponding to a
set of supersets that subsumeword. This subtree is rooted in a tree node, let saynodek,
that corresponds to the last element ofword. Therefore, after thenodek is matched
against the last element of the set in line 2, the complete subtree has to be traversed to
find all supersets that go throughnodek.

3 Experiments

The performance of the presented operations is analyzed in four experiments. The main
parameters of experiments are: number of words in tree, sizeof the alphabet, and max-
imal length of words. The parameters are named:numTreeWord, alphabetSize, and
maxSizeWord, respectively. In every experiment we measure thenumber of visited
nodes necessary for an operation to terminate.

In the first experiment,set-trie is used to store real-world data – it stores multisets
obtained from words of English Dictionary. In the followingthree experiments we use
artificial data – datasets include randomly generated sets of sets. In these experiments
we analyze in detail the interrelations between one of the stated tree parameters and the
number of visited nodes.



In all experiments we observe four operations presented in the previous section:
existsSubset (abbr.esb) and its extensiongetAllSubsets (abbr.gsb), andexistsSuperset

(abbr.esr) and its extensiongetAllSupersets (abbr.gsr).

3.1 Experiment with real-world data

Let us now present the first experiment in more detail. The number of words in test set
is 224,712 which results in a tree with 570,462 nodes. The length of words are between
5 and 24 and the size of the alphabet (alphabetSize) is 25. The test set contains 10,000
words.

Results are presented in Table 1 and Figure 2. Since there are10,000 words and 23
different word lengths in the test set, approximately 435 input words are of the same
length. Table 1 and Figure 2 present the average number of visited nodes for each input
word length (except forgsr where values below word length 6 are intentionally cut off).

word length esr gsr esb gsb
2 523 169694 1 1
3 3355103844 3 3
4 12444 64802 6 6
5 9390 34595 11 12
6 11500 22322 14 19
7 12148 17003 18 32
8 8791 10405 19 46
9 6985 7559 19 78
10 3817 3938 21 102
11 3179 3201 20 159
12 2808 2820 20 221
13 2246 2246 22 290
14 1651 1654 19 403
15 1488 1488 18 575
16 895 895 19 778
17 908 908 20 925
18 785 785 18 1137
19 489 489 22 1519
20 522 522 19 1758
21 474 474 19 2393
22 399 399 17 3044
23 362 362 17 3592
24 327 327 19 4167

Fig. 2.Visited nodes for dictionary words

Let us give some comments on the results presented in Table 2.First of all, we can
see that the superset operations (esr andgsr) visit more nodes than subset operations
(esb andgsb).



The number of nodes visited byesr andgsr decreases as the length of words in-
creases. This can be explained by more constrained search inthe case of longer words,
while it is very easy to find supersets of shorter words and, furthermore, there are a lot
of supersets of shorter words in the tree.

Fig. 3.Number of visited nodes

Since operationgsr returns all supersets (of a given set), it always visits morenodes
than the operationesr. However, searching for the supersets of longer words almost
always results in failure and for this reason the number of visited nodes is the same for
both operations.

The number of visited nodes foresb in the case that words have more than 5 symbols
is very similar to the length of words. Below this length of words bothesb andgsb visit
the same number of nodes, because there were no subset words of this length in the tree
and both operations visit the same nodes.

The number of visited nodes forgsb linearly increases as the word length increases.
We have to visit all the nodes that are actually used for the representation of all subsets
of a given parameter set.

3.2 Experiments with artificial data

Three experiments were done by using artificially generateddata. Experiments are
namedexperiment1, experiment2 andexperiment3.
1) In experiment1 we observe relation between maximal length of words to number
of visited nodes ofset-triein all four operations.
2) experiment2 shows the relation between number of words stored inset-trie and
number of visited nodes inset-triein all four operations.
3) experiment3 investigates the relation between the size of alphabet and number of
visited nodes ofset-triein all four operations.

Let us start withexperiment1. Here we observe the influence of maximal length of
words to the performance of all four operations. We created four trees withalphabetSize



Fig. 4. Experiment 1 - increasingmaxSizeWord

30 andnumTreeWord 50,000.maxSizeWord is different in each tree: 20, 40, 60
and 80, for tree1, tree2, tree3 and tree4, respectively. Thelength of word in each tree is
evenly distributed between the minimal and maximal word size. The number of nodes in
the trees are: 332,182, 753,074, 1,180,922 and 1,604,698. The test set contains 10,000
words.

Figure 3 shows the performance of all four operations on all four trees. The perfor-
mance of superset operations is affected more by the change of word length than the
subset operations.

With an even distribution of data in all four trees,esr visits most nodes for in-
put word lengths that are about half of the size ofmaxSizeWord (as opposed to
dictionary data where it visits most nodes for word lengths approximately one fifth
of maxSizeWord). For word lengths equal tomaxSizeWord the number of visited
nodes is roughly the same for all trees, but that number increases slightly as the word
length increases.

esb operation visits fewer than 10 nodes most of the time, but fortree3 it goes up
to 44. The experiment was repeated multiple (about 10) times, and in every run the
operation jumped up in a different tree. As will be seen laterin experiment2, it seems



that numTreeWord 50 is just on the edge of the value whereesb stays constantly
below 10 visited nodes. It is safe to say that the change inmaxSizeWord has no
major effect onexistsSubSet operation.

In contrast togsr, gsb visits less nodes for the same input word length in trees with
greatermaxSizeWord, but the change is minimal. For example for word length 35
in tree2 (maxSizeWord 40) gsb visits 7,606 nodes, intree3 (maxSizeWord 60) it
visits 5,300 nodes and intree4 (maxSizeWord 80) it visits 4,126 nodes.

Fig. 5. Experiment 2 - increasingnumTreeWord

In experiment2 we are interested about how a change in the number of words
in the tree affects the operations. Ten trees are created allwith alphabetSize 30 and
maxSizeWord 30.numTreeWord increases in each subsequent tree by 10,000 words:
tree1 has 10,000 words, andtree10 has 100,000 words. The number of nodes in
the trees (fromtree1 to tree10) are: 115,780, 225,820, 331,626, 437,966, 541,601,
644,585, 746,801, 846,388, 946,493 and 1,047,192. The testset contains 5,000 words.

Figure 4 shows the number of visited nodes for each operationon four trees:tree1,
tree4, tree7 and tree10 (only every third tree is shown to reduce clutter). When in-



creasingnumTreeWord the number of visited nodes increases foresr, gsr andgsb

operations.esb is least affected by the increased number of words in the tree. In contrast
to the other three operations, the number of visited nodes decreases whennumTreeWord

increases.

For input word lengths around half the value ofmaxSizeWord (between 13 and
17) the number of visited nodes foresr increases with the increase of the number of
words in the tree. For input word lengths up to 10, the difference between trees is
minimal. After word lengths about 20 the difference in the number of visited nodes
between trees starts to decline. Also, trees 7 to 10 have verysimilar results. It seems
that after a certain number of words in the tree the operationremains constant.

The increased number of words in the tree affects thegsr operation mostly in the
first quarter ofmaxSizeWord. The longer the input word, the lesser the difference
between trees. Still, this operation is affected most by thechange ofnumTreeWord.
The average number of visited nodes for all input word lengths in tree1 is 8,907 and in
tree10 it is 68,661. Due to the nature of operation, this behavior is expected. The more
words there are in the tree, the more supersets can be found for an input word.

As already noted above, when the number of words in the tree increases, number
of visited nodes foresb decreases. After a certain number of words, in our case this
was around 50,000, the operation terminates with minimal (possible) number of visited
nodes for any word length. The increase ofnumTreeWord pushes down the perfor-
mance of operation (from left to right). This can be seen in Figure 4 by comparingtree1
andtree4. In tree1 the operation visits more then 10 after word length 15, and intree4
it visits more than 10 nodes after word length 23. Overall thenumber of visited nodes
is always low.

The chart ofgsb operation looks like a mirrored chart ofgsr. The increased number
of words in tree has more effect on input word lengths where the operation visits more
nodes (longer words). Below word length 15 the difference between trees is in the range
of 100 visited nodes. At word length 30gsb visits 1,729 nodes intree1 and 8,150 nodes
in tree10. Explanation of the increased number of visited nodes is similar as forgsr

operation: the longer the word, the more subsets it can have,the more words in the tree,
the more words with possible subsets there are.

In experiment3 we are interested about how a change of alphabet size affectsthe
operations. Five trees are created withmaxSizeWord 50 andnumTreeWord 50,000.
alphabetSize is 20, 40, 60, 80 and 100, fortree1, tree2, tree3, tree4 and tree5,
respectively. The number of nodes in the trees are: 869,373,1,011,369, 1,069,615,
1,102,827 and 1,118,492. The test set contains 5,000 words.

When increasingalphabetSize the tree becomes sparser–the number of child nodes
of a node is larger, but the number of nodes in all five trees is roughly the same. Op-
erationgsr and more notablygsb operation, visit less nodes for the same input word
length: the average number of visited nodes decreased whenalphabetSize increases.
Operationesr on the other hand visits more nodes in trees with larger alphabetSize.

Number of visited nodes ofesr increases with the increase ofalphabetSize. This
is because it is harder to find supersets of given words, when the number of sym-
bols that make up words is larger. This is more evident for word lengths below half



Fig. 6.Experiment 3 - increasingalphabetSize

maxSizeWord. The number of visited nodes starts decreasing rapidly after a certain
word length. At this point the operation does not find any supersets and it returns false.

Operationgsr is not affected much by the change ofalphabetSize. More evident
change appears whenalphabetSize is increased over 20 (tree1). The number of vis-
ited nodes in trees 2 to 5 is almost the same, but it does decrease with the increase of
alphabetSize.

In tree1 esb visits on average 3 nodes. When we increasealphabetSize the number
of visited nodes also increases, but as ingsr the difference between trees 2 to 5 is small.

The change ofalphabetSize has more significant effect on longer input words
for thegsr operation. The number of visited nodes decreased whenalphabetSize in-
creased. Here again the most evident change is when going over alphabetSize 20. In
each subsequent increase, the difference in the number of visited nodes is smaller.

4 Related work

The problem of querying sets of sets appears in various areasof Computer Science.
Firstly, the problem has been studied in the form ofsubstring searchby Rivest [13],



Baeza-Yates [1] and Charikar [3]. Secondly, the subset queries are studied in various
sub-areas of AI for storing and querying: pre-conditions ofa large set of rules [6], states
in planning for storing goal sets [8] and hypotheses in data mining algorithms [9]. Fi-
nally, querying sets is an important problem in object-relational databases management
systems where attributes of relations can range over sets [18, 12, 7, 19, 20].

4.1 Partial-matching and containment query problem

The data structure we propose is similar to trie [13, 14]. Since we are not storing se-
quences butsetswe can exploit the fact that the order in sets is not important. There-
fore, we can take advantage of this to use syntactical order of elements of sets and
obtain additional functionality of tries.

Our problem is similar to searching substrings in strings for which tries andSuffix
treescan be used. Firstly, Rivest examines [13] the problem of partial matching with the
use of hash functions and trie trees. He presents an algorithm for partial match queries
using tries. However, he does not exploit the ordering of indices that can only be done
in the case thatsetsor multisetsare stored in tries.

Baeza-Yates and Gonnet present an algorithm [1] for searching regular expressions
using Patricia trees as the logical model for the index. Theysimulate a finite automata
over a binary Particia tree of words. The result of a regular expression query is a superset
or subset of the search parameter.

Finally, Charikar et. al. [3] present two algorithms to dealwith a subset query prob-
lem. The purpose of their algorithms is similar toexistsSuperSet operation. They
extend their results to a more general problem of orthogonalrange searching, and other
problems. They propose a solution for “containment query problem” which is similar
to our 2. query problem introduced in Section 1.

4.2 Querying hypotheses and states in AI systems

The initial implementation ofset-trie was in the context of a datamining toolfdep

which is used for the induction of functional from relations[15, 5]. It has been fur-
ther used in datamining toolmdep for the induction of multivalued dependencies from
relations [17]. In both cases sets are used as the basis for the representation of depen-
dencies. Hypotheses (dependencies) are checked against the negative cover ofinvalid
dependenciesrepresented by means ofset-trie. Furthermore, positive cover including
valid dependencies is minimized by usingset-trieas well.

Doorenbos in [4] proposes an index structure for querying pre-conditions of rules
to be matched while selecting the next rule to activate in a rule-based system Rete [6].
Index structure stores conditions in separate nodes that are linked together to form pre-
conditions of rules. Common conditions of rules are shared among the rules: lists of
conditions with common prefix share all nodes that form prefix. Given a set of con-
ditions that are fulfilled all rules that contain as pre-condition a subset of given set of
conditions can be activated.

Similar index structure is proposed by Hoffman and Koehler by means of Unlimited
Branching Tree (abbr. UBTree) to store set of sets. The main difference with the repre-
sentation of rules in expert systems is that UBTree does not use variables. Children of



node are stored in a list attached to node. A set is in UBTree represented by a path from
root to final node; path is labeled by elements of a set. The search procedures for subset
and superset problems are similar to those we propose, however, the main difference
in procedures is that we explicitly use ordering of sets for search while Hoffman and
Koehler give a more general algorithm allowing other heuristic to be exploited. Our
publication in 1993 [15] evidently presents the independence of work.

4.3 Indexing set-valued attributes of object-relational databases

Sets are among important data modeling constructs in object-relational and object-
oriented database systems.Set-valued attributesare used for the representation of prop-
erties that range over sets of atomic values or objects. Database community has shown
significant interest in indexing structures that can be usedas access paths for querying
set-valued attributes [18, 12, 7, 19, 20].

Set containment querieswere studied in the frame of different index structures.
Helmer and Moercotte investigated four index structures for querying set-valued at-
tributes of low cardinality [7]. All four index structures are based on conventional tech-
niques: signatures and inverted files. Index structures compared are: sequential signa-
ture files, signature trees, extendable signature hashing,and B-tree based implemen-
tation of inverted lists. Inverted file index showed best performance over other data
structures in most operations.

Zhang et al. [20] investigated two alternatives for the implementation of contain-
ment queries: a) separate IR engine based on inverted lists and b) native tables of
RDBMS. They have shown that while RDBMS are poorly suited forcontainment queries
they can outperform inverted list engine in some conditions. Furthermore, they have
shown that with some modifications RDBMS can support containment queries much
more efficiently.

Another approach to the efficient implementation of set containment queries is the
use of signature-based structures. Tousidou et al. [19] combine the advantages of two
access paths: linear hashing and tree-structured methods.They show through the empir-
ical analysis that S-tree with linear hash partitioning is efficient data structure for subset
and superset queries.

5 Conclusions

The paper presents a data structureset-trie that can be used for efficient storage and
retrieval of subsets or supersets of a givenword. The algorithms of set containment
operations are analyzed empirically. It has been demonstrated that the algorithms are
stable when used on real-world and artificially generated data. Empirical analysis was
used to determine the behavior of each particular set containment operations. The per-
formance ofset-trie is shown to be efficient enough for storage and retrieval of sets in
practical applications.

Initial experiments have been done to investigate ifset-trie can be employed for
searching substrings and superstrings in texts. For this purpose the data structureset-
trie has to be augmented with the references to the position of words in text. As in the



case of indexes used in information retrieval [11]set-triecan be decomposed intodic-
tionary andpostings. Empirical analysis which would show memory consumption and
efficiency ofset-trieused for indexing huge quantities of texts remains to be completed.
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