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Abstract. Since its introduction by Goguen and Burstall in 1984, the
theory of institutions has been one of the most widely accepted formal-
izations of abstract model theory. This work was extended by a number
of researchers, José Meseguer among them, who presented General Log-
ics, an abstract framework that complements the model theoretical view
of institutions by defining the categorical structures that provide a proof
theory for any given logic. In this paper we intend to complete this pic-
ture by providing the notion of Satisfiability Calculus, which might be
thought of as the semantical counterpart of the notion of proof calculus,
that provides the formal foundations for those proof systems that use
model construction techniques to prove or disprove a given formula, thus
“implementing” the satisfiability relation of an institution.

1 Introduction

The theory of institutions, presented by Goguen and Burstall in [1], provides
a formal and generic definition of what a logical system is, from a model the-
oretical point of view. This work evolved in many directions: in [2], Meseguer
complemented the theory of institutions by providing a categorical characteri-
zation for the notions of entailment system (also called π-institutions by other
authors in [3]) and the corresponding notion of proof calculi; in [4, 5] Goguen and
Burstall, and Tarlecki, respectively, extensively investigated the ways in which
institutions can be related; in [6], Sannella and Tarlecki studied how specifica-
tions in an arbitrary logical system can be structured; in [7], Tarlecki presented
an abstract theory of software specification and development; in [8, 9] and [10,
11], Mossakowski and Tarlecki, and Diaconescu, respectively, proposed the use
of institutions as a foundation for heterogeneous environments for software spec-
ification. Institutions have also been used as a very general version of abstract



model theory [12], offering a suitable formal framework for addressing hetero-
geneity in specifications [13, 14], including applications to UML [15] and other
languages related to computer science and software engineering.

Extensions of institutions to capture proof theoretical concepts have been
extensively studied, most notably by Meseguer [2]. Essentially, Meseguer pro-
poses the extension of entailment systems with a categorical concept expressive
enough to capture the notion of proof in an abstract way. In Meseguer’s words:

A reasonable objection to the above definition of logic5 is that it abstracts
away the structure of proofs, since we know only that a set Γ of sentences
entails another sentence ϕ, but no information is given about the internal
structure of such a Γ ` ϕ entailment. This observation, while entirely
correct, may be a virtue rather than a defect, because the entailment
relation is precisely what remains invariant under many equivalent proof
calculi that can be used for a logic.

Before Meseguer’s work, there was an imbalance in the definition of a logic
in the context of institution theory, since the deductive aspects of a logic were
not taken into account. Meseguer concentrates on the proof theoretical aspects
of a logic, providing not only the definition of entailment system, but also com-
plementing it with the notion of proof calculus, obtaining what he calls a logical
system. As introduced by Meseguer, the notion of proof calculus provides, intu-
itively, an implementation of the entailment relation of a logic. Indeed, Meseguer
corrected the inherent imbalance in favour of models in institutions, enhancing
syntactic aspects in the definition of logical systems.

However, the same lack of an operational view observed in the definition of
entailment systems still appears with respect to the notion of satisfiability, i.e.,
the satisfaction relation of an institution. In the same way that an entailment
system may be “implemented” in terms of different proof calculi, a satisfaction
relation may be “implemented” in terms of different satisfiability procedures.
Making these satisfiability procedures explicit in the characterization of logical
systems is highly relevant, since many successful software analysis tools are based
on particular characteristics of these satisfiability procedures. For instance, many
automated analysis tools rely on model construction, either for proving proper-
ties, as with model-checkers, or for finding counterexamples, as with tableaux
techniques or SAT-solving based tools. These techniques constitute an impor-
tant stream of research in logic, in particular in relation to (semi-)automated
software validation and verification.

These kinds of logical systems can be traced back to the works of Beth [16,
17], Herbrand [18] and Gentzen [19]. Beth’s ideas were used by Smullyan to for-
mulate the tableaux method for first-order predicate logic [20]. Herbrand’s and
Gentzen’s works inspired the formulation of resolution systems presented by
Robinson [21]. Methods like those based on resolution and tableaux are strongly

5 Authors’ note: Meseguer refers to a logic as a structure that is composed of an
entailment system together with an institution, see Def. 6.



related to the semantics of a logic; one can often use them to guide the construc-
tion of models. This is not possible in pure deductive methods, such as natural
deduction or Hilbert systems, as formalized by Meseguer. In this paper, our goal
is to provide an abstract characterization of this class of semantics based tools
for logical systems. This is accomplished by introducing a categorical characteri-
zation of the notion of satisfiability calculus which embraces logical tools such as
tableaux, resolution, Gentzen style sequents, etc. As we mentioned above, this
can be thought of as a formalization of a semantic counterpart of Meseguer’s
proof calculus. We also explore the concept of mappings between satisfiability
calculi and the relation between proof calculi and satisfiability calculi.

The paper is organized as follows. In Section 2 we present the definitions and
results we will use throughout this paper. In Section 3 we present a categorical
formalization of satisfiability calculus, and prove relevant results underpinning
the definitions. We also present examples to illustrate the main ideas. Finally in
Section 4 we draw some conclusions and describe further lines of research.

2 Preliminaries

From now on, we assume the reader has a nodding acquaintance with basic
concepts from category theory [22, 23]. Below we present the basic definitions
and results we use throughout the rest of the paper. In the following, we follow
the notation introduced in [2].

An Institution is an abstract formalization of the model theory of a logic
by making use of the relationships existing between signatures, sentences and
models. These aspects are reflected by introducing the category of signatures,
and by defining functors going from this category to the categories Set and Cat,
to capture sets of sentences and categories of models, respectively, for a given
signature. The original definition of institutions is the following:

Definition 1. ([1]) An institution is a structure of the form 〈Sign,Sen, Mod, {|=Σ

}Σ∈|Sign|〉 satisfying the following conditions:

– Sign is a category of signatures,
– Sen : Sign → Set is a functor. Let Σ ∈ |Sign|, then Sen(Σ) returns the set

of Σ-sentences,
– Mod : Signop → Cat is a functor. Let Σ ∈ |Sign|, then Mod(Σ) returns the

category of Σ-models,
– {|=Σ}Σ∈|Sign|, where |=Σ⊆ |Mod(Σ)| × Sen(Σ), is a family of binary rela-

tions,

and for any signature morphism σ : Σ → Σ′, Σ-sentence φ ∈ Sen(Σ) and
Σ′-model M′ ∈ |Mod(Σ)|, the following |=-invariance condition holds:

M′ |=Σ′
Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

Roughly speaking, the last condition above says that the notion of truth is in-
variant with respect to notation change. Given Σ ∈ |Sign| and Γ ⊆ Sen(Σ),



Mod(Σ,Γ ) denotes the full subcategory of Mod(Σ) determined by those mod-
elsM∈ |Mod(Σ)| such thatM |=Σ γ, for all γ ∈ Γ . The relation |=Σ between
sets of formulae and formulae is defined in the following way: given Σ ∈ |Sign|,
Γ ⊆ Sen(Σ) and α ∈ Sen(Σ), Γ |=Σ α if and only if M |=Σ α, for all
M∈ |Mod(Σ,Γ )|.

An entailment system is defined in a similar way, by identifying a family
of syntactic consequence relations, instead of a family of semantic consequence
relations. Each of the elements in this family is associated with a signature.
These relations are required to satisfy reflexivity, monotonicity and transitivity.
In addition, a notion of translation between signatures is considered.

Definition 2. ([2]) An entailment system is a structure of the form 〈Sign,Sen, {`Σ
}Σ∈|Sign|〉 satisfying the following conditions:

– Sign is a category of signatures,
– Sen : Sign → Set is a functor. Let Σ ∈ |Sign|; then Sen(Σ) returns the set

of Σ-sentences, and
– {`Σ}Σ∈|Sign|, where `Σ⊆ 2Sen(Σ) × Sen(Σ), is a family of binary relations

such that for any Σ,Σ′ ∈ |Sign|, {φ} ∪ {φi}i∈I ⊆ Sen(Σ), Γ, Γ ′ ⊆ Sen(Σ),
the following conditions are satisfied:
1. reflexivity: {φ} `Σ φ,
2. monotonicity: if Γ `Σ φ and Γ ⊆ Γ ′, then Γ ′ `Σ φ,
3. transitivity: if Γ `Σ φi for all i ∈ I and {φi}i∈I `Σ φ, then Γ `Σ φ,

and
4. `-translation: if Γ `Σ φ, then for any morphism σ : Σ → Σ′ in Sign,

Sen(σ)(Γ ) `Σ′
Sen(σ)(φ).

Definition 3. ([2]) Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 be an entailment system. Its
category Th of theories is a pair 〈O,A〉 such that:

– O = { 〈Σ,Γ 〉 |Σ ∈ |Sign| and Γ ⊆ Sen(Σ) }, and

– A =

{
σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉

∣∣∣∣∣ 〈Σ,Γ 〉, 〈Σ
′, Γ ′〉 ∈ O,

σ : Σ → Σ′ is a morphism in Sign and

for all γ ∈ Γ, Γ ′ `Σ
′
Sen(σ)(γ)

}
.

In addition, if a morphism σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉 satisfies Sen(σ)(Γ ) ⊆ Γ ′, it is
called axiom preserving. By retaining those morphisms of Th that are axiom pre-
serving, we obtain the subcategory Th0. If we now consider the definition of Mod
extended to signatures and sets of sentences, we get a functor Mod : Thop → Cat
defined as follows: let T = 〈Σ,Γ 〉 ∈ |Th|, then Mod(T ) = Mod(Σ,Γ ).

Definition 4. ([2]) Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 be an entailment system and

〈Σ,Γ 〉 ∈ |Th0|. We define • : 2Sen(Σ) → 2Sen(Σ) as follows: Γ • =
{
γ
∣∣Γ `Σ γ

}
.

This function is extended to elements of Th0, by defining it as follows: 〈Σ,Γ 〉• =
〈Σ,Γ •〉. Γ • is called the theory generated by Γ .

Definition 5. ([2]) Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′, {`′Σ}Σ∈|Sign′|〉
be entailment systems, Φ : Th0 → Th′0 be a functor and α : Sen → Sen′ ◦ Φ
a natural transformation. Φ is said to be α-sensible if and only if the following
conditions are satisfied:



1. there is a functor Φ� : Sign → Sign′ such that sign′ ◦ Φ = Φ� ◦ sign, where
sign and sign′ are the forgetful functors from the corresponding categories
of theories to the corresponding categories of signatures, that when applied
to a given theory project its signature, and

2. if 〈Σ,Γ 〉 ∈ |Th0| and 〈Σ′, Γ ′〉 ∈ |Th′0| such that Φ(〈Σ,Γ 〉) = 〈Σ′, Γ ′〉, then
(Γ ′)• = (∅′ ∪ αΣ(Γ ))•, where ∅′ = αΣ(∅)6.

Φ is said to be α-simple if and only if Γ ′ = ∅′∪αΣ(Γ ) is satisfied in Condition 2,
instead of (Γ ′)• = (∅′ ∪ αΣ(Γ ))•.

It is straightforward to see, based on the monotonicity of •, that α-simplicity
implies α-sensibility. An α-sensible functor has the property that the associated
natural transformation α depends only on signatures. Now, from Definitions 1
and 2, it is possible to give a definition of logic by relating both its model-
theoretic and proof-theoretic characterizations; a coherence between the seman-
tic and syntactic relations is required, reflecting the soundness and completeness
of standard deductive relations of logical systems.

Definition 6. ([2]) A logic is a structure of the form 〈Sign,Sen,Mod, {`Σ
}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 satisfying the following conditions:

– 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 is an entailment system,
– 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution, and
– the following soundness condition is satisfied: for any Σ ∈ |Sign|, φ ∈

Sen(Σ), Γ ⊆ Sen(Σ): Γ `Σ φ implies Γ |=Σ φ .

A logic is complete if, in addition, the following condition is also satisfied: for
any Σ ∈ |Sign|, φ ∈ Sen(Σ), Γ ⊆ Sen(Σ): Γ |=Σ φ implies Γ `Σ φ .

Definition 2 associates deductive relations to signatures. As already discussed,
it is important to analyze how these relations are obtained. The next definition
introduces the notion of proof calculus. It formalizes the possibility of associ-
ating a proof-theoretic structure to the deductive relations introduced by the
definitions of entailment systems. In [2, Ex. 11, pp. 15], Meseguer presents nat-
ural deduction as a proof calculus for first-order predicate logic by resorting to
multicategories (see [2, Definition 10]).

Definition 7. ([2]) A proof calculus is a structure of the form 〈Sign,Sen, {`Σ
}Σ∈|Sign|,P,Pr, π〉 satisfying the following conditions:

– 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 is an entailment system,
– P : Th0 → StructPC is a functor. Let T ∈ |Th0|, then P(T ) ∈ |StructPC | is

the proof-theoretical structure of T ,
– Pr : StructPC → Set is a functor. Let T ∈ |Th0|, then Pr(P(T )) is the set

of proofs of T ; the composite functor Pr ◦P : Th0 → Set will be denoted by
proofs, and

6 ∅′ is not necessarily the empty set of axioms. This fact will be clarified later on.



– π : proofs
�→ Sen is a natural transformation such that for each T =

〈Σ,Γ 〉 ∈ |Th0| the image of πT : proofs(T ) → Sen(T ) is the set Γ •. The
map πT is called the projection from proofs to theorems for the theory T .

Finally, a logical system is defined as a logic plus a proof calculus for its proof
theory.

Definition 8. ([2]) A logical system is a structure of the form

〈Sign,Sen,Mod, {`Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|,P,Pr, π〉

satisfying the following conditions:

– 〈Sign,Sen,Mod, {`Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 is a logic, and
– 〈Sign,Sen, {`Σ}Σ∈|Sign|,P,Pr, π〉 is a proof calculus.

3 Satisfiability Calculus

In Section 2, we presented the definitions of institutions and entailment systems.
Additionally, we presented Meseguer’s categorical formulation of proof that pro-
vides operational structure for the abstract notion of entailment. In this section,
we provide a categorical definition of a satisfiability calculus, providing a corre-
sponding operational formulation of satisfiability. A satisfiability calculus is the
formal characterization of a method for constructing models of a given theory,
thus providing the semantic counterpart of a proof calculus. Roughly speaking,
the semantic relation of satisfaction between a model and a formula can also
be implemented by means of some kind of structure that depends on the model
theory of the logic. The definition of a satisfiability calculus is as follows:

Definition 9. [Satisfiability Calculus] A satisfiability calculus is a structure
of the form 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 satisfying the following
conditions:

– 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution,
– M : Th0 → StructSC is a functor. Let T ∈ |Th0|, then M(T ) ∈ |StructSC | is

the model structure of T ,
– Mods : StructSC → Cat is a functor. Let T ∈ |Th0|, then Mods(M(T )) is

the category of canonical models of T ; the composite functor Mods ◦M :
Th0 → Cat will be denoted by models, and

– µ : modelsop
�→ Mod is a natural transformation such that, for each T =

〈Σ,Γ 〉 ∈ |Th0|, the image of µT : modelsop(T ) →Mod(T ) is the category
of models Mod(T ). The map µT is called the projection of the category of
models of the theory T .

The intuition behind the previous definition is that, for any theory T , the func-
tor M assigns a model structure for T in the category StructSC

7. For instance,

7 Notice that the target of functor M, when applied to a theory T , is not necessar-
ily a model, but a structure which, under certain conditions, can be considered a
representation of the category of models of T .



in propositional tableaux, a good choice for StructSC is the collection of legal
tableaux, where the functor M maps a theory to the collection of tableaux ob-
tained for that theory. The functor Mods projects those particular structures
that represent sets of conditions that can produce canonical models of a theory
T = 〈Σ,Γ 〉 (i.e., the structures that represent canonical models of Γ ). For exam-
ple, in the case of propositional tableaux, this functor selects the open branches
of tableaux, that represent satisfiable sets of formulae, and returns the collec-
tions of formulae obtained by closuring these sets. Finally, for any theory T , the
functor µT relates each of these sets of conditions to the corresponding canonical
model. Again, in propositional tableaux, this functor is obtained by relating a
closured set of formulae with the models that can be defined from these sets of
formulae in the usual ways [20].

Example 1. [Tableaux Method for First-Order Predicate Logic] Let us
start by presenting the tableaux method for first-order logic. Let us denote by
IFOL = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 the institution of first-order predicate
logic. Let Σ ∈ |Sign| and S ⊆ Sen(Σ); then a tableau for S is a tree such that:

1. the nodes are labeled with sets of formulae (over Σ) and the root node is
labeled with S,

2. if u and v are two connected nodes in the tree (u being an ancestor of v),
then the label of v is obtained from the label of u by applying one of the
following rules:

X ∪ {A ∧B}
[∧]

X ∪ {A ∧B,A,B}
X ∪ {A ∨B}

[∨]
X ∪ {A ∨B,A} X ∪ {A ∨B,B}

X ∪ {¬¬A}
[¬1]

X ∪ {¬¬A,A}
X ∪ {A}

[¬2]
X ∪ {A,¬¬A}

X ∪ {A,¬A}
[false]

Sen(Σ)

X ∪ {¬(A ∧B)}
[DM1]

X ∪ {¬(A ∧B),¬A ∨ ¬B}
X ∪ {¬(A ∨B)}

[DM2]
X ∪ {¬(A ∨B),¬A ∧ ¬B}

X ∪ {(∀x)P (x)}
[∀]

X ∪ {(∀x)P (x), P (t)}
X ∪ {(∃x)P (x)}

[∃]
X ∪ {(∃x)P (x), P (c)}

where, in the last rules, c is a new constant and t is a ground term. A sequence

of nodes s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . is a branch if: a) s0 is the root node of the

tree, and b) for all i ≤ ω, si → si+1 occurs in the tree, ταii is an instance of
one of the rules presented above, and αi are the formulae of si to which the rule

was applied. A branch s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . in a tableau is saturated if

there exists i ≤ ω such that si = si+1. A branch s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . in a

tableau is closed if there exists i ≤ ω and α ∈ Sen(Σ) such that {α,¬α} ⊆ si.

Let s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . be a branch in a tableau. Examining the rules

presented above, it is straightforward to see that every si with i < ω is a set of
formulae. In each step, we have either the application of a rule decomposing one
formula of the set into its constituent parts with respect to its major connective,



while preserving satisfiability, or the application of the rule [false] denoting the
fact that the corresponding set of formulae is unsatisfiable. Thus, the limit set of
the branch is a set of formulae containing sub-formulae (and “instances” in the
case of quantifiers) of the original set of formulae for which the tableau was built.
As a result of this, every open branch expresses, by means of a set of formulae,
the class of models satisfying them.

In order to define the tableau method as a satisfiability calculus, we provide
formal definitions for M, Mods and µ. The proofs of the lemmas and properties
shown below are straightforward using the introduced definitions. The interested
reader can find these proofs in [24]. First, we introduce the category StrΣ,Γ of
tableaux for sets of formulae over signature Σ and assuming the set of axioms
Γ . In StrΣ,Γ , objects are sets of formulae over signature Σ, and morphisms
represent tableaux for the set occurring in their target and having subsets of the
set of formulae occurring at the end of open branches, as their source.

Definition 10. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ), then we define StrΣ,Γ =
〈O,A〉 such that O = 2Sen(Σ) and A = {α : {Ai}i∈I → {Bj}j∈J | α =
{αj}j∈J }, where for all j ∈ J , αj is a branch in a tableau for Γ ∪ {Bj} with
leaves ∆ ⊆ {Ai}i∈I . It should be noted that ∆ |=Σ Γ ∪ {Bj}.

Lemma 1. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ); then 〈StrΣ,Γ ,∪, ∅〉, where ∪ :
StrΣ,Γ × StrΣ,Γ → StrΣ,Γ is the typical bi-functor on sets and functions, and
∅ is the neutral element for ∪, is a strict monoidal category.

Using this definition we can introduce the category of legal tableaux, denoted
by StructSC .

Definition 11. StructSC is defined as 〈O,A〉 where O = {StrΣ,Γ | Σ ∈ |Sign|∧
Γ ⊆ Sen(Σ)}, and A = {σ̂ : StrΣ,Γ → StrΣ

′,Γ ′ | σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉 ∈
||Th0||}, the homomorphic extension of the morphisms in ||Th0||.

Lemma 2. StructSC is a category.

The functor M must be understood as the relation between a theory in |Th0|
and its category of structures representing legal tableaux. So, for every the-
ory T , M associates the strict monoidal category [22] 〈StrΣ,Γ ,∪, ∅〉, and for
every theory morphism σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉, M associates a morphism σ̂ :
StrΣ,Γ → StrΣ

′,Γ ′
which is the homomorphic extension of σ to the structure of

the tableaux.

Definition 12. M : Th0 → StructSC is defined as M(〈Σ,Γ 〉) = 〈StrΣ,Γ ,∪, ∅〉
and M(σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉) = σ̂ : 〈StrΣ,Γ ,∪, ∅〉 → 〈StrΣ′,Γ ′

,∪, ∅〉, the homo-
morphic extension of σ to the structures in 〈StrΣ,Γ ,∪, ∅〉.

Lemma 3. M is a functor.

In order to define Mods, we need the following auxiliary definition, which re-
sembles the usual construction of maximal consistent sets of formulae.



Definition 13. Let Σ ∈ |Sign|, ∆ ⊆ Sen(Σ), and consider {Fi}i<ω an enumer-
ation of Sen(Σ) such that for every formula α, its sub-formulae are enumerated
before α. Then Cn(∆) is defined as follows:

– Cn(∆) =
⋃
i<ω Cn

i(∆)

– Cn0(∆) = ∆, Cni+1(∆) =

{
Cni(∆) ∪ {Fi} , if Cni(∆) ∪ {Fi} is consistent.
Cni(∆) ∪ {¬Fi} , otherwise.

Given 〈Σ,Γ 〉 ∈ |Th0|, the functor Mods provide the means for obtaining the
category containing the closure of those structures in StrΣ,Γ that represent the
closure of the branches in saturated tableaux.

Definition 14. Mods : StructSC → Cat is defined as:

Mods(〈StrΣ,Γ ,∪, ∅〉) = {〈Σ,Cn(∆̃)〉 | (∃α : ∆→ ∅ ∈ ||StrΣ,Γ ||)
(∆̃→ ∅ ∈ α ∧ (∀α′ : ∆′ → ∆ ∈ ||StrΣ,Γ ||)(∆′ = ∆))}

and for all σ : Σ → Σ′ ∈ |Sign| (and σ̂ : 〈StrΣ,Γ ,∪, ∅〉 → 〈StrΣ′,Γ ′
,∪, ∅〉 ∈

||StructSC ||), the following holds:

Mods(σ̂)(〈Σ,Cn(∆̃)〉) = 〈Σ′, Cn(Sen(σ)(Cn(∆̃)))〉.

Lemma 4. Mods is a functor.

Finally, the natural transformation µ relates the structures representing satu-
rated tableaux with the model satisfying the set of formulae denoted by the
source of the morphism.

Definition 15. Let 〈Σ,Γ 〉 ∈ |Th0|, then we define µΣ : modelsop(〈Σ,Γ 〉) →
ModFOL(〈Σ,Γ 〉) as µΣ(〈Σ,∆〉) = Mod(〈Σ,∆〉).

Fact 1 Let Σ ∈ |SignFOL| and Γ ⊆ SenFOL(Σ). Then µ〈Σ,Γ 〉 is a functor.

Lemma 5. µ is a natural transformation.

Now, from Lemmas 3, 4, and 5, and considering the hypothesis that IFOL is an
institution, the following corollary follows.

Corollary 1. 〈SignFOL,SenFOL,ModFOL, {|=Σ
FOL}Σ∈|SignFOL|,M,Mods, µ〉 is

a satisfiability calculus.

Another important kind of system used by automatic theorem provers are
the so-called resolution methods. Below, we show how any resolution system
conforms to the definition of satisfiability calculus.

Example 2. [Resolution Method for First-Order Predicate Logic] Let us
describe resolution for first-order logic as introduced in [25]. We use the following
notation: [] denotes the empty list; [A] denotes the unitary list containing the
formula A; `0, `1, . . . are variables ranging over lists; and `i + `j denotes the
concatenation of lists `i and `j . Resolution builds a list of lists representing a
disjunction of conjunctions. The rules for resolution are the following:



`0 + [¬¬A] + `1
[¬¬]

`0 + [A] + `1

`0 + [¬A] + `1
`′0 + [A] + `′1

[¬]
`0 + `1 + `′0 + `′1

`0 + [A ∧A′] + `1
[∧]

`0 + [A,A′] + `1

`0 + [¬(A ∨A′)] + `1
[¬∧]

`0 + [¬A,¬A′] + `1

`0 + [A ∨A′] + `1
[∨]

`0 + [A] + `1
`0 + [A′] + `1

`0 + [¬(A ∧A′)] + `1
[¬∧]

`0 + [¬A] + `1
`0 + [¬A′] + `1

`0 + [∀x : A(x)] + `1
for any closed term t [∀]

`0 + [A[x/t]] + `1

`0 + [∃x : A(x)] + `1
for a new constant c [∃]

`0 + [A[x/c]] + `1

where A(x) denotes a formula with free variable x, and A[x/t] denotes the for-
mula resulting from replacing variable x by term t everywhere in A. For the
sake of simplicity, we assume that lists of formulae do not have repeated ele-
ments. A resolution is a sequence of lists of formulae. If a resolution contains an
empty list (i.e., []), we say that the resolution is closed; otherwise it is an open
resolution. For every signature Σ ∈ |Sign| and each Γ ⊂ Sen(Σ), we denote
by StrΣ,Γ the category whose objects are lists of formulae, and where every
morphism σ : [A0, . . . , An] → [A′0, . . . , A

′
m] represents a sequence of application

of resolution rules for [A′0, . . . , A
′
m]. Then, StructSC is a category whose objects

are StrΣ,Γ , for each signature Σ ∈ |Sign| and set of formulae Γ ∈ Sen(Σ), and
whose morphisms are of the form σ̂ : StrΣ,Γ → StrΣ

′,Γ ′
, obtained by homomor-

phically extending σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉 in ||Th0||.
As for the case of Example 1, the functor M : Th0 → StructSC is defined

as M(〈Σ,Γ 〉) = 〈StrΣ,Γ ,∪, ∅〉, and Mods : StructSC → Set is defined as in the
previous example.

A typical use for the methods involved in the above described examples is the
search for counterexamples of a given logical property. For instance, to search for
counterexamples of an intended property in the context of the tableaux method,
one starts by applying rules to the negation of the property, and once a saturated
tableau is obtained, if all the branches are closed, then there is no model of the
axioms and the negation of the property, indicating that the latter is a theorem.
On the other hand, if there exists an open branch, the limit set of that branch
characterizes a class of counterexamples for the formula. Notice the contrast with
Hilbert systems, where one starts from the axioms, and then applies deduction
rules until the desired formula is obtained.

3.1 Mapping Satisfiability Calculi

In [4] the original notion of morphism between Institutions was introduced.
Meseguer defines the notion of plain map in [2], and in [5] Tarlecki extensively
discussed the ways in which different institutions can be related, and how they
should be interpreted. More recently, in [26] all these notions of morphism were



investigated in detail. In this work we will concentrate only on institution repre-
sentations (or comorphisms in the terminology introduced by Goguen and Rosu),
since this is the notion that we have employed to formalize several concepts aris-
ing from software engineering, such as data refinement and dynamic reconfigura-
tion [27, 28]. The study of other important kinds of functorial relations between
satisfiability calculi are left as future work. The following definition is taken from
[5], and formalizes the notion of institution representation.

Definition 16. ([5]) Let I = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 and I′ = 〈Sign′,
Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉 be institutions. Then, 〈γSign, γSen, γMod〉 : I → I ′

is an institution representation if and only if:

– γSign : Sign→ Sign′ is a functor,

– γSen : Sen
�→ γSign ◦ Sen′, is a natural transformation,

– γMod : (γSign)op ◦Mod′
�→Mod, is a natural transformation,

such that for any Σ ∈ |Sign|, the function γSenΣ : Sen(Σ) → Sen′(γSign(Σ))
and the functor γMod

Σ : Mod′(γSign(Σ)) → Mod(Σ) preserve the following
satisfaction condition: for any α ∈ Sen(Σ) and M′ ∈ |Mod(γSign(Σ))|,

M′ |=γSign(Σ) γSenΣ (α) iff γMod
Σ (M′) |=Σ α .

An institution representation γ : I → I ′ expresses how the “poorer” set of
sentences (respectively, category of models) associated with I is encoded in the
“richer” one associated with I ′. This is done by:

– constructing, for a given I-signature Σ, an I ′-signature into which Σ can be
interpreted,

– translating, for a given I-signature Σ, the set of Σ-sentences into the corre-
sponding I ′-sentences,

– obtaining, for a given I-signature Σ, the category of Σ-models from the
corresponding category of Σ′-models.

The direction of the arrows shows how the whole of I is represented by some
parts of I ′. Institution representations enjoy some interesting properties. For
instance, logical consequence is preserved, and, under some conditions, logical
consequence is preserved in a conservative way. The interested reader is referred
to [5] for further details.

In many cases, in particular those in which the class of models of a signature
in the source institution is completely axiomatizable in the language of the target
one, Definition 16 can easily be extended to map signatures of one institution
to theories of another. This is done so that the class of models of the richer
one can be restricted, by means of the addition of axioms (thus the need for
theories in the image of the functor γSign), in order to be exactly the class of
models obtained by translating to it the class of models of the corresponding
signature of the poorer one. In the same way, when the previously described
extension is possible, we can obtain what Meseguer calls a map of institutions
[2, definition 27] by reformulating the definition so that the functor between



signatures of one institution and theories of the other is γTh : Th0 → Th′0.
This has to be γSen-sensible (see definition 5) with respect to the entailment
systems induced by the institutions I and I ′. Now, if 〈Σ,Γ 〉 ∈ |Th0|, then γTh0

can be defined as follows: γTh0(〈Σ,Γ 〉) = 〈γSign(Σ), ∆ ∪ γSenΣ (Γ )〉, where ∆ ⊆
Sen(ρSign(Σ)). Then, it is easy to prove that γTh0 is γSen-simple because it is
the γSen-extension of γTh0 to theories, thus being γSen-sensible.

The notion of a map of satisfiability calculi is the natural extension of a
map of institutions in order to consider the more material version of the satis-
fiability relation. In some sense, if a map of institutions provides a means for
representing one satisfiability relation in terms of another in a semantics pre-
serving way, the map of satisfiability calculi provides a means for representing a
model construction technique in terms of another. This is done by showing how
model construction techniques for richer logics express techniques associated
with poorer ones.

Definition 17. Let S = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 and S′ =

〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|,M′,Mods′, µ′〉 be satisfiability calculi. Then,

〈ρSign, ρSen, ρMod, γ〉 : S→ S′ is a map of satisfiability calculi if and only if:

1. 〈ρSign, ρSen, ρMod〉 : I→ I′ is a map of institutions, and

2. γ : models′
op ◦ ρTh0

�→modelsop is a natural transformation such that the
following equality holds:

Th0

Mod

��

modelsop

AA

ρTh0

$$

=
⇒µ Cat = Th0

Mod

!!

ρTh0

&&

=
⇒ρMod Cat

=
⇒γ =
⇒µ′

Th′0

models′op

MM

Th′0
models′op

NNMod′
..

Roughly speaking, the 2-cell equality in the definition says that the translation
of saturated tableaux is coherent with respect to the mapping of institutions.

Example 3. [Mapping Modal Logic to First-Order Logic] A simple ex-
ample of a mapping between satisfiability calculi is the mapping between the
tableau method for propositional logic, and the one for first-order logic. It is
straightforward since the tableau method for first-order logic is an extension of
that of propositional logic.

Let us introduce a more interesting example. We will map the tableau method
for modal logic (as presented by Fitting [25]) to the first-order predicate logic
tableau method. The mapping between the institutions is given by the standard
translation from modal logic to first-order logic. Let us recast here the tableau
method for the system K of modal logic. Recall that formulae of standard modal
logic are built from boolean operators and the “diamond operator” ♦. Intuitively,
formula ♦ϕ says that ϕ is possibly true in some alternative state of affairs. The



semantics for modal logic is given by means of Kripke structures. A Kripke
structure is a tuple 〈W,R,L〉, where W is a set of states, R ⊆ W × W is a
relation between states, and L : W → 2AP is a labeling function (AP is a set of
atomic propositions). Note that a signature in modal logic is given by a set of
propositional letters: 〈{pi}i∈I〉. The interested reader can consult [29].

In [25] modal formulae are prefixed by labels denoting semantic states. La-
beled formulae are then terms of the form ` : ϕ, where ϕ is a modal formula
and ` is a sequence of natural numbers n0, . . . , nk. The relation R between these
labels is then defined in the following way: `R`′ ≡ ∃n : `, n = `′. The new rules
are the following:

X ∪ {` : �ϕ}
For all `′ such that `R`′ and such that `′ appears in X [�]

X ∪ {` : �ϕ, `′ : ϕ}

X ∪ {` : ♦ϕ}
For `′ such that `R`′ [♦]

X ∪ {` : ♦ϕ, `′ : ϕ}

The rules for the propositional connectives are the usual ones, obtained by
labeling the formulae with a given label. Notice that labels denote states of a
Kripke structure. This is related in some way to the tableau method used for
first-order predicate logic. Branches, saturated branches and closed branches are
defined in the same way as in Example 1, but considering the relations between

sets to be also indexed by the relation used at that point. Thus, si
ταi−−→
Ri

si+1

must be understood as follows: the set si+1 is obtained from si by applying rule
τi to formula αi ∈ si under the accessibility relation Ri.

Assume 〈SignFOL,SenFOL,MFOL,ModsFOL, {|=Σ
FOL}Σ∈|SignFOL|, µFOL〉 is

the satisfiability calculus for first-order predicate logic, denoted by SCFOL, and
〈SignK ,SenK ,MK ,ModsK , {|=Σ

K}Σ∈|SignK |,µK 〉 is the satisfiability calculus for
modal logic, denoted by SCK . Consider now the standard translation from modal
logic to first-order logic. Therefore, the tuple 〈ρSign, ρSen, ρMod〉 is defined as
follows [29]:

Definition 18. ρSign : SignK → SignFOL is defined as ρSign(〈{pi}i∈I〉) =
〈R, {pi}i∈I〉 by mapping each propositional variable pi, for all i ∈ I, to a first-
order unary logic predicate pi, and adding a binary predicate R, and ρSign(σ :
〈{pi}i∈I〉 → 〈{p′i′}i′∈I′〉) = σ′ : 〈R, {pi}i∈I〉 → 〈R′, {p′i′}i′∈I′〉 mapping R to R′,
and pi to p′i for all i ∈ I.

Lemma 6. ρSign is a functor.

Definition 19. Let 〈{pi}i∈I〉 ∈ |SignK |. Then ρSen〈{pi}i∈I〉 : SenK(〈{pi}i∈I〉) →
ρSign◦SenFOL(〈{pi}i∈I〉) is defined recursively as ρSen〈{pi}i∈I〉(α) = T〈{pi}i∈I〉,x(α)
where:

T〈{pi}i∈I〉,x(pi) = p′i(x), for all i ∈ I.

T〈{pi}i∈I〉,x(¬α) = ¬T〈{pi}i∈I〉,x(α)

T〈{pi}i∈I〉,x(α ∨ β) = T〈{pi}i∈I〉,x(α) ∨ T〈{pi}i∈I〉,x(β)

T〈{pi}i∈I〉,x(♦α) = (∃y)(R(x, y) ∧ T〈{pi}i∈I〉,y(α))



Lemma 7. ρSen is a natural transformation.

Definition 20. Let 〈{pi}i∈I〉 ∈ |SignK |. Then we define ρMod
〈{pi}i∈I〉 : ρSign ◦

ModFOL(〈{pi}i∈I〉)→ModK(〈{pi}i∈I〉) as follows:

– for all M = 〈S,R, {pi}i∈I〉 ∈ |ModFOL(〈R, {pi}i∈I〉)|, ρMod
〈{pi}i∈I〉(M) =

〈S,R,L〉, with L(pi) = {s ∈ S|pi(s)}.8
– let 〈{pi}i∈I〉 ∈ |SignK |; then for all homomorphism h : 〈S1, R1, {p1i}i∈I〉 →
〈S2, R2, {p2i}i∈I〉 ∈ ||ModFOL(〈R, {pi}i∈I〉)||, we define ρMod

〈{pi}i∈I〉(h) to be

ĥ, where ĥ(s1) = s2 if and only if h(s1) = s2 for all s1 ∈ S1.

Lemma 8. Let 〈{pi}i∈I〉 ∈ |SignK |. Then ρMod
〈{pi}i∈I〉 is a functor.

The proof that this is a mapping between institutions relies on the correctness
of the translation presented in [29]. Using this map we can define a mapping
between the corresponding satisfiability calculi. The natural transformation: γ :

ρTh0 ◦models′
op �→modelsop is defined as follows.

Definition 21. Let 〈〈{pi}i∈I〉, Γ 〉 ∈ |ThK0 |; then

γ〈{pi}i∈I〉 : ρTh0 ◦modelsopFOL(〈〈{pi}i∈I〉, Γ 〉)→modelsopK (〈〈{pi}i∈I〉, Γ 〉)

is defined as:

γ〈{pi}i∈I〉(〈〈R, {pi}i∈I〉,∆〉) = 〈〈{pi}i∈I〉, {ϕ ∈ |SenK(〈{pi}i∈I〉)| | ρSen
〈{pi}i∈I〉(ϕ) ∈ ∆}〉

Lemma 9. Let 〈{pi}i∈I〉 ∈ |SignK |; then γ〈{pi}i∈I〉 is a functor.

Lemma 10. γ : ρTh0 ◦modelsopFOL →modelsopK is a natural transformation.

Finally, the following lemma prove the equivalence of the two cells shown in
Definition 17.

Lemma 11. Let 〈{pi}i∈I〉 ∈ |SignK |, then

µK 〈{pi}i∈I〉 ◦ γ〈{pi}i∈I〉 = ρMod
ρSign(〈{pi}i∈I〉) ◦ µFOLρSign(〈{pi}i∈I〉) .

This means that building a tableau using the first-order rules for the translation
of a modal theory, then obtaining the corresponding canonical model in modal
logic using γ, and therefore obtaining the class of models by using µ, is exactly
the same as obtaining the first-order models by µ′ and then the corresponding
modal models by using ρMod.

8 Notice that ρSign(〈{pi}i∈I〉) = 〈R, {pi}i∈I〉, where 〈{pi}i∈I〉 ∈ |SignK |.



4 Conclusions and Further work

Methods like resolution and tableaux are strongly related to the semantics of a
logic. They are often employed to construct models, a characteristic that is miss-
ing in purely deductive methods, such as natural deduction or Hilbert systems, as
formalized by Meseguer. In this paper, we provided an abstract characterization
of this class of semantics-based tecniques for logical systems. This was accom-
plished by introducing a categorical characterization of the notion of satisfiability
calculus, which covers logical tools such as tableaux, resolution, Gentzen style
sequents, etc. Our new characterization of a logical system, that includes the no-
tion of satisfiability calculus, provides both a proof calculus and a satisfiability
calculus, which essentially implement the entailment and satisfaction relations,
respectively. There clearly exist connections between these calculi that are worth
exploring, especially when the underlying structure used in both definitions is
the same (see Example 1).

A close analysis of the definitions of proof calculus and satisfiability cal-
culus takes us to observe that the constraints imposed over some elements
(e.g., the natural family of functors π〈Σ,Γ 〉 : proofs(〈Σ,Γ 〉) → Sen(〈Σ,Γ 〉)
and µ〈Σ,Γ 〉 : modelsop(〈Σ,Γ 〉) → Mod(〈Σ,Γ 〉)) may be too restrictive, and
working on generalizations of these concepts is part of our further work. In par-
ticular, it is worth noticing that partial implementations of both the entailment
relation and the satisfiability relation are gaining visibility in the software engi-
neering community. Examples on the syntactic side are the implementation of
less expressive calculi with respect to an entailment, as in the case of the finitary
definition of the reflexive and transitive closure in the Kleene algebras with tests
[30], the case of the implementation of rewriting tools like Maude [31] as a par-
tial implementation of equational logic, etc. Examples on the semantic side are
the bounded model checkers and model finders for undecidable languages, such
as Alloy [32] for relational logic, the growing family of SMT-solvers [33] for lan-
guages including arithmetic, etc. Clearly, allowing for partial implementations
of entailment/satisfiability relations would enable us to capture the behaviors
of some of the above mentioned logical tools. In addition, functorial relations
between partial proof calculi (resp., satisfiability calculi) may provide a measure
for how good the method is as an approximation of the ideal entailment relation
(resp., satisfaction relation). We plan to explore this possibility, as future work.
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