
HAL Id: hal-01480794
https://inria.hal.science/hal-01480794

Submitted on 1 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

FlowFlex: Malleable Scheduling for Flows of
MapReduce Jobs

Viswanath Nagarajan, Joel Wolf, Andrey Balmin, Kirsten Hildrum

To cite this version:
Viswanath Nagarajan, Joel Wolf, Andrey Balmin, Kirsten Hildrum. FlowFlex: Malleable Scheduling
for Flows of MapReduce Jobs. 14th International Middleware Conference (Middleware), Dec 2013,
Beijing, China. pp.103-122, �10.1007/978-3-642-45065-5_6�. �hal-01480794�

https://inria.hal.science/hal-01480794
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

FlowFlex: Malleable Scheduling for
Flows of MapReduce Jobs

Viswanath Nagarajan1, Joel Wolf1, Andrey Balmin2?, and Kirsten Hildrum1

1 {viswanath, jlwolf, hildrum}@us.ibm.com, IBM T. J. Watson Research Center
2 andrey@graphsql.com, GraphSQL

Abstract. We introduce FlowFlex, a highly generic and effective sched-
uler for flows of MapReduce jobs connected by precedence constraints.
Such a flow can result, for example, from a single user-level Pig, Hive
or Jaql query. Each flow is associated with an arbitrary function de-
scribing the cost incurred in completing the flow at a particular time.
The overall objective is to minimize either the total cost (minisum) or
the maximum cost (minimax) of the flows. Our contributions are both
theoretical and practical. Theoretically, we advance the state of the art
in malleable parallel scheduling with precedence constraints. We employ
resource augmentation analysis to provide bicriteria approximation algo-
rithms for both minisum and minimax objective functions. As corollar-
ies, we obtain approximation algorithms for total weighted completion
time (and thus average completion time and average stretch), and for
maximum weighted completion time (and thus makespan and maximum
stretch). Practically, the average case performance of the FlowFlex sched-
uler is excellent, significantly better than other approaches. Specifically,
we demonstrate via extensive experiments the overall performance of
FlowFlex relative to optimal and also relative to other, standard MapRe-
duce scheduling schemes. All told, FlowFlex dramatically extends the
capabilities of the earlier Flex scheduler for singleton MapReduce jobs
while simultaneously providing a solid theoretical foundation for both.

1 Introduction

MapReduce [8] is a fundamentally important programming paradigm for pro-
cessing big data. Accordingly, there has already been considerable work on the
design of high quality MapReduce schedulers [26, 27, 25, 1, 24]. All of the sched-
ulers to date have quite naturally focused on the scheduling of collections of
singleton MapReduce jobs. Indeed, single MapReduce jobs were the appropriate
atomic unit of work early on. Lately, however, we have witnessed the emergence
of more elaborate MapReduce work, and today it is common to see the submis-
sion of flows of interconnected MapReduce jobs. Such a MapReduce flow can
result, for example, from a single user-level Pig [11], Hive [20] or Jaql [4] query.
Each flow can be represented by a directed acyclic graph (DAG) in which the

? Work performed while at IBM Almaden Research Center.

nodes are singleton Map or Reduce phases and the directed arcs represent prece-
dence. Significantly, flows have become the basic unit of MapReduce work, and
it is the completion times of these flows that determines the appropriate measure
of goodness, not the completion times of the individual MapReduce jobs.

This paper introduces FlowFlex, a scheduling algorithm for flows of MapRe-
duce jobs. FlowFlex can attempt to optimize an arbitrary metric based on the
completion times of the flows. Common examples include makespan, average
completion time, average and maximum stretch3 and metrics involving one or
more deadlines. Any given metric will be appropriate for a particular scenario,
and the precise algorithmic variant FlowFlex applies will depend on that met-
ric. For example, in a batch environment one might care about makespan, to
ensure that the batch window is not elongated. In an interactive environment
users would typically care about average or maximum completion time, or about
average or maximum stretch. There are also a variety of metrics associated with
hard or soft deadlines. To the best of our knowledge scheduling schemes for flows
of MapReduce jobs have never been considered previously in the literature.

Our contributions are both theoretical and practical. We advance the the-
ory of malleable parallel scheduling with precedence constraints. Specifically, we
employ resource augmentation analysis to provide bicriteria approximation al-
gorithms for both minisum and minimax objective functions. As corollaries, we
obtain approximation algorithms for total weighted completion time (and thus av-
erage completion time and average stretch), and for maximum weighted comple-
tion time (and thus makespan and maximum stretch). We also produce a highly
generic and practical MapReduce scheduler for flows of jobs, called FlowFlex,
and demonstrate its excellent average case performance experimentally.

The closest previous scheduling work for MapReduce jobs appeared in [25].
The Flex scheduler presented there is now incorporated in IBM BigInsights [5].
(See also the FlexSight visualization tool [7].) Flex schedules to optimize a vari-
ety of metrics as well, but differs from the current work in that it only considers
singleton MapReduce jobs, not flows. Architecturally, Flex sits on top of the Fair
MapReduce scheduler [26, 27], essentially overriding its decisions while simulta-
neously making use of its infrastructure. The FlowFlex scheduling problem is
clearly a major generalization of the Flex problem. With modest caveats, it can
also be said that the FlowFlex algorithms significantly generalize those of Flex.
They are also much more theoretically grounded. See also the special purpose
schedulers [1] and CircumFlex [24], built to amortize shared Map phase scans.

There are fundamental differences between Fair and the three schedulers in
the Flex family: Fair makes its decisions based on the current moment in time,
and thus considers only the resource (slot) dimension. Fair is indeed fair in the
sense of instantaneous progress, but does not directly consider completion time.
On the other hand, Flex, CircumFlex and FlowFlex think in two dimensions,
both resource and time. And they optimize towards completion time metrics.
It is our contention that completion time rather than instantaneous progress
determines the true quality of a schedule.

3 Stretch is a fairness metric in which each flow weight is the reciprocal of its size.

The rest of this paper is organized as follows. Section 2 gives preliminaries
and describes the good fit between the theory of malleable scheduling and the
MapReduce enviornment. Section 3 introduces the scheduling model and lists
our formal theoretical results. The FlowFlex scheduling algorithms are described
in Section 4, and the proofs of the performance guarantees are outlined there.
Space limitations prevent us from detailing all of these proofs, but interested
readers can find them in [2]. In Section 5 we compare FlowFlex experimentally
with Fair and FIFO, both naturally extended in order to handle precedence
constraints. We also explain the practical considerations associated with imple-
menting FlowFlex as an epoch-based scheduler. Conclusions appear in Section 6.

2 Preliminaries

The theory of malleable scheduling fits the reality of the MapReduce environment
well. To understand this we give a brief, somewhat historically oriented overview
of theoretical parallel scheduling and its relation to MapReduce.

The first parallel scheduling implementations and theoretical results involved
what are today called rigid jobs. These jobs run on a fixed number of processors
and are presumed to complete their work simultaneously. One can thus think of
a job as corresponding to a rectangle whose height corresponds to the number
of processors p, whose width corresponds to the execution time t of the job, and
whose area s = p · t corresponds to the work performed by the job. Early papers,
such as [6], focused on the makespan metric, providing some of the very first
approximation algorithms. (These are polynomial time schemes with guaranteed
performance bounds.)

Subsequent parallel scheduling research took a variety of directions, again
more or less mirroring real scenarios of the time. One such direction involved
what has now become known as moldable scheduling: Each job can be run on an
arbitrary number of processors, but with an execution time which is a monotone
non-increasing function of the number of processors. Thus the height of a job is
turned from an input parameter to a decision variable. The first approximation
algorithm for moldable scheduling with a makespan metric appeared in [23].
Later, [22] found the first approximation algorithm for both rigid and moldable
scheduling problems with a (weighted) average completion time metric.

The notion of malleable scheduling is more general than moldable. Here the
number of processors allocated to a job is allowed to vary over time. However,
each job must still perform its fixed amount of work. One can consider the most
general problem variant in which the rate at which work is done is a function
of the number of allocated processors, so that the total work completed at any
time is the integral of these rates through that time. However, this problem
is enormously difficult, and so the literature to date [9, 16] has focused on the
special case where the speedup function is linear through a given maximum num-
ber of processors, and constant thereafter. Clearly, malleable schedules can only
improve objective function values relative to moldable schedules. On the other
hand, malleable scheduling problems are even harder to solve well than moldable
scheduling problems. We will concentrate on malleable scheduling problems with

linear speedup up to some maximum, with flow precedence constraints and any
of several different metrics on the completion times of the flows. See [9, 16] for
more details on both moldable and malleable scheduling. The literature on the
latter is quite limited, and this paper is a contribution.

Why does MapReduce fit the theory of malleable scheduling with linear
speedup and processor maxima so neatly? There are multiple reasons.

1. MapReduce and malleable scheduling are about allocation: There is a natural
decoupling of MapReduce scheduling into an Allocation Layer followed by
an Assignment Layer. In the Allocation Layer, quantity decisions are made,
and that is where any mathematical complexity resides. The Assignment
Layer then implements these allocation decisions (to the extent possible,
given locality issues [27] and such) in the MapReduce cluster. Fair, Flex,
CircumFlex and our new FlowFlex scheduler reside in the Allocation Layer.
The malleable (as well as rigid and moldable) scheduling literature is also
about allocation rather than assignment.4

2. MapReduce work exhibit roughly linear speedup, and maximum constraints
occur naturally: Both the Map and Reduce phases are composed of many
small, independent tasks. Because they are independent they do not need
to start simultaneously and can be processed with any degree of parallelism
without significant overhead. This, in turn, means that the jobs will have
nearly linear speedup: Remember that linear speedup is a statement about
the rate at which work is completed. Maximum constraints in either the Map
or Reduce phase occur because they happen to be small (and thus have few
tasks), or when only a few tasks remain to be allocated.

3. MapReduce fits the malleable model well: Assuming the tasks are many and
small, the decisions of the scheduler can be approximated closely. To under-
stand this, consider Figure 1, which depicts the Assignment Layer imple-
menting the decisions of the Allocation Layer. The Allocation Layer output
is a hypothetical malleable schedule for three jobs. The Assignment Layer
works locally at each node in the cluster. Suppose a task on that node com-
pletes, freeing a slot. The Assignment Layer simply determines which job is
the most relatively underallocated according to the Allocation Layer sched-
ule. And then, within certain practical constraints, it acts greedily, assigning
a new task from that job to the slot. Examining the figure, the tasks are
represented as “bricks” in the Assignment Layer. The point is that the large
number and small size of the tasks makes the right-hand side a close approx-
imation to the left-hand side. That is, Assignment Layer reality will be an
excellent approximation to Allocation Layer theory.

The model is not perfect, of course. For example, if the number of tasks in
a MapReduce job is modest, the idealized scenario depicted in Figure 1 will be
less than perfect. Furthermore, there is a somewhat delicately defined notion5

4 In MapReduce, the atomic unit of allocation is called a slot, which can be used for
either Map or Reduce tasks. So “processor” in the theoretical literature corresponds
to “slot” in a MapReduce context.

5 This will be clarified in Subsection 5.2.

of precedence between Map and Reduce tasks that is not cleanly modeled here.
Recall that we model a single MapReduce job as a Map phase followed by a
Reduce phase. In reality, some Reduce tasks can begin before all the Map tasks
complete. But recall that Flex suffers from precisely the same issues, and has
been used successfully in IBM BigInsights [5] for several years.

Fig. 1: MapReduce and Malleable Scheduling.

Practically speaking, FlowFlex and its predecessors are epoch-based. In each
epoch FlowFlex wakes up, considers the current version of the scheduling prob-
lem, produces a hypothetical malleable schedule and outputs the initial alloca-
tions to be implemented by the assignment layer. Thus the size data as well as
the flows and jobs themselves are each updated for each FlowFlex run, making
the scheduler more robust.

Other Models for MapReduce. We briefly mention some other MapReduce mod-
els that have been considered in the literature. Moseley et al. [18] consider a
“two-stage flexible flow shop” [21] model, and give approximation and online
algorithms for total completion time of independent MapReduce jobs. Berlinska
and Drozdowski [3] use “divisible load theory” to model a single MapReduce job
and its communication details. Theoretical frameworks for MapReduce compu-
tation have been proposed in [14, 15].

Compared to our setting, these models are at a finer level of granularity,
that of individual Map and Reduce tasks. Our model, as described above, de-
couples the quantity decisions (allocation) from the actual assignment details in
the cluster. We focus on obtaining algorithms for the allocation layer, which is
abstracted as a precedence constrained malleable scheduling problem.

3 Formal Model and Results

As discussed, we model the MapReduce application as a parallel scheduling
problem. There are P identical processors that correspond to resources (slots)
in the MapReduce cluster. Each flow j is described by means of a directed
acyclic graph. The nodes in each of these DAGs are jobs, and the directed arcs
correspond to precedence relations. We use the standard notation i1 ≺ i2 to
indicate that job i1 must be completed before job i2 can begin. Each job i must

perform a fixed amount of work si (also referred to as the job size), and can
be performed on a maximum number δi ∈ [P] of processors at any point in
time.6 We consider jobs with linear speedup through their maximum numbers
of processors: the rate at which work is done on job i at any time is proportional
to the number of processors p ∈ [δi] assigned to it. Job i is complete when si
units of work have been performed.

We are interested in malleable schedules. In this setting, a schedule for job i
is given by a function τi : [0,∞) → {0, 1, . . . , δi} where

∫∞
t=0

τi(t) dt = si. Note
that this satisfies both linear speedup and processor maxima. We denote the
start time of schedule τi by S(τi) := arg min{t ≥ 0 : τi(t) > 0}; similarly the
completion time is denoted C(τi) := arg max{t ≥ 0 : τi(t) > 0}. A schedule for
flow j (consisting of jobs Ij) is given by a set {τi : i ∈ Ij} of schedules for its
jobs, where C (τi1) ≤ S (τi2) for all i1 ≺ i2. The completion time of flow j is
maxi∈Ij C (τi), the maximum completion time of its jobs. Our algorithms make
use of the following two natural and standard lower bounds on the minimum
possible completion time of a single flow j. (See, for example, [9].)

• Total load (or squashed area): 1
P

∑
i∈Ij si.

• Critical path: maximum of
∑`
r=1

sir
δir

over all chains7 i1 ≺ · · · ≺ i` in flow j.

Each flow j also specifies an arbitrary non-decreasing cost function wj :
R+ → R+ where wj(t) is the cost incurred when job j is completed at time
t. We consider both minisum and minimax objective functions. The minisum
(resp. minimax) objective minimizes the sum (resp. maximum) of the cost func-
tions over all flows. In the notation of [9, 16] this scheduling environment is

P |var, pi(k) = pi(1)
k , δi, prec|∗.8 We refer to these problems collectively as prece-

dence constrained malleable scheduling with linear speedup. Our highly general
cost model can solve all the commonly used scheduling objectives: weighted
average completion time, makespan (maximum completion time), average and
maximum stretch, and deadline-based metrics associated with number of tardy
jobs, service level agreements (SLAs) and so on. Figure 2 illustrates 4 basic types
of cost functions.

Fig. 2: Typical Cost Functions Types.

6 Throughout the paper, for any integer ` ≥ 1, we denote by [`] the set {1, . . . , `}.
7 Chains are a special case of flows in which precedence is sequential.
8 Here var stands for malleable scheduling, pi(k) = pi(1)

k
denotes linear speedup, δi is

processor maxima, prec stands for precedence, and ∗ is for any objective function.

The objective functions we consider are either minisum or minimax: Minisum
scheduling problems involve the minimization of the (possibly weighted) sum of
individual flow metrics, or, equivalently, their (weighted) average. On the other
hand, minimax scheduling problems involve the minimization of the maximum
of individual metrics, an indication of worst case flow performance.

Definition 1. A polynomial time algorithm is said to be an α-approximation if
it produces a schedule that has objective value at most α ≥ 1 times optimal.

We would like to provide approximation algorithms for the above malleable
scheduling problems. But as shown in [10], even under very special precedence
constraints (chains of length three) the general minisum and minimax prob-
lems admit no finite approximation ratio unless P=NP. Hence we use resource
augmentation [13] and focus on bicriteria approximation guarantees.

Definition 2. A polynomial time algorithm is said to be an (α, β)-bicriteria
approximation if it produces a schedule using β ≥ 1 speed processors that has
objective value at most α ≥ 1 times optimal (under unit speed processors).

Our main result is that we can find approximation algorithms in some cases
and bicriteria approximation algorithms in all others.

Theorem 1. The precedence constrained malleable scheduling problem with lin-
ear speedup admits the following guarantees.
• (2, 3)-bicriteria approximation algorithm for general minisum objectives.
• (1, 2)-bicriteria approximation algorithm for general minimax objectives.
• 6-approximation algorithm for total weighted completion time (including
total stretch).
• 2-approximation algorithm for maximum weighted completion time (includ-
ing makespan and maximum stretch).

The first two results on general minisum and minimax objectives imply the other
two as corollaries. The main idea in our algorithms (for both minisum and mini-
max) is a reduction to strict deadline metrics, for which a simple greedy scheme is
shown to achieve a good bicriteria approximation. The reduction from minisum
objectives to deadline metrics is based on a minimum cost flow relaxation, and
“rounding” the optimal flow solution. The reduction from minimax objectives
to deadlines is much simpler and uses a bracket and bisection search.

4 The FlowFlex Scheduling Algorithm

Our scheduling algorithm has three sequential stages. See Figure 3 for an algo-
rithmic overview. In a little more detail, the stages may be described as follows.
1. First we consider each flow j separately, and convert its (general) prece-

dence constraint into a chain (total order) precedence constraint. We create
a pseudo-schedule for each flow that assumes an infinite number of proces-
sors, but respects precedence constraints and the bounds δi on jobs i. Then
we partition the pseudo-schedule into a chain of pseudo-jobs, where each

pseudo-job k corresponds to an interval in the pseudo-schedule with uniform
processor usage. Just like the original jobs, each pseudo-job k specifies a size
sk and bound δk of the maximum number of processors it can be run on.
We note that (unlike jobs) the bound δk of a pseudo-job may be larger than
P . An important property here is that the squashed-area and critical-path
lower bounds of each chain equal those of its original flow.

2. We now treat each flow as a chain of pseudo-jobs, and obtain a malleable
schedule consisting of pseudo-jobs. This stage has two components:
a. We first obtain a bicriteria approximation algorithm in the special case

of metrics based on strict deadlines, employing a natural greedy scheme.
b. We then obtain a bicriteria approximation algorithm for general cost

metrics, by reduction to deadline metrics. For minisum cost functions
we formulate a minimum cost flow subproblem based on the cost metric,
which can be solved efficiently. The solution to this subproblem is then
used to derive a deadline for each flow, which we can use in the greedy
scheme. For minimax cost metrics we do not need to solve an minimun
cost flow problem. We rely instead on a bracket and bisection scheme,
each stage of which produces natural deadlines for each chain. We thus
solve the greedy scheme multiple times.

These performance guarantees are relative to the squashed-area and critical-
path lower bounds of the chains, which, by Stage 1, equal those of the re-
spective original flows. We now have a malleable schedule for the pseudo-jobs
satisfying the chain precedence within each flow as well as the bounds δk.

3. The final stage combines Stages 1 and 2. We transform the malleable schedule
of pseudo-jobs into a malleable schedule for the original jobs, while respecting
the precedence constraints and bounds δi. We refer to this as shape shifting.
Specifically, we convert the malleable schedule of each pseudo-job k into a
malleable schedule for the (portions) of jobs i that comprise it. The full set
of these transformations, over all pseudo-jobs k and flows j, produces the
ultimate schedule.

1: for j = 1, . . . ,m do
2: Run Stage 1 scheme on flow j, yielding pseudo-schedule for chain of pseudo-jobs.
3: Stage 2 scheme begins.
4: if minsum objective then
5: Run algorithm in Figure 6.
6: else
7: Run minimax algorithm in Figure 8.
8: Stage 2 scheme ends.
9: Run Stage 3 shape shifting algorithm using Stages 1 and 2 output.

Fig. 3: High Level Scheme FlowFlex Overview

4.1 Stage 1: General Precedence Constraints to Chains

We now describe a procedure to convert an arbitrary precedence constraint on
jobs into a chain constraint on “pseudo-jobs”. Consider any flow with n jobs

where each job i ∈ [n] has size si and processor bound δi. The precedence
constraints are given by a directed acyclic graph on the jobs.

Construct a pseudo-schedule for the flow as follows. Allocate each job i ∈ [n]
its maximal number δi of processors, and assign job i the smallest start time bi ≥
0 such that for all i1 ≺ i2 we have bi2 ≥ bi1 +

si1
δi1

. The start times {bi}ni=1 can be

computed in O(n2) time using dynamic programming. The pseudo-schedule runs
each job i on δi processors, between time bi and bi+

si
δi

. Given an infinite number
of processors the pseudo-schedule is a valid schedule satisfying precedence.

Next, we will construct pseudo-jobs corresponding to this flow. Let T =
maxni=1(bi + si

δi
) denote the completion time of the pseudo-schedule; observe

that T equals the critical path bound of the flow. Partition the time interval
[0, T] into maximal intervals I1, . . . , Ih so that the set of jobs processed by the
pseudo-schedule in each interval stays fixed. For each k ∈ [h], if rk denotes the
total number of processors being used during Ik, define pseudo-job k to have
processor bound δ(k) := rk and size s(k) := rk · |Ik| which is the total work done
by the pseudo-schedule during Ik. (We employ this subtle change of notation
to differentiate chains from more general precedence constraints.) Note that a
pseudo-job consists of portions of work from multiple jobs; moreover, we may
have rk > P since the pseudo-schedule is defined independent of P . Finally we
enforce the chain precedence constraint 1 ≺ 2 ≺ · · ·h on pseudo-jobs. Notice
that the squashed area and critical path lower bounds remain the same when
computed in terms of pseudo-jobs instead of jobs.9

Fig. 4: FlowFlex Stage 1.

9 Clearly, the total size of pseudo-jobs
∑h
k=1 sk =

∑n
i=1 si the total size of jobs.

Moreover, there is only one maximal chain of pseudo-jobs, which has critical path∑h
k=1

sk
δk

=
∑h
k=1 |Ik| = T , the original critical path bound.

Figure 4(a) illustrates the directed acyclic graph of a particular flow. Fig-
ure 4(b) shows the resulting pseudo-schedule. Figures 4(c) and (d) show the
decomposition into maximal intervals.

4.2 Stage 2: Scheduling Flows with Chain Precedence Constraints

In this section, we consider the malleable scheduling problem on P parallel pro-
cessors with chain precedence constraints and general cost functions. Each chain
j ∈ [m] is a sequence kj1 ≺ kj2 ≺ · · · kjn(j) of pseudo-jobs, where each pseudo-job

k has a size s(k) and specifies a maximum number δ(k) of processors that it can
be run on. We note that the δ(k)s may be larger than P . Each chain j ∈ [m] also
specifies a non-decreasing cost function wj : R+ → R+ where wj(t) is the cost
incurred when chain j is completed at time t. The objective is to find a malleable
schedule on P identical parallel processors that satisfies precedence constraints
and minimizes the total cost.

Malleable schedules for pseudo-jobs (resp. chains of pseudo-jobs) are defined
identically to jobs (resp. flows). To reduce notation, we denote a malleable sched-
ule for chain j by a sequence τ j = 〈τ j1 , . . . , τ jn(j)〉 of schedules for its pseudo-jobs,

where τ jr is a malleable schedule for pseudo-job kjr for each r ∈ [n(j)]. Note that
chain precedence implies that for each r ∈ {1, . . . , n(j) − 1}, the start time of
kjr+1, S(τ jr+1) ≥ C(τ jr), the completion time of kjr. The completion time of this

chain is C(τ j) := C(τ jn(j)).

Unfortunately, as shown in [10], this problem does not admit any finite ap-
proximation ratio unless P=NP. Given this hardness of approximation, we focus
on bicriteria approximation guarantees. We first give a (1, 2)-approximation al-
gorithm when the cost functions are based on strict deadlines. Then we obtain
a (2, 3)-approximation algorithm for arbitrary minisum metrics and a (1, 2)-
approximation algorithm for arbitrary minimax metrics. Importantly, all these
performance guarantees are based on the squashed-area and critical-path lower
bounds of the chains. Since the Stage 1 transformation (flows to chains) main-
tains these same lower bounds, the guarantees in Stage 2 are relative to the
lower bounds of the original flows. So the objective value incurred in Stage 2
is a good approximation to the optimum of the scheduling instance under the
original flows.

Scheduling with Strict Deadlines We consider the problem of scheduling
chains on P parallel processors under a strict deadline metric. That is, each
chain j ∈ [m] has a deadline dj and its cost function is: wj(t) = 0 if t ≤
dj and ∞ otherwise.

We show that a natural greedy algorithm is a good bicriteria approximation.

Theorem 2. There is a (1, 2)-bicriteria approximation algorithm for malleable
scheduling with chain precedence constraints and a strict deadline metric.

Proof Sketch. By renumbering chains, we assume that d1 ≤ · · · ≤ dm. The
algorithm schedules chains in increasing order of deadlines, and within each chain

it schedules pseudo-jobs greedily by allocating the maximum possible number of
processors. A formal description appears as Figure 5. The utilization function
σ : R+ → {0, 1, . . . , P} denotes the number of processors being used by the
schedule at each point in time.

1: Initialize utilization function σ : [0,∞)→ {0, 1, . . . , P} to zero.
2: for j = 1, . . . ,m do
3: for i = 1, . . . , n(j) do
4: Set S(τ ji)← 0 if i = 1 and S(τ ji)← C(τ ji−1) otherwise.

5: Initialize τ ji : [0,∞)→ {0, . . . , P} to zero.
6: For each time t ≥ S(τ ji) in increasing order, set

τ ji (t) ← min
{
P − σ(t) , δ(kji)

}
, (1)

until the area
∫
t≥S(τji)

τ ji (t) dt = s(kji) the size of pseudo-job kji .

7: Set C(τ ji)← max{z : τ ji (z) > 0}.
8: Update utilization function σ ← σ − τ ji .
9: Set C(τ j)← C(τ jn(j)).

10: if C(τ j) > 2 · dj then
11: Instance is infeasible.

Fig. 5: Algorithm for Scheduling Chains with Deadline Metric

Notice that this algorithm produces a valid malleable schedule that respects
the chain precedence constraints and the maximum processor bounds. To prove
the performance guarantee, we show that if there is any solution that meets all
deadlines {d`}m`=1 then the algorithm’s schedule satisfies C(τ j) ≤ 2 · dj for all
chains j ∈ [m]. The main idea is to divide the time C(τ j) taken to complete
any chain j into two types of events according to Equation (1), namely times
where all P processors are fully utilized (i.e. τ ji (t) = P − σ(t)) and times where

a pseudo-job is fully run (i.e. τ ji (t) = δ(kji)). The first event is bounded by the
total area in the earliest j chains and the second by the critical path of chain j,
each of which is at most dj . So chain j’s completion time C(τ j) ≤ 2 · dj .

Minisum Scheduling We now consider the problem of scheduling chains on
P parallel processors under arbitrary minisum metrics. Recall that there are m
chains, each having a non-decreasing cost function wj : R+ → R+, where wj(t)
is the cost of completing chain j at time t. The goal in the minisum problem is
to compute a schedule of minimum total cost. Let opt denote the optimal value
of the given minisum scheduling instance.

Theorem 3. There is a (2, 3+o(1))-bicriteria approximation algorithm for mal-
leable scheduling with chain precedence constraints under minisum cost metrics.

For each chain j ∈ [m], define

Qj := max


n(j)∑
i=1

s(kji)

δ(kji)
,

1

P

n(j)∑
i=1

s(kji)

 , (2)

the maximum of the critical path and area lower bounds. Note that the comple-
tion time of each chain j (even if it is scheduled in isolation) is at least Qj . So
the optimal value opt ≥∑m

j=1 wj(Qj).
We may assume, without loss of generality, that every schedule for these

chains completes by time H := 2m · dmaxj Qje. In order to focus on the main
ideas, we assume here that (i) each cost function wj(·) has integer valued break-
points (i.e. times where the cost changes) and (ii) provide an algorithm with
runtime polynomial in H. In the full version, we show that both these assump-
tions can be removed. Before presenting the algorithm, we recall:

Definition 3 (Minimum cost flow). The input is a network given by a di-
rected graph (V,E) with designated source/sink nodes and demand ρ, where each
arc e ∈ E has a capacity αe and cost (per unit of flow) of βe . A flow satisfies
arc capacities and node conservation (in-flow equals out-flow), and the goal is to
find a flow of ρ units from source to sink having minimum cost.

Our algorithm works in two phases. In the first phase, we treat each chain
simply as a certain volume of work, and formulate a minimum cost flow sub-
problem using the cost functions wjs. The solution to this subproblem is used
to determine candidate deadlines {dj}mj=1 for the chains. Then in the second
phase, we run our algorithm for deadline metrics using {dj}mj=1 to obtain the
final solution. The algorithm is described in Figure 6, followed by a high-level
proof sketch (the details can be found in the full version).

1: Set volume Vj ←
∑n(j)
i=1 s(k

j
i) for each chain j ∈ [m].

2: Define network N on nodes {a1, . . . , am} ∪ {b1, . . . , bH} ∪ {r, r′}, where r is the
source and r′ the sink.

3: Define arcs E = E1 ∪ E2 ∪ E3 ∪ E4 of N as follows (see also Figure 7).

E1 := {(r, aj) : j ∈ [m]}, arc (r, aj) has cost 0, capacity Vj ,

E2 := {(aj , bt) : j ∈ [m], t ∈ [H], t ≥ Qj}, arc (aj , bt) has cost
wj(t)

Vj
, capacity ∞,

E3 := {(bt, r′) : t ∈ [H]}, arc (bt, r
′) has cost 0, capacity P , and

E4 = {(bt+1, bt) : t ∈ [H − 1]}, arc (bt+1, bt) has cost 0, capacity ∞.
4: Compute minimum-cost flow f in N of ρ :=

∑m
j=1 Vj demand from r to r′.

5: Set deadline dj ← arg min
{
t :
∑t
s=1 f(aj , bs) ≥ Vj/2

}
, for all j ∈ [m].

6: Solve this deadline metric instance using Algorithm 5.

Fig. 6: Algorithm for Scheduling Chains with Minisum Metric

r r′

a1

am

b1

bt

bH

cost wi(t)/Vj

cap Vj
cap P

When unspecified,

aj

Arcs E2

Arcs E1 Arcs E3

The dashed arcs are E4.

cost = 0, cap = ∞.

Fig. 7: The Minimum Cost Flow Network.

Proof Sketch of Theorem 3. In the first phase of our algorithm (Steps 1-4) we
treat each chain j ∈ [m] as work of volume Vj , which is the total size of pseudo-
jobs in j. The key property of this phase is that the network flow instance on N
is a relaxation of the original scheduling instance, i.e. the minimum cost flow f
is at most opt. This property relies on the construction of N , where the nodes
ajs correspond to chains and bts correspond to intervals [t − 1, t) in time. The
arcs E1 (together with the demand ρ =

∑m
j=1 Vj) enforce that Vj amount of flow

is sent to each aj , i.e. Vj work is done on each chain j. The arcs E2 ensure that
flow from aj can only go to nodes bt with t ≥ Qj , i.e. chain j can complete only
after Qj . See (2). These arcs also model the minisum cost objective. Finally, arcs
E3 and E4 correspond to using at most P processors at any time.

In the second phase of the algorithm (Steps 5-6) we use the min-cost flow
solution f to obtain a feasible malleable schedule for the m chains. The candidate
deadlines {dj}mj=1 correspond to times when the chains are “half completed” in

the solution f . Since the costs wj(·) are non-decreasing, the cost
∑m
j=1 wj(dj)

of completing chains by their deadlines is at most 2 · cost(f) ≤ 2 · opt. Then,
using the definition of network N , we show that for each chain j, its critical path
is at most dj and the squashed area of earlier-deadline chains is at most 2 · dj .
These two bounds combined with the analysis of the deadline metric algorithm
(Theorem 2) imply that each chain j ∈ [m] is completed by time 3 · dj .

In practice we could round the flow based on multiple values, not just the sin-
gle halfway point described above. This would yield, in turn, multiple deadlines,
and the best result could then be employed.

We note that in some cases the bicriteria guarantees can be combined.

Corollary 1. There is a 6-approximation algorithm for minimizing weighted
completion time in malleable scheduling with chain precedence constraints, in-
cluding average stretch.

Proof. This follows directly by observing that if a 3-speed schedule is executed
at unit speed then each completion time scales up by a factor of three.

Minimax Scheduling Here we consider the problem of scheduling chains on P
parallel processors under minimax metrics. Recall that there are m chains, each
having a non-decreasing cost function wj : R+ → R+. The goal is to compute a
schedule that minimizes the maximum cost of the m chains.

Theorem 4. There is a (1, 2+o(1))-bicriteria approximation algorithm for mal-
leable scheduling with chain precedence constraints under minimax cost metrics.

Recall the definition of Qjs (maximum of critical path and area lower bounds)
from (2); and H = 2m · dmaxmj=1Qje an upper bound on the length of any
schedule. The algorithm given below is based on a bracket and bisection search
that is a common approach to many minimax optimization problems, for example
[12]. It also relies on the algorithm for deadline metrics. See Figure 8.

1: Set lastsuccess← maxmj=1 wj(H) and lastfail← 0.
2: while lastsuccess− lastfail > 1 do
3: Set L← (lastsuccess+ lastfail)/2.
4: for j = 1, . . . ,m do
5: Compute deadline Dj := arg max{t : wj(t) ≤ L} for each chain j ∈ [m].
6: Solve this deadline-metric instance using Algorithm 5.
7: if schedule is feasible with 2-speed then
8: Set lastsuccess← L.
9: else

10: Set lastfail← L.
11: Output the schedule corresponding to lastsuccess.

Fig. 8: Algorithm for Scheduling Chains with Minimax Objective

Proof. Let opt denote the optimal minimax value of the given instance. Clearly,
0 ≤ opt ≤ maxj wj(H). (We assume that the cost functions wjs are integer
valued: this can always be ensured at the loss of a 1 + o(1) factor.)

Observe that for any value L ≥ opt, the deadline instance in Step 5: the opti-
mal schedule itself must meet the deadlines {Dj}. Combined with the deadline-
metric algorithm (Theorem 2), it follows that our algorithm’s schedule for any
value L ≥ opt is feasible using 2-speed. Thus the final lastsuccess value is at
most opt, which is also an upper bound on the algorithm’s minimax objective.

As in Corollary 1, the bicriteria guarantees can be combined for some metrics.

Corollary 2. There is a 2-approximation algorithm for minimizing maximum
completion time in malleable scheduling with chain precedence constraints, in-
cluding makespan and maximum stretch.

4.3 Stage 3: Converting Pseudo-Job Schedule into Valid Schedule

The final stage combines the output of Stages 1 and 2, converting any malleable
schedule of pseudo-jobs and chains into a valid schedule of the original jobs and

flows. We consider the schedule of each pseudo-job k separately. Using a general-
ization of McNaughton’s Rule [17], we will construct a malleable schedule for the
(portions of) jobs comprising pseudo-job k. The original precedence constraints
are satisfied since the chain constraints are satisfied on pseudo-jobs, and the jobs
participating in any single pseudo-job are independent.

Consider any pseudo-job k that corresponds to interval Ik in the pseudo-
schedule (recall Stage 1), during which jobs S ⊆ [n] are executed in parallel
for a total of rk =

∑
i∈S δi processors. Consider also any malleable schedule of

pseudo-job k, that corresponds to a histogram σ (of processor usage) having area
sk = |Ik| · rk and maximum number of processors at most rk.

We now describe how to shape shift the pseudo-schedule for S in Ik into a valid
schedule given by histogram σ. The idea is simple: Decompose the histogram σ
into intervals J of constant numbers of processors. For each interval J ∈ J ,
having height (number of processors) σ(J), we will schedule the work from a

time |J|·σ(J)rk
sub-interval of Ik; observe that the respective areas in σ and Ik are

equal. Since
∑
J∈J |J |·σ(J) = sk = |Ik|·rk, taking such schedules over all J ∈ J

gives a full schedule for Ik. For a particular interval J , we apply McNaughton’s
Rule to schedule the work from its Ik sub-interval. This rule was extended in
[10] to cover a scenario more like ours. It has linear complexity. McNaughton’s
Rule is basically a wrap-around scheme: We order the jobs, and for the first job
we fill the area horizontally, one processor at a time, until the total amount of
work involving that job has been allotted. Then, starting where we left off, we
fill the area needed for the second job, and so on. All appropriate constraints
are easily seen to be satisfied.

Figure 9(a) shows a Stage 1 pseudo-schedule and highlights the first pseudo-
job (interval I1). The lowest histogram σ of Figure 9(b) illustrates the corre-
sponding portion for this pseudo-job in the Stage 2 malleable greedy schedule;
the constant histogram ranges are also shown. The equal area sub-intervals in
I1 are shown as vertical lines in Figure 9(a). Applying McNaughton’s Rule to
the first sub-interval of I1 we get the schedule shown at the bottom-left of Fig-
ure 9(b). The scheme then proceeds with subsequent sub-intervals.

Fig. 9: FlowFlex Stage 3: Shape Shifting.

5 Experimental Results

5.1 Simulation Experiments

In this section we describe the performance of our FlowFlex algorithm via a
variety of simulation experiments. We consider two competitors, Fair [26] and
FIFO. We will compare the performance of each of these three in terms of the
best lower bounds we can find for these NP-hard problems. (There is no real
hope of finding the true optimal solutions in a reasonable amount of time, but
these lower bounds will at least give pessimistic estimates of the quality of the
FlowFlex, Fair and FIFO schedules.) We will consider nearly all combinatorial
choices of scheduling metrics, from five basic types. They are based on either
completion time, number of tardy jobs, tardiness and SLA step functions. (See
Figure 2.) They can be either weighted or non-weighted, and the problem can
be to minimize the sum (and hence average) or the maximum over all flows.
So, for example, average and weighted average completion time are included
for the minisum case. So is average stretch, which is simply completion time
weighted by the reciprocal of the amount of work associated with the flow.
Similarly, makespan (which is maximum completion time), maximum weighted
completion time, and thus maximum stretch is included for the minimax case.
Weighted or unweighted numbers of tardy jobs, total tardiness, total SLA costs
are included in the minisum case. Maximum tardy job cost, maximum tardiness
and maximum SLA cost are included in the minimax case. (A minimax problem
involving unit weight tardy jobs would simply be 1 if tardy flows exist, and 0
otherwise, so we omit that metric.) We note that that these experiments are
somewhat unfair to both Fair and FIFO, since both are completely agnostic
with respect to the metrics we consider. But they do at least make sense, when
implemented as ready-list algorithms. (In other words, they simply schedule all
ready jobs by either Fair or FIFO rules, repeating as new jobs become ready.)
We chose not to compare FlowFlex to Flex, because that algorithm does optimize
to a particular metric, and it is not at all obvious how to “prorate” the flow-level
metric parameters into a set of per job parameters.

The calculation of the lower bound depends on whether the problem is min-
isum or minimax. For minisum problems the solution to the minimum cost flow
problem provides a bound. For minimax problems the maximum of the critical
path objective function values provides a lower bound. But we can also po-
tentially improve this bound based on the solution found via the bracket and
bisection algorithm. We perform an additional bisection algorithm between the
original lower bound and our solution, since we know that the partial sums of
the squashed area bounds must be met by the successive deadlines.

Each simulation experiment was created using the following methodology.
The number of flows was chosen from a uniform distribution between 5 and 20.
The number of jobs for a given flow was chosen from a uniform distribution
between 2 and 20. These jobs were then assumed to be in topological order
and the precedence constraint between jobs j1 and j2 was chosen based on a
probability of 0.5. Then all jobs without successors were assumed to precede the
last job in the flow, to ensure connectivity. Sampling form a variety of parameters

governed whether the flow itself was “big” in volume, and also whether the jobs
in that flow were “tall” and/or “wide” (that is, having maximum height equal
to the number of slots). Weights in the case of completion time, number of tardy
jobs and tardiness were also chosen from a uniform distribution between 1 and 10.
The one exception was for stretch metrics, where the weights are predetermined
by the size of the flow.) Similarly, in the case of SLA metrics, the number of
steps and the incremental step heights were chosen from similar distributions
with a maximum of 5 steps. Single deadlines for the tardy and tardiness cases
was chosen so that it was possible to meet the deadline, with a uniform random
choice of additional time given. Multiple successive deadlines for the SLA case
were chosen similarly. The number of slots was set to 25.

Fig. 10: Minisum Simulation Results: Average and Worst Case.

Fig. 11: Minimax Simulation Results: Average and Worst Case.

Figure 10 illustrates both average and worst case performance (given 25
simulation experiments each) for 9 minisum metrics. Each column represents
the ratio of the FlowFlex, Fair or FIFO algorithm to the best lower bound
available.10 Thus each ratio must be at least 1. Ratios close to 1 are by definition
very good solutions, but, of course, solutions with poorer ratios may still be close

10 To deal with lower bounds of 0, which is possible for some metrics, we added 1 to
both the numerator and denominator. The effect is typically quite modest.

to optimal. Note that FlowFlex performs significantly better than either Fair
or FIFO, and often is close to optimal. FIFO performs particularly poorly on
average stretch, because the weights can cause great volatility. FlowFlex also does
dramatically better than either Fair or FIFO on the tardiness metrics. Similarly,
Figure 11 illustrates the comparable minimax experiments, for those 8 metrics
which make sense. Here one sees that makespan is fine for all schemes, which
is not particularly surprising. But FlowFlex does far better than either Fair or
FIFO on all the others, and some of these are very difficult problems. Again,
some of the Fair and FIFO ratios can be quite bad. In all 8 sets of experiments,
FlowFlex is within 1.26 of “optimal” on average, and generally quite a lot better.

5.2 Cluster Experiments

We have prototyped FlowFlex on the IBM Platform Symphony MapReduce
framework with IBM’s BigInsights product [5].

We used a workload based on the standard Hadoop Gridmix2 benchmark.
For each experiment we ran 10 flows, each consisting of 2 to 10 Gridmix jobs
of random sizes, randomly wired into a dependency graph by the same basic
procedure we used for simulation experiments. The experiment driver program
submitted a job only when it was ready. That is, all of the jobs it depended upon
were completed. We ran two sets of experiments: one where all flows arrived
at once and another where flows arrived at random intervals chosen from an
exponential distribution. For each type of experiment we ran three different
random sets of arrival times and job sizes.

Fig. 12: Cluster Experiments, Gridmix2-based Live Benchmark.

In these cluster experiments, the schedulers are running in something more
like their natural environment. Specifically, they are epoch-based: Every epoch
(roughly 2 seconds) they examine the newly revised problem instance. Thus the
job sizes for FlowFlex change from epoch to epoch. And, of course, flows and jobs
arrive and complete. FlowFlex then produces complete (theoretical) schedules for
internal consumption, but also, more importantly, initial allocation suggestions.
This is then implemented to the extent possible by the Assignment Layer.

A few comments should be mentioned here. First, we have not yet focused on
integrating schemes for estimating the amount of work of each job in the various
flows. We do know the number of tasks per job, however, and estimate work
for unstarted jobs by using a default work prediction per task. For running jobs
we continue to refine our work estimates by extrapolating based on data from
the completed tasks. All of this can be improved in the future, for example by
incorporating the techniques in [19]. Better estimates should improve the quality
of our FlowFlex scheduler. The second comment is that we are using a slight
variant of FlowFlex for minisum problems. This variant avoids the minimum cost
flow problem. It is faster and approximately as effective. The third comment is
that the Reduce phase is ready precisely when some fixed fraction of the Map
phase tasks preceeding it have finished. FlowFlex simply coalesces all such ready
tasks within a single MapReduce job and adjusts the maxima accordingly.

We compared FlowFlex to Fair and FIFO running for submitted jobs. (They
were not aware of jobs that were not yet submitted.) Figure 12 reports the
relative performance improvement of FlowFlex for average completion time,
makespan, and average and maximum stretch for both sets of experiments. Es-
sentially, we are evaluating the four most commonly used scheduling metrics.

6 Conclusion

In this paper we have introduced FlowFlex, a MapReduce scheduling algorithm
of both theoretical and practical interest. Theoretically, we have extended the
literature on malleable parallel scheduling with precedence constraints, linear
speedup and processor maxima. We have provided a unified three-stage algo-
rithm for any scheduling metric, and given worst-case performance bounds.
These include approximation guarantees where possible, and bicriteria approxi-
mation guarantees where not. Practically, FlowFlex is the natural and ultimate
extension of Flex, a MapReduce scheduler for singleton jobs already in use in
IBM’s BigInsights. We have evaluated FlowFlex experimentally, showing its ex-
cellent average case performance on all metrics. And we have shown the superi-
ority of FlowFlex to natural extensions of both Fair and FIFO.

References

1. P. Agrawal, D. Kifer and C. Olston: Scheduling Shared Scans of Large Data
Files, Proceedings of VLDB, 2008.

2. A. Balmin, K. Hildrum, V. Nagarajan and J. Wolf, Malleable Scheduling for
Flows of MapReduce Jobs, Research Report RC25364, IBM Research, 2013.

3. J. Berlinska and M. Drozdowski, Scheduling Divisible MapReduce Computa-
tions. Journal of Parallel and Distributed Computing, 71, 450–459, 2011.

4. K. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C. Kanne, F.
Ozcan and E. Shekita: Jaql: A Scripting Language for Large Scale Semistruc-
tured Data Analysis, Proceedings of VLDB, 2011.

5. BigInsights: www-01.ibm.com/software/data/infosphere/biginsights/
6. E. Coffman, M. Garey, D. Johnson and R. Tarjan: Performance Bounds for

Level-Oriented Two-Dimensional Packing Algorithms. SIAM Journal on Com-
puting, 9(4), 808–826, 1980.

7. W. De Pauw, J. Wolf and A. Balmin, Visualizing Jobs with Shared Resources
in Distributed Environments, IEEE Working Conference on Software Visualiza-
tion, Eindhoven, Holland, 2013.

8. J. Dean, J. and S. Ghemawat: Mapreduce: Simplified Data Processing on Large
Clusters. ACM Transactions on Computer Systems, 51(1),107–113, 2008.

9. M. Drozdowski, Scheduling for Parallel Processing, Springer, 2009.
10. M. Drozdowski and W. Kubiak, Scheduling Parallel Tasks With Sequential

Heads and Tails, Annals of Operations Research, 90, 221–246, 1999.
11. A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanamurthy, C. Olston,

B. Reed, S. Srinivasan and U. Srivastava: Building a High-Level Dataflow System
on Top of MapReduce: The Pig Experience, Proceedings of VLDB, 2009.

12. D.S. Hochbaum and D.B. Shmoys, A Unified Approach to Approximation Al-
gorithms for Bottleneck Problems, J. ACM, 33(3), 533-550, 1986.

13. B. Kalyanasundaram and K. Pruhs, Speed is as Powerful as Clairvoyance, J.
ACM, 47(4), 2000, 617-643.

14. H. Karloff, S. Suri and S. Vassilvitskii, A Model of Computation for MapReduce,
In SODA, 938-948, 2010.

15. P. Koutris and D. Suciu, Parallel evaluation of conjunctive queries, In PODS,
223-234, 2011.

16. J. Leung, Handbook of Scheduling, Chapman and Hall/CRC, 2004.
17. R. McNaughton, Scheduling with Deadlines and Loss Functions, Management

Science, 6(1), 1–12, 1959.
18. B. Moseley, A. Dasgupta, R. Kumar and T. Sarlós, On Scheduling in Map-

Reduce and Flow-Shops, In SPAA, 289-298, 2011.
19. A. Popescu, V. Ercegovac, A. Balmin, M. Branco and A. Ailamaki, Same

Queries, Different Data: Can We Predict Runtime Performance?, In ICDE Work-
shops 2012: 275-280

20. A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, N.Zhang, S. Anthony, H.
Liu and R. Murthy, Hive - a Petabyte Scale Data Warehouse using Hadoop, in
ICDE 2010: 996-1005

21. P. Schuurman and G.J. Woeginger, A Polynomial Time Approximation Scheme
for the Two-Stage Multiprocessor Flow Shop Problem, Theor. Comput. Sci.,
237(1-2), 105-122, 2000.

22. U. Schwiegelshohn, W. Ludwig, J. Wolf, J. Turek and P. Yu, Smart SMART
Bounds for Weighted Response Time Scheduling, SIAM Journal on Computing,
28(1), 237–253, 1999.

23. J. Turek, J. Wolf and P. Yu: Approximate Algorithms for Scheduling Paralleliz-
able Tasks, in SPAA, 1992.

24. J. Wolf, A. Balmin, D. Rajan, K. Hildrum, R. Khandekar, S. Parekh, K.-L. Wu
and R. Vernica, On the Optimization of Schedules for MapReduce Workloads
in the Presence of Shared Scans, VLDB Journal, 21(5), 2012.

25. J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, R. Kumar, S. Parekh, K.-L. Wu
and A. Balmin, FLEX: A Slot Allocation Scheduling Optimizer for MapReduce
Workloads, in Middleware, 2010.

26. M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Schenker and I. Stoica, Job
Scheduling for Multi-User MapReduce Clusters, UC Berkeley Technical Report
EECS-2009-55, 2009.

27. M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy, S. Shenker and I. Stoica:
Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in
Cluster Scheduling, in EuroSys, 2010.

