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Abstract. Maximum distance separable (MDS) matrices have appli-
cations not only in coding theory but also are of great importance in
the design of block ciphers and hash functions. It is highly nontrivial
to find MDS matrices which could be used in lightweight cryptogra-
phy. In a crypto 2011 paper, Guo et. al. proposed a new MDS matrix
Serial(1, 2, 1, 4)4 over F28 . This representation has a compact hardware
implementation of the AES MixColumn operation. No general study
of MDS properties of this newly introduced construction of the form
Serial(z0, . . . , zd−1)d over F2n for arbitrary d and n is available in the
literature. In this paper we study some properties of MDS matrices and
provide an insight of why Serial(z0, . . . , zd−1)d leads to an MDS ma-
trix. For efficient hardware implementation, we aim to restrict the values
of zi’s in {1, α, α2, α + 1}, such that Serial(z0, . . . , zd−1)d is MDS for
d = 4 and 5, where α is the root of the constructing polynomial of F2n .
We also propose more generic constructions of MDS matrices e.g. we
construct lightweight 4 × 4 and 5 × 5 MDS matrices over F2n for all
n ≥ 4. An algorithm is presented to check if a given matrix is MDS. The
algorithm follows from the basic properties of MDS matrix and is easy
to implement.

Key words: Diffusion, Companion matrix, MDS matrix, MixColumn
operation, minimal polynomial.

1 Introduction

Claude Shannon, in his paper “Communication Theory of Secrecy Sys-
tems” [21], defined confusion and diffusion as two properties, required
for the design of block ciphers. In [8–10], Heys and Tavares showed that
the replacement of the permutation layer of Substitution Permutation
Networks (SPNs) with a diffusive linear transformation improves the
avalanche characteristics of the block cipher which increases the cipher’s
resistance to differential and linear cryptanalysis. Thus the main appli-
cation of MDS matrix in cryptography is in designing block ciphers and



hash functions that provide security against differential and linear crypt-
analysis. MDS matrices offer diffusion properties and is one of the vital
constituents of modern age ciphers like Advanced Encryption Standard
(AES) [3], Twofish [19, 20], SHARK [16] and Square [2]. MDS matrices
are also used in the design of hash functions. Hash functions like Mael-
strom [4], Grφstl [5] and PHOTON family light weight hash functions [6]
use MDS matrices as main part of their diffusion layers.

Nearly all ciphers use predefined MDS matrices for incorporating dif-
fusion property. Although in some ciphers the possibility of random selec-
tion of MDS matrices with some constraint is provided [23]. In this context
we would like to mention that in papers [6,7,12,13,17,23], new construc-
tions of MDS matrices are provided. In [6], authors construct lightweight
MDS matrices from companion matrices by exhaustive search. In [7], au-
thors construct new involutory MDS matrices using properties of Cauchy
matrices over additive subgroup of F2n and have shown its equivalence
with Vandermonde matrices based construction under some constraints.
In [12], authors construct efficient 4× 4 and 8× 8 matrices to be used in
block ciphers. In [13, 17], authors constructed involutory MDS matrices
using Vandermonde matrices. In [23], authors construct new involutory
MDS matrices using properties of Cauchy matrices.

Authors of [6] defined Serial(z0, . . . , zd−1), which is the companion
matrix of z0 + z1x + z2x

2 + . . . + zd−1x
d−1 + xd. Their objective was to

find suitable candidates so that Serial(z0, . . . , zd−1)
d is an MDS matrix.

In [6], authors proposed an MDS matrix Serial(1, 2, 1, 4)4 over F28 for
AES MixColumn operation which has compact and improved hardware
footprint [6]. It is to be noted that in Serial(1, 2, 1, 4), z0 = z2 = 1,
z1 = 2 = α and z3 = 4 = α2, where α is the root of the irreducible
polynomial x8 + x4 + x3 + x + 1. The proper choice of z0, z1, z2 and z3
(preferably of low Hamming weight) improves the hardware implemen-
tation of AES MixColumn transformation. It may be noted that Mix-
Column operation in [6] is composed of d (d = 4 for AES) applica-
tions of the matrix Serial(z0, . . . , zd−1) to the input column vector. More
formally, let X = (x0, . . . , xd−1)

T be the input column vector of Mix-
Column and Y = (y0, . . . , yd−1)

T be the corresponding output. Then
we have Y = Ad × X = (A× (A× (A× . . .× (A︸ ︷︷ ︸

d times

×X)))) . . .), where

A = Serial(z0, . . . , zd−1). So the hardware circuitry will depend on com-
panion matrix A and not on the MDS matrix Ad. Note that authors of [6]
used MAGMA [1] to test all possible values of z0, z1, z2 and z3 and found
Serial(1, 2, 1, 4) to be the right candidate, which raised to the power 4
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gives an MDS matrix. Authors of [18, 22] proposed new diffusion layers
(d× d MDS matrices) based on companion matrices for smaller values of
d. In this paper we provide some sufficient conditions for such construc-
tions but our approach is different from [18,22]. We also propose new and
more generic constructions of d× d MDS matrices for d = 4 and 5.

For efficient implementation, we aim to restrict the values of zi’s in
the set {1, α, α2, α+ 1}, such that Serial(z0, . . . , zd−1)

d is MDS, where α
is the root of the constructing polynomial of F2n . It may be noted that
multiplication by 1, which is the unit element of F2n , is trivial. When
α is the root of the constructing polynomial of F2n , the multiplication
by α can be implemented by a shift by one bit to the left and a condi-
tional XOR with a constant when a carry bit is set (multiplication by α
is often denoted as xtime). Multiplication by α+ 1 is done by a multipli-
cation by α and one XOR operation. Multiplication by α2 is done by two
successive multiplication by α. We also explore some properties of MDS
matrices and based on that we provide an algorithm to check whether the
matrix is MDS. This algorithm is easy to implement. We implemented
the algorithm and ran it for upto 8× 8 matrices over F224 .

In general we also study the cases where we restrict the values of
zi’s in the set {1, β, β2, β + 1} for any non zero β ∈ F2n , such that
Serial(z0, . . . , zd−1)

d is MDS.

The paper is organized as follows: In Section 2 we provide defini-
tions and preliminaries. In Section 3, we discuss a few relevant prop-
erties of MDS matrices and provide an algorithm to check if a given
square matrix is MDS. In Section 4 and Subsections therein, we study
Serial(z0, z1, z2, z3)

4. In Appendix F we study few more MDS matrices
of the form Serial(z0, z1, z2, z3)

4. In Appendix G, we study MDS prop-
erties of Serial(z0, z1, z2, z3, z4)

5 and propose new constructions of 5× 5
MDS matrices. We conclude the paper in Section 5.

2 Definition and Preliminaries

Let F2 = {0, 1} be the finite field with two elements and F2n be the finite
field with 2n elements. We will often denote a matrix by ((ai,j)), where ai,j
is the (i, j)-th element of the matrix. The Hamming weight of an integer
i is the number of non zero coefficients in the binary representation of i
and is denoted by H(i). For example H(5) = 2, H(8) = 1.

A cyclotomic coset Cs modulo (2n − 1) is defined as [14, page 104]

Cs = {s, s · 2, · · · , s · 2ns−1}
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where ns is the smallest positive integer such that s ≡ s2ns(mod 2n− 1).
The subscript s is the smallest integer in Cs and is called the coset leader
of Cs. Note that ns is the size of the coset Cs which will also be denoted by
|Cs|. When ns = n, we call it a full length coset and when ns < n, we call
it a smaller coset. The set of all coset leaders modulo (2n − 1) is denoted
by Υ (n). The computations in cosets are performed in Z2n−1, the ring of
integers modulo (2n−1). For n = 4 the cyclotomic cosets modulo 24−1 =
15 are: C0 = {0}, C1 = {1, 2, 4, 8}, C3 = {3, 6, 12, 9}, C5 = {5, 10}, C7 =
{7, 14, 13, 11}. Note |C5| = 2, |C1| = 4 and Υ (4) = {0, 1, 3, 5, 7}.

Let β ∈ Fpn , p being a prime number. The minimal polynomial [14,
page 99] over Fp of β is the lowest degree monic polynomial, say M(x),
with coefficients from Fp such that M(β) = 0. It is easy to check that the
minimal polynomial is irreducible [14, page 99]. If f(x) is any polynomial
over Fp such that f(β) = 0, then M(x)|f(x) [14, page 99].

Using the notation of [6], we define Serial(z0, . . . , zd−1) as follows.

Serial(z0, . . . , zd−1) =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

...
...

0 0 0 0 . . . 1
z0 z1 . . . . . . . . . zd−1

 ,

where z0, z1, z2, . . . , zd−1 ∈ F2n for some n. Note that this matrix is a
companion matrix of the polynomial z0+z1x+z2x

2+ . . .+zd−1x
d−1+xd.

We note that,

Serial(z0, . . . , zd−1)−1 =


z1
z0

z2
z0
. . . . . . . . . 1

z0

1 0 0 0 . . . 0
0 1 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1 0

 . (1)

It is to be noted that like encryption, decryption can also be implemented
by repeated use (d times) of Serial(z0, . . . , zd−1)

−1, and also whenever
z0 = 1, the hardware footprint for decryption is as good as that of en-
cryption circuitry.

Definition 1. Let F be a finite field and p and q be two integers. Let
x → M × x be a mapping from Fp to Fq defined by the q × p matrix M .
We say that it is an MDS matrix if the set of all pairs (x,M × x) is an
MDS code, i.e. a linear code of dimension p, length p + q and minimal
distance q + 1.

An MDS matrix provides diffusion properties that have useful appli-
cations in cryptography. The idea comes from coding theory, in particular
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from maximum distance separable codes (MDS codes). In this context we
state two important theorems of Coding Theory.

Theorem 1. [14, page 33] If C is an [n, k, d] code, then n− k ≥ d− 1.

Codes with n− k = d− 1 are called maximum distance separable codes,
or MDS codes for short.

Theorem 2. [14, page 321] An [n, k, d] code C with generator matrix
G = [I|A], where A is a k × (n− k) matrix, is MDS if and only if every
square submatrix (formed from any i rows and any i columns, for any
i = 1, 2, . . . ,min{k, n− k}) of A is nonsingular.

The following fact is another way to characterize an MDS matrix.

Fact: 1 A square matrix A is an MDS matrix if and only if every square
submatrices of A are nonsingular.

Fact: 2 All entries of an MDS matrix are non zero.

3 Few Properties Of MDS Matrices

In this Section we develop some tools for studying Serial(z0, z1, . . . , zd−1)
d,

zi ∈ F2n for d = 4, 5. We also use these tools to provide an algorithm (Al-
gorithm 1) at the end of this Section to check whether a matrix is MDS.
It may be noted that from the entries of the inverse of a d×d nonsingular
matrix, it can be checked whether all its (d− 1)× (d− 1) submatrics are
nonsingular or not. In this direction we state the following Lemma which
will be used in Algorithm 1.

Lemma 1. All entries of inverse of MDS matrix are non zero.

Proof. Let M = ((mi,j)) be a d × d MDS matrix. We know that M−1 =
Adj(M)/det(M), where Adj(M) = ((Mi,j)) and Mi,j is co-factor of mj,i

in M which is the determinant of (d− 1)× (d− 1) submatrix obtained by
omitting j’th row and i’th column of M. Since M is an MDS matrix, all
its (d− 1)× (d− 1) submatrices are nonsingular. Thus all Mi,j values are
non zero. �

Corollary 1. Any 2× 2 matrix over F2n is MDS matrix if and only if it
is a full rank matrix and all entries of its inverse is non zero.

Proof. Proof is given in the Appendix A.
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Fact: 3 It may be noted that if all the entries of the inverse of a d × d
nonsingular matrix are non zero, then all its (d− 1)× (d− 1) submatrics
are nonsingular.

Corollary 2. Any 3× 3 matrix over F2n with all non zero entries is an
MDS matrix if and only if it is a full rank matrix and all entries of its
inverse are non zero.

Proof. Proof is given in the Appendix B.

In the next Proposition we study the necessary and sufficient condition
for any 4 × 4 matrix to be MDS. This Proposition will be referred to at
many places throughout the paper.

Proposition 1. Any 4 × 4 matrix over F2n with all entries non zero is
an MDS matrix if and only if it is a full rank matrix with the inverse
matrix having all entries non zero and all of its 2×2 submatrices are full
rank.

Proof. Let M = ((mi,j)) be a 4×4 matrix satisfying the conditions of this
proposition. Since its inverse matrix has all non zero entries, therefore by
Fact 3, all (4−1)×(4−1) i.e. 3×3 submatrices of M are full rank matrices.
Also inverse matrices of all 2× 2 submatrices are full rank. Therefore all
square submatrices of ((mi,j)) are full rank. Thus the matrix is MDS. The
other direction of the proof is immediate. �

We close this Section by providing an algorithm to check if a d × d
matrix is MDS. The algorithm directly follows from Lemma 1, Fact 1,
Fact 2 and Fact 3. We implemented the algorithm and ran it for up to
8× 8 matrices over F224 .

One approach of checking if a d × d matrix M is an MDS is to use
[I|M ] as a generator matrix and check if the code produced is MDS code.
Note, if the underlying field is F2n , the number of code words will be 2nd

and finding the minimum weight non zero code word is NP-complete.

For testing if a matrix is MDS, a naive approach may be to check for
non singularity of all its square submatrices. The number of computations

in this case will be n2
∑d

i=1

(
d
i

)2
i3. It is easy to check that the number

of computations of our algorithm is n2
∑d/2

i=1

(
d
2i

)2
(2i)3 for d even and

n2
∑d/2

i=1

(
d

2i+1

)2
(2i+ 1)3 for d odd.

For example, when n = 8 and d = 4, number of computations by the
naive method is 26 × 800. In the same context, our algorithm takes only
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Algorithm 1 Checking if a d × d matrix ((ai,j))over F2n is an MDS
matrix
Input n > 1, irreducible polynomial π(x) of degree n, the d × d matrix ((ai,j))over

F2n .
Output Outputs a boolean variable b mds which is true if ((ai,j)) is an MDS matrix,

else is false.
1: b mds = true.
2: Compute inverse of ((ai,j)) in ((bi,j)); If inverse does not exist, set b mds = false

and goto 13;
3: check if all d2 entries of ((ai,j)) and ((bi,j)) are non zero. If not, set b mds = false;
4: if (d = 3) : Go to 13;
5: t← d− 2;
6: while (t > 1 & b mds = true) do

7: List all
(
d
t

)2
submatrices of dimension t× t in a list list submatrices;

8: for (e = 0 ; e <
(
d
t

)2
; e = e+ 1) do

9: Find inverse of list submatrices[e] in ((inv Matrixi,j));
10: if (((inv Matrixi,j)) does not exist or any entry of ((inv Matrixi,j)) is zero)

: b mds = false;
11: if (b mds = false) : break the loop and go to 13;
12: t← t− 2;
13: Set b mds as output;

26×352 computations. So the ratio of number of computations required by
the naive method with number of computations required by our method
is approximately 2. Note that this ratio is independent of n. When n = 20
and d = 8, number of computations by the naive method is 202 × 988416
and that by our method is 202 × 489728 and the ratio is approximately
2.

4 MDS Properties of Serial(z0, z1, z2, z3)
4

In this Section we consider low Hamming weight candidates z0, z1, z2, z3 ∈
F2n for arbitrary n, such that Serial(z0, z1, z2, z3)

4 is MDS. Low Hamming
weight coefficients are desirable for better hardware implementation. So
we restrict the values of zi’s to 1, α, α2, 1+α and also try to maximize the
occurrence of 1’, where α is the root of constructing polynomial of F2n .
Now we provide cases (from Lemma 2 to Lemma 7) for which matrices
of the form Serial(z0, z1, z2, z3)

4 are non MDS except for one special
case of Lemma 6 (see Remark 4). In Subsection 4.1, Subsection 4.2 and
Appendix F, we will construct lightweight 4 × 4 MDS matrices and in
Appendix G we will construct lightweight 5 × 5 MDS matrices of the
form Serial(z0, z1, z2, z3, z4)

5.
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Lemma 2. Serial(z0, z1, z2, z3)
4 is never an MDS matrix when any three

or all of z0, z1, z2 and z3 are 1.

Proof. Proof is given in Appendix C.

Remark 1. If 1 is allowed in any three or more places of z0, z1, z2, and z3,
then the matrix Serial(z0, z1, z2, z3)

4 is not MDS (from Lemma 2). We
next study the possibility of having MDS matrices which are of the form
Serial(z1, z2, z3, z4)

4 when any two out of z0, z1, z2, and z3 are 1 and re-
strict the other two values to be from the set {α, α2, α+1} for efficient im-
plementation. Note that there are 6 such cases. It is easy to check that out
of these 6 cases, Serial(z0, z1, 1, 1)4 and Serial(z0, 1, z2, 1)4 will never be
MDS. So we concentrate on remaining four cases, i.e. Serial(1, 1, z2, z3)

4,
Serial(1, z1, z2, 1)4, Serial(1, z1, 1, z3)

4 and Serial(z0, 1, 1, z3)
4.

Lemma 3. Let S = Serial(1, 1, z2, z3) and z2, z3 ∈ {α, α2} or z2, z3 ∈
{α, α+1}, which are defined over F2n, where α is the root of constructing
polynomial of F2n. Then S4 is non MDS matrix.

Lemma 4. Let S = Serial(1, z1, z2, 1) and and z1, z2 ∈ {α, α2} or z1, z2 ∈
{α, α+1}, which are defined over F2n, where α is the root of constructing
polynomial of F2n. Then S4 is non MDS matrix.

Remark 2. Note that Serial(1, 1, z2, z3)
4 and Serial(1, z1, z2, 1)4 over F2n

become MDS if elements other than 1 are distinct and are from the set
{α+ 1, α2}, for higher values of n (See in Appendix F).

Lemma 5. Let A = Serial(1, α, 1, α2) and A′ = Serial(1, α2, 1, α) which
are defined over F2n, where 1 ≤ n ≤ 4 and α is the root of constructing
polynomial of F2n. Then A4 and A′4 are non MDS matrix.

Proof.

A4 =


1 α 1 α2

α2 α3 + 1 α2 + α α4 + 1
α4 + 1 α5 + α2 + α α4 + α3 α6 + α
α6 + α α7 + α4 + α2 + 1 α6 + α5 + α2 α8 + α4

 (2)

and

A−4 =


α4 + α2 α4 + α3 + α α5 + α4 + α2 + 1 α3 + α2

α3 + α2 α3 + α2 α4 + α2 + α α2 + 1
α2 + 1 α2 + α α3 + 1 α
α 1 α2 1

 (3)

Note that three irreducible polynomials of degree 4 are x4 + x+ 1, x4 +
x3 + 1 and x4 + x3 + x2 + x + 1. It is easy to observe that A4[2][1] =
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α5 + α2 + α = α(α4 + α+ 1), A4[3][2] = α6 + α5 + α2 = α2(α4 + α3 + 1)
and A4[3][0] = α6 + α = α(α5 + 1) = α(α + 1)(α4 + α3 + α2 + α + 1).
So, when the minimal polynomial of α is x4 + x + 1 or x4 + x3 + 1 or
x4 + x3 + x2 + x+ 1, A4[2][1] or A4[3][2] or A4[3][0] will be 0 respectively.
Thus A4 is a non MDS matrix for n = 4.

Similarly, A−4[0][1] = α4 + α3 + α = α(α3 + α2 + 1) and A−4[1][2] =
α4 + α2 + α = α(α3 + α + 1). So, when the minimal polynomial of α is
x3 + x2 + 1 or x3 + x + 1, A−4[0][1] or A4[1][2] will be zero respectively.
Thus A4 is a non MDS matrix for n = 3.

Again A4[1][1] = α3 + 1 = α(α2 + α + 1) which is zero when the
minimal polynomial of α is x2 + x+ 1. Thus A4 is a non MDS matrix for
n = 2.

Lastly, when n = 1, α is 1, making A = Serial(1, 1, 1, 1) and from
Lemma 2, A4 will be a non MDS matrix.

Similarly it can be proved that A′4 is non MDS matrix. �

Remark 3. Serial(1, α, 1, α + 1)4, defined over F2n , is non MDS for 1 ≤
n ≤ 3. The proof is similar to Lemma 5. In Proposition 4 of Section 4,
we will show that Serial(1, α, 1, α+ 1)4 is MDS for all n ≥ 4.

Lemma 6. Let B = Serial(α, 1, 1, α2) and B′ = Serial(α2, 1, 1, α) which
are defined over F2n, where 1 ≤ n ≤ 4 and α is the root of the construct-
ing polynomial of F2n. Then B4 is non MDS for all n such that 1 ≤ n ≤ 4
except when n = 4 and α is a root of x4 + x + 1. Also B′4 is non MDS
for all n such that 1 ≤ n ≤ 4.

Proof. Proof is given in Appendix D.

Remark 4. Note for n = 4, if the Galois field F24 is constructed by x4 +
x+ 1 then we can construct an MDS matrix Serial(α, 1, 1, α2)4 where α
is the root of x4 + x+ 1.

Lemma 7. Let A = Serial(α, 1, 1, α+ 1) and A′ = Serial(α+ 1, 1, 1, α)
which are defined over F2n, where α is the root of the constructing poly-
nomial of F2n. Then A4 and A′4 are non MDS matrices.

Proof. The proof technique is similar to that used in the proof of Lemma
5. �

So far we have mainly considered the cases for which the constructed
matrices are non MDS. Now we consider the cases for which the matrices
are MDS.
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4.1 Lightweight MDS matrix of the form Serial(1, z1, 1, z3)4

In this Subsection, we study the MDS property of the matrices of the form
Serial(1, z1, 1, z3)

4. We concentrate on z1, z3 ∈ {α, α2, α + 1} for better
hardware implementation, where α is the root of constructing polynomial
of F2n for different n. Here z0 = 1. Serial(1, z1, 1, z3)

−1 is as defined in
equation 1 with d = 4. So the hardware footprint for decryption is as
good as that of encryption circuit in Substitution Permutation Networks
(SPNs). In this Subsection we will construct MDS matrices for better
hardware footprint by letting z1, z3 ∈ {α, α2} or z1, z3 ∈ {α, α + 1} and
ignore the case when z0, z3 ∈ {α2, α+ 1}.

Proposition 2. Let A = Serial(1, α, 1, α2) be a 4 × 4 matrix over the
finite field F2n and α is the root of the constructing polynomial of F2n.
Then, A4 is MDS for all n ≥ 5 except when n = 6 and α is the root of
x6 + x5 + x4 + x+ 1 = 0.

Proof. Proof is given in Appendix E.

Remark 5. It is easy to check that when n = 8 and α is the root of
irreducible polynomial x8 + x4 + x3 + x + 1, we get the MDS matrix
Serial(1, α, 1, α2)4, which is proposed in [6].

Now we study Serial(1, β, 1, β2)4 for any non zero β ∈ F2n in Propo-
sition 3. So far, we restricted β to be the root of the constructing poly-
nomial of F2n . It is easy to note that β = γi for some integer i, where γ
is any primitive element in F2n . These propositions resembles the earlier
propositions of this Subsection and proof techniques are also similar.

Proposition 3. Let A = Serial(1, β, 1, β2) be a 4 × 4 matrix over the
finite field F2n. Also let γ be any primitive element of F2n and β = γi

such that i ∈ Cs. Then if |Cs| ≥ 5 then A4 is always an MDS matrix except
when |Cs| = 6 and the minimal polynomial of β is x6 + x5 + x4 + x+ 1.

Remark 6. Note, Proposition 2 is a particular case of Proposition 3 by
taking β = α, where α is the root of the constructing polynomial of
F2n . In canonical representation of F2n , MDS matrix construction from
Proposition 2 is more efficient.

Now we study Serial(1, β, 1, β + 1)4 for any non zero β ∈ F2n .

Proposition 4. Let A = Serial(1, β, 1, β+ 1) be a 4× 4 matrix over the
finite field F2n. Also let γ be any primitive element of F2n and β = γi

such that i ∈ Cs. Then if |Cs| ≥ 4 then A4 is always an MDS matrix.
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Remark 7. Similar to Remark 6, if we take β = α in Proposition 4, where
α is the root of the constructing polynomial of F2n , we get another efficient
MDS matrix Serial(1, α, 1, α+ 1)4 in canonical representation of F2n .

We observe that if Serial(1, β, 1, β2)4 is an MDS matrix, then the
matrices Serial(1, β, 1, β2)−4 and Serial(1, β2, 1, β)4 are also MDS. We
record this in Lemma 8 and Lemma 9

Lemma 8. If Serial(1, β, 1, β2)4 is an MDS matrix for some β ∈ F2n,
then so is the matrix Serial(1, β, 1, β2)−4.

Lemma 9. If Serial(1, β, 1, β2)4 is an MDS matrix for some β ∈ F2n,
then so is the matrix Serial(1, β2, 1, β)4.

4.2 Lightweight MDS matrix of the form Serial(z0, 1, 1, z3)4

In the Subsection 4.1, we study the MDS property of the matrices of the
form given by Serial(1, z1, 1, z3)

4 for zi’s in {α, α2, α+ 1}, where α is the
root of constructing polynomial of F2n for arbitrary n. In this Subsection
we study matrices of the form Serial(z0, 1, 1, z3)

4 over F2n for arbitrary n,
where z0, z3 ∈ {α, α2}. Note that if z0, z3 ∈ {α, α+ 1}, then the matrices
will be non MDS (see Lemma 7). Also for better hardware footprint we
omit the case when z0, z3 ∈ {α2, α+ 1}. We observe that no MDS matrix
exits of the form Serial(α, 1, 1, α2)4 over F2n , where 1 ≤ n ≤ 3. In the
next Proposition we consider matrices of the form Serial(β, 1, 1, β2)4 for
any non zero β ∈ F2n .

Proposition 5. Let B = Serial(β, 1, 1, β2) be defined over F2n. Also let
γ be the primitive element of F2n and β = γi such that i ∈ Cs. Then if
|Cs| ≥ 4 then B4 is always an MDS matrix except when |Cs| = 4 and the
minimal polynomial of β is x4 + x3 + x2 + x+ 1 or x4 + x3 + 1 and also
when |Cs| = 7 and the minimal polynomial of β is x7 + x6 + x5 + x4 + 1.

Remark 8. Similar to Remark 6, if we take β = α in Proposition 5, where
α is the root of the constructing polynomial of F2n , we get another efficient
MDS matrix Serial(α, 1, 1, α2)4 in canonical representation of F2n .

Remark 9. Note if Serial(β, 1, 1, β2)4 is an MDS matrix, then not neces-
sarily Serial(β, 1, 1, β2)−4 and Serial(β2, 1, 1, β)4 are MDS (See Lemma
8 and Lemma 9).
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In this Section we found values of z ∈ F2n which are of low hamming
weight, such that Serial(1, z, 1, z2)4 and Serial(1, z2, 1, z)4 are MDS ma-
trices for all n ≥ 5 and Serial(z, 1, 1, z2)4 is MDS matrix for all n ≥ 4. It
may be checked that for n = 3 no Serial(z0, z1, z2, z3)

4 is an MDS having
two of its entries as one; though for n = 3, many such MDS matrices of
the form Serial(z0, z1, z2, z3)

4 exist where exactly one of its entries is one.
Take for example Serial(1, α, α5, α)4, where α is the root of x3 + x2 + 1.
For n = 2 and 1, no MDS matrix of the form Serial(z0, z1, z2, z3)

4 exists.

5 Conclusion

In this paper, we developed techniques to test if a given d × d matrix
over F2n is an MDS matrix. We propose a simple algorithm (Algorithm
1) based on some basic properties of MDS matrix. We run the algorithm
for up to n = 24 and d = 8. It might be of interest to explore how further
properties related to MDS matrix can be used to develop more efficient
algorithm for checking whether a given matrix is MDS.

We developed theories to justify why matrices of the form given by
Serial(z0, z1, z2, z3)

4 and Serial(z0, z1, z2, z3, z4)
5 over F2n are MDS for

different values n for low Hamming weight choices of values of zi’s, prefer-
ably within the set {1, α, α2, α + 1}. This leads to new constructions of
4 × 4 MDS matrices over F2n for all n ≥ 4 and and 5 × 5 MDS ma-
trices over F2n for all n ≥ 8. We tried to generalize such results for
Serial(z0, . . . , zd−1) so that Serial(z0, . . . , zd−1)

d is d × d MDS matrix
for d > 5. In doing so, we tried to explore the properties of a companion
matrix and its corresponding characteristic polynomial. We use the prop-
erty that eigen values of a matrix A (in our case A = Serial(z0, . . . , zd−1))
are precisely the roots of the characteristic polynomial (in our case it is
z0 + z1x+ z2x

2 + . . .+ zd−1x
d−1 + xd); Together with the property that

if λ is an eigen value of A, then f(λ) is the eigen value of f(A) (in our
case f(x) = xd) [15]. But with this simple technique, finding sufficient
conditions seem difficult for arbitrary d. It may be interesting to carry
out more research to construct d × d MDS matrix Serial(z0, . . . , zd−1)

k

for arbitrary d and k ≥ d.
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A Proof of Corollary 1

Proof. Let ((ai,j)) be a 2 × 2 full rank matrix and let all entries of its

inverse be non zero. Let its inverse matrix be
((bi,j))
det(A) . It is easy to check

that b0,0 = a1,1, b1,1 = a0,0, b0,1 = −a0,1 and b1,0 = −a1,0. Since all entries
of ((bi,j)) are non zero, all entries of ((ai,j)) are also non zero. So ((ai,j))
is MDS. The other direction of the proof is immediate. �

B Proof of Corollary 2

Proof. Let M = ((mi,j)) be a 3 × 3 full rank matrix with all non zero
entries, such that its inverse matrix also has got all non zero entries. So,
all 2×2 submatrices of M are nonsingular. Note that all 1×1 submatrices,
which are nothing but the elements mi,j ’s, are also non zero. Thus the
matrix is MDS matrix. The other direction of the proof is immediate. �

C Proof of Lemma 2

Proof. It is easy to check that,

Serial(1, 1, 1, 1)4 =


1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Since some entries of Serial(1, 1, 1, 1)4 are zero, so from Fact 2, clearly
Serial(1, 1, 1, 1)4 is not an MDS matrix. Similarly it can be shown that
when any three of z0, z1, z2 and z3 are 1, some entries of the matrix
Serial(z0, z1, z2, z3)

4 are zero. Hence the result. �

D Proof of Lemma 6
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Proof.

B4 =


α 1 1 α2

α3 α2 + α α2 + 1 α4 + 1
α5 + α α4 + α3 + 1 α4 + α2 + α+ 1 α6 + 1
α7 + α α6 + α5 + α+ 1 α6 + α4 + α3 α8 + α4 + α+ 1

 (4)

also

B−4 =
1

α4


α3 + α2 + α+ 1 α3 + α2 + 1 α6 + α α4 + 1
α5 + α α4 + α3 + α2 + α α4 + α3 + α2 α2 + α
α3 + α2 α5 + α2 α4 + α3 α2

α3 α3 α5 α3


(5)

The list of determinants of all 36, 2× 2 submatrices of B4 are

α2, α, α, α+1, α3+1, α2+1, α4, α3+α2, α3+α, α3+α2+α, α5+
α2 + 1, α4 + α3 + α2 + 1, α6 + α2, α5 + α4 + α, α5 + α3 + α2 + α, α5 +
α4 +α3 +α+1, α7 +α4 +α3 +α2 +α+1, α6 +α5 +α4 +α+1, α2, α4 +
α, α3 +α, α3 +α2 +α+ 1, α3 +α2 +α+ 1, α5 +α, α4 +α2, α6 +α3 +
α, α5 + α4 + α3 + α, α5 + α4 + α3 + α2 + α+ 1, α5 + α4 + α3 + 1, α7 +
α2 + α+ 1, α4 + α2, α4 + α3 + α2 + α, α6 + α2, 1, α4 + α3, α4 + 1.

There are three irreducible polynomials with coefficients from F2 and
degree 4, namely x4 +x+1, x4 +x3 +1 and x4 +x3 +x2 +x+1. It is easy
to observe that B4[2][1] = α4 + α3 + 1 and B4[3][1] = α6 + α5 + α+ 1 =
(α+1)2(α4+α3+α2+α+1). Thus, when the minimal polynomial of α is
x4+x3+1 or x4+x3+x2+x+1, B4[2][1] or B4[3][1] will be 0 respectively.
Also note that no polynomial in the above list or in the entries of B4 or
its inverse is a multiple of α4 + α+ 1. Thus B4 is a non MDS matrix for
n = 4 except when the minimal polynomial of α is x4 + x+ 1,

It is easy to observe that B4[3][2] = α6 + α4 + α3 = α3(α3 + α + 1)
and B4[2][2] = α4 + α2 + α + 1 = (α + 1)(α3 + α2 + 1). So, when the
minimal polynomial of α is x3 + x+ 1 or x3 + x2 + 1, B4[3][2] or B4[2][2]
will be zero respectively. Thus B4 is a non MDS matrix for n = 3.

Again B4[2][3] = α6 + 1 = (α + 1)2(α2 + α + 1)2 which is zero when
the minimal polynomial of α is x2 +x+ 1. Thus B4 is a non MDS matrix
for n = 2.

Lastly, when n = 1, α is 1, making B = Serial(1, 1, 1, 1) and from
Lemma 2, B4 will be non MDS matrix.

Similarly it can be proved that B′4 is non MDS matrix. �

E Proof of Proposition 2
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Proof. The minimal polynomial of α must be of degree n ≥ 5. From
equation 2 and equation 3, we get A4 and A−4. It is easy to check that
A4[2][1] = α5 + α2 + α = α(α4 + α + 1) 6= 0, A4[2][3] = A4[3][0] =
α6 + α = α(α+ 1)(α4 + α3 + α2 + α+ 1) 6= 0, A4[3][2] = α6 + α5 + α2 =
α2(α4 + α3 + 1) 6= 0, A4[3][3] = α8 + α4 = α4(α + 1)4 6= 0, A−4[0][2] =
α5 + α4 + α2 + 1 = (α+ 1)(α4 + α+ 1) 6= 0.

Out of all polynomials in α that are occurring in the entries of A4 and
its inverse, the above polynomials are of degree more than 5 and rest of
the entries are of degree less than 5 except A4[3][2] = α7 +α4 +α2 + 1 =
(α+ 1)(α6 + α5 + α4 + α+ 1). So A4[3][2] = 0 if n = 6 and α is the root
of x6 + x5 + x4 + x+ 1 = 0. Thus all entries of A4 and its inverse are non
zero for n ≥ 5 except when n = 6 and α is root of x6+x5+x4+x+1 = 0.

It is easy to check that the number of 2 × 2 submatrices of A4 is 36.
Determinants of all these 2× 2 submatrices of A4 are

1, α, 1, α2+1, α2+α, α3+1, α2, α3+1, α2+α, α4+α2+α, α4+
α3+α2, α5+α, α4+1, α5+α2+α, α4+α3, α6+α4+α3+α2+1, α6+
α5 + α4 + α2, α7, 1, α2 + α, α3 + 1, α3 + α2, α4 + α2, α4 + α2, α2 +
α, α4+α3+α2, α5+α, α5+α4+α3+α, α6+α4+α2+1, α6+α2, α3+
1, α4 + α2, α4 + α2, α5, α3 + α, α6 + α3.

It is evident that these polynomials in this list which are of degree
less than 5 are non zero. Rest of the polynomials in the list having degree
≥ 5 are
α5 + α, α5 + α2 + α, α6 + α4 + α3 + α2 + 1, α6 + α5 + α4 + α2, α7, α5 +
α, α5 + α4 + α3 + α, α6 + α4 + α2 + 1, α6 + α2, α5, α6 + α3.
It is easy to check that these values are all non zero as all can be factored
into polynomials of degree less than 5. Thus from Proposition 1, A4 is an
MDS matrix. �

F Few More Lightweight 4× 4 MDS matrices

Here we provide few more 4 × 4 MDS matrices which are of the form
Serial(1, 1, z2, z3)

4 and Serial(1, z1, z2, 1)4.

– Serial(1, 1, α+ 1, α2)4 is MDS for all n ≥ 5 except for the case when
n = 5 and the minimal polynomial of α is x5 + x3 + 1 or x5 + x4 +
x3 + x+ 1.

– Serial(1, 1, α2, α+ 1)4 is MDS for all n ≥ 4 except for the case when
n = 5 and the minimal polynomial of α is x5 +x2 +1 or x5 +x4 +x3 +
x+ 1 or when n = 4 and the minimal polynomial of α is x4 + x3 + 1
or x4 + x+ 1.
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– Serial(1, α2, α+ 1, 1)4 is MDS for all n ≥ 5 except for the case when
n = 5 and the minimal polynomial of α is x5 + x3 + 1 or x5 + x4 +
x3 + x+ 1.

– Serial(1, α+ 1, α2, 1)4 is MDS for all n ≥ 4 except for the case when
n = 5 and the minimal polynomial of α is x5 +x2 +1 or x5 +x4 +x3 +
x+ 1 or when n = 4 and the minimal polynomial of α is x4 + x3 + 1
or x4 + x+ 1.

G Lightweight 5×5 MDS matrix of the form Serial(1, z1, 1, 1, z4)
5

In this Subsection we study Serial(z0, z1, z2, z3, z4)
5, where the elements

z0, z1, z2, z3, z4 ∈ F2n . As mentioned in Remark 1, we restrict values of
zi’s to 1, α, α2, α + 1 and try to maximize the occurrence of 1’s in the
matrix Serial(z0, z1, z2, z3, z4) for better hardware implementation. If 1
is allowed in all four or more places of z0, z1, z2, z3 and z4, the matrix
Serial(z0, z1, z2, z3, z4)

5 is not MDS (similar to Lemma 2). We next study
the possibility of having MDS matrices of the form Serial(z0, z1, z2, z3, z4)

5

when any three out of z0, z1, z2, z3 and z4 are 1. Note that there are 10
such cases. We have the following propositions similar to Proposition 2.

Proposition 6. Let A = Serial(1, α, 1, 1, α2) which is defined over F2n,
where α is the root of the constructing polynomial of F2n. Then A5 is
MDS for all n ≥ 7 except when n = 8 and α is the root of x8 + x7 + x6 +
x4 + x3 + x2 + 1 = 0 or n = 7 and α is the root of x7 + x3 + x2 + x+ 1 or
x7+x6+x5+x2+1 or x7+x6+x5+x4+1 or x7+x6+x5+x4+x3+x2+1.

Remark 10. Serial(1, α, 1, 1, α2)5 of Proposition 6 is MDS when n = 6
and minimal polynomial of α is x6 + x5 + 1 or x6 + x4 + x3 + x+ 1

Proposition 7. Let A′ = Serial(1, α2, 1, 1, α) which is defined over F2n,
where α is the root of the constructing polynomial of F2n. Then A′5 is
MDS for all n ≥ 8 except when n = 8 and α is the root of x8 + x7 + x6 +
x4 + x3 + x2 + 1 = 0.

Remark 11. We observe that Serial(z0, z1, z2, z3, z4)
5 does not give MDS

matrices when any three of z0, z1, z2, z3 and z4 are set as 1 and rest two
are restricted in {α, α2, α+ 1} except the cases mentioned in Proposition
6 and Proposition 7.
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