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Summary. In enterprises, business process models are used for capturing as-is
business processes. During process enactment correct documentation is important
to ensure quality, to support compliance analysis, and to allow for correct account-
ing. Missing documentation of performed activities can be directly translated into
lost income, if accounting is based on documentation. Still, many processes are
manually documented in enterprises. As a result, activities might be missing from
the documentation, even though they were performed.
In this paper, we make use of process knowledge captured in process models, and
provide a method to repair missing entries in the logs. The repaired logs can be
used for direct feedback to ensure correct documentation, i.e., participants can
be asked to check, whether they forgot to document activities that should have
happened according to the process models. We realize the repair by combining
stochastic Petri nets, alignments, and Bayesian networks. We evaluate the results
using both synthetic data and real event data from a Dutch hospital.

Key words: documentation quality, missing data, stochastic Petri nets, Bayesian
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1 Introduction

Enterprises invest a lot of time and money to create business process models in order
to use them for various purposes: documentation and understanding, improvement,
conformance checking, performance analysis, etc. The modeling goal is often to capture
the as-is processes as accurately as possible. In many cases, process activities are
performed and documented manually. We call the documentation of activities in a
business process event logs. When event logs are subject to manual logging, data quality
problems are common, resulting in incorrect or missing events in the event logs [1]. We
focus on the latter and more frequent issue, as in our experience it is often the case that
activities are performed, but their documentation is missing.

For an enterprise, it is crucial to avoid these data quality issues in the first place.
Accounting requires activities to be documented, as otherwise, if documentation is
missing, potential revenues are lost. In the healthcare domain, for example, we encoun-
tered the case that sometimes the activity preassessment of a patient is not documented,
although it is done always before treatment. In this paper, we provide a technique to



automatically repair an event log that contains missing entries. The idea is to use repaired
event logs to alert process participants of potential documentation errors as soon as
possible after process termination. We employ probabilistic models to derive the most
likely timestamps of missing events, i.e., when the events should have occurred based
on historical observations. This novel step assists process participants in correcting
missing documentation directly, or to identify the responsible persons, who performed
the activities in question.

State-of-the-art conformance checking methods [2] do not consider timing aspects.
In contrast, we provide most likely timestamps of missing events. To achieve this, we
use stochastically enriched process models, which we discover from event logs [3]. As
a first step, using path probabilities, it is determined which are the most likely missing
events. Next, Bayesian networks [4] capturing both initial beliefs of the as-is process and
real observations are used to compute the most likely timestamp for each inserted event.
Inserted events are marked as artificial, as long as they are not corrected by the process
participants. An extended version of this paper is available as a technical report [5].

The remainder of this paper is organized as follows. First, we present background on
missing data methods along other related works in Section 2. Afterwards, preliminaries
are given in Section 3. Our approach for repairing individual traces in an event log is
described in Section 4 followed by a presentation of the algorithmic details in Section 5.
An evaluation of our approach using both synthetic and real-life event data is given in
Section 6. Finally, conclusions are presented in Section 7.

2 Background and Related Work

Missing data has been investigated in statistics, but not in the context of conformance
checking of business processes. There are different types of missing data: missing com-
pletely at random (MCAR), missing at random (MAR), and not missing at random
(NMAR), cf. the overview by Schafer and Graham in [6]. These types refer to the
independence assumptions between the fact that data is missing (missingness) and the
data values of missing and observed data. MCAR is the strongest assumption, i.e., miss-
ingness is independent of both observed and missing data. MAR allows dependencies
to observed data, and NMAR assumes no independence, i.e., captures cases where
the missingness is influenced by the missing values, too. Dealing with NMAR data is
problematic, as it requires a dedicated model for the dependency of missingness on
the missing values, and is out of scope of this paper. We assume that data is MAR,
i.e., whether data is missing does not depend on the value of the missing data, but may
depend on observed data values.

Over the years, multiple methods have been proposed to deal with missing data,
cf. [6]. However, these techniques are focusing on missing values in surveys and are not
directly applicable to event logs, as they do not consider control flow relations in process
models and usually assume a fixed number of observed variables.

Related work on missing data in process logs is scarce. Nevertheless, in a recent
technical report, Bertoli et al. [7] propose a technique to reconstruct missing events in
process logs. The authors tackle the problem by mapping control flow constraints in
BPMN models to logical formulae and use a SAT-solver to find candidates for missing



events. In contrast, we use an alignment approach based on Petri nets, allowing us to
deal with loops and probabilities of different paths. We also consider the time of the
missing events, which allows performance analysis on a probabilistic basis.

Some techniques developed in the field of process mining provide functionality that
enables analysis of noisy or missing event data. In process mining, the quality of the
event logs is crucial for the usefulness of the analysis results and low quality poses
a significant challenge to the algorithms [1]. Therefore, discovery algorithms which
can deal with noise, e.g., the fuzzy miner [8], and the heuristics miner [9], have been
developed. Their focus is on capturing the common and frequent behavior and abstract
from any exceptional behavior. These discovery algorithms take the log as granted and
do not try to repair missing events.

Another example is the alignment of traces in the context of conformance check-
ing [2]. Here, the aim is to replay the event log within a given process model in order
to quantify conformance by counting skipped and inserted model activities. We build
upon this technique and extend it to capture path probabilities as gathered from historical
observations. Note that the lion’s share of work focuses on repairing models based on
logs, rather than logs based on models. Examples are the work by Fahland and van
der Aalst [10] that uses alignments to repair a process model to decrease inconcistency
between model and log, and the work by Buijs et al. [11], which uses genetic mining to
find similar models to a given original model.

3 Preliminary Definitions and Used Methods

In this section, we give a formal description of the used concepts, to describe the approach
to the repair of missing values in process logs. We start with event logs and Petri nets.

Definition 1 (Event logs). An event log over a set of activities A and time domain TD is
defined as LA,TD = (E,C, α, γ, β,�), where:

– E is a finite set of events.
– C is a finite set of cases (process instances).
– α : E → A is a function relating each event to an activity.
– γ : E → TD is a function relating each event to a timestamp.
– β : E → C is a surjective function relating each event to a case.
– �⊆ E × E is the succession relation, which imposes a total ordering on the events

in E. We use e2 � e1 as shorthand notation for (e2, e1) ∈�. We call the ordered set
of events belonging to one case a “trace”.

Definition 2 (Petri Net). A Petri net is a tuple PN = (P,T, F,M0) where:
– P is the set of places.
– T is the set of transitions.
– F ⊆ (P × T ) ∪ (T × P) is the set of connecting arcs representing flow relations.
– M0 ∈ P→ IN+

0 is the initial marking.

There have been many extensions of Petri nets to capture time, both deterministic
and stochastic. In [12], Ciardo et al. give an overview of different classes. In terms of this
classification, we use stochastic Petri nets with generally distributed transition durations.



Definition 3 (GDT_SPN). A stochastic Petri net with generally distributed transition
durations is a seven-tuple: GDT_SPN = (P,T,P,W, F,M0,D), where (P,T, F,M0) is
the underlying Petri net. Additionally:

– The set of transitions T = Ti ∪ Tt is partitioned into immediate transitions Ti and
timed transitions Tt.

– P : T → IN+
0 is an assignment of priorities to transitions, where ∀t ∈ Ti : P(t) ≥ 1

and ∀t ∈ Tt : P(t) = 0.
–W : Ti → IR+ assigns probabilistic weights to the immediate transitions.
– D : Tt → D(x) is an assignment of arbitrary probability distribution functions D(x)

to timed transitions, capturing the random durations of the corresponding activities.

Although this definition of GDT_SPN models allows us to assign arbitrary duration
distributions to timed transitions, in this work, we assume normally distributed durations.
Note that normal distributions are defined also in the negative domain, which we need to
avoid. Therefore, we assume that most of their probability mass is in the positive domain,
such that errors introduced by correction of negative durations are negligible.
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Fig. 1: Example unstructured free-choice GDT_SPN model.

An example GDT_SPN model is shown in Fig. 1 and has immediate transitions
(bars), as well as timed transitions (boxes). In the figure, immediate transitions are
annotated with their weights, e.g., the process will loop back with a probability of 0.25,
and leave the loop with 0.75 probability. We omitted priorities and define priority 1
for all immediate transitions. The timed transitions are labeled from A to H and their
durations are normally distributed with the parameters annotated underneath. In this
example, activity A’s duration is normally distributed with a mean of 20, and a standard
deviation of 5. Note that the model is sound and free-choice, and contains parallelism,
choices, and a loop.

Because we allow generally distributed durations in the model, we require an execu-
tion policy [13]. We use race semantics with enabling memory as described in [13]. This
means that concurrently enabled transitions race for the right to fire, and transitions will
only be reset, if they get disabled by another transition firing.

For our purposes, we reuse the existing work in the ProM framework that extracts
performance information of activities from an event log and enriches plain Petri nets to
GDT_SPN models [3]. In [3], we discuss the challenges for discovering GDT_SPN mod-
els with respect to selected execution semantics of the model. The discovery algorithm
uses replaying techniques, cf. [14], to gather historical performance characteristics and
enriches a given Petri net to a GDT_SPN model with that performance information.



3.1 Cost-Based Fitness Alignment

(a) example log:

t1 : 〈A, C, D, B, E, F, G, H〉
t2 : 〈E, G, H〉

(b) alignment for trace t1:

log A C D B E F G H
model A C D B E F G H

(c) alignments for trace t2:

(c.1)
log � E � G H
model B E F G H

(c.2)
log � � E G H
model B F E G H

Fig. 2: Example log and possible
alignments for the traces.

Consider the example log in Fig. 2a consisting of
two traces t1, and t2. To check, whether the trace
fits to the model, we need to align them. We reuse
the technique described by Adriansyah et al. in [2],
which results in a sequence of movements that re-
play the trace in the model. These movements are ei-
ther synchronous moves, model moves, or log moves.
A formal description of the alignment technique is
provided in [2] and remains out of scope of this
paper. We only give the intuition. For an alignment,
the model and the log are replayed side by side to
find the best mapping of events to activities in the
model. Thereby, a synchronous move represents an
event in the log that is allowed in the respective state
in the model, such that both the model and the log progress one step together. However,
if an activity in the model or an event in the log is observed with no counterpart, the
model and log have to move asynchronously. Then, a model move represents an activity
in the model, for which no event exists in the log at the current position and conversely,
a log move is an event in the log that has no corresponding activity in the model that is
enabled in the current state during replay. It is possible to assign costs to the different
types of moves for each activity separately.

Fig. 2 shows some example alignments of the model in Fig. 1 and log in Fig. 2a.
In Fig. 2b, a perfect alignment is depicted for trace t1, i.e., the trace can be replayed
completely by a sequence of synchronous moves. A closer look at trace t2 and the model
in Fig. 1 reveals that the two events B, and F are missing from the trace, which might
have been caused by a documentation error. Because activity F is parallel to E, there
exist two candidate alignments for t2, as shown in Fig. 2c. The� symbol denotes a step
that is used to show empty moves, i.e., modeled and recorded behavior disagree. In this
example, there are two model moves necessary to align the trace t2 to the model.

Summarizing, the alignment technique described in [2, 14] can be used to find the
cost-optimal matches between a trace in a log and a model. However, the approach only
considers the structure of the model and the sequence of events encountered in the log
without considering timestamps or probabilities. In this paper, we enhance the alignment
technique to also take path probabilities into account.

3.2 Bayesian Networks

GDT_SPN models capture probabilistic information about the durations of each activity
in the process. We use Bayesian networks [4, 15] to capture the dependencies between
the random durations given by the GDT_SPN model structure. Fig. 3 shows an example
Bayesian network that captures the relations for a part of the process model in Fig. 1. The
arcs between activities B, F, and G, and between B and E, are sequential dependencies.
Note that there is no direct dependency between F and E, since they are executed in
parallel, and we assume that the durations of these activities are independent. More



generally, a Bayesian network is a directed acyclic graph and captures dependencies
between random variables in a probabilistic model [15]. An arc from a parent node to
a child node indicates that the child’s probability distribution depends on the parent’s
values.

B

F E

G

Fig. 3: Bayesian network
for a fragment of Fig. 1.

We use Bayesian networks to reason about our updated
probabilistic beliefs, i.e., the posterior probability distribu-
tions in a model, once we assigned specific values to some
of the random variables. Suppose that we observe trace t2
in the log in Fig. 2a, with times γ(E) = 30, γ(G) = 35,
and γ(H) = 40. Initially, the random variable of node B in
the example has a duration distribution of N(16, 32), i.e., a
normally distributed duration with mean 16, and standard
deviation 3. However, after inserting the observed times of events E, and event G into
the network in Fig. 3, we can calculate the resulting posterior probability distributions
by performing inference in the Bayesian network. In this case, the posterior probability
distribution of B isN(14.58, 1.832). Note that by inserting evidence, i.e., constraining the
variables in a Bayesian network, the posterior probability distributions get more accurate.
In this example, the standard deviation is reduced from 3 to 1.83. The intuition is that
we narrow the possible values of the unobserved variables to be in accordance with the
observations in the log. There exist algorithms for Bayesian networks automating this
process [16]. A complete explanation of Bayesian networks, however, is not the aim in
this paper, and the interested reader is referred to the original work by Pearl [4] and the
more recent text book by Koller and Friedman [15].

4 Repairing Events in Timed Event Logs

In this paper, we propose a method to probabilistically restore events in logs which
contain missing events. In particular, we are interested in knowing when things happened
most likely. The problem that we try to solve is to identify the parts in the model that are
missing from the trace (which) and also to estimate the times of the activities in those
parts (when).

In theory, we need to compare the probabilities of all possible paths in the model
that are conforming to the trace. Each path may allow for different assignments of
events in the trace to the activities in the model. For example, for trace t2: 〈E,G,H〉
and the model in Fig. 1 two cost-minimal paths through the model are given by the
alignments in Fig. 2.c. But, there might be further possibilities. It is possible that a
whole iteration of the loop happened in reality, but was not documented. In that case, the
path 〈B, E, F,G, A,C,D,H〉 would also be an option to repair trace t2. Furthermore, the
second iteration could have taken another path in the model: 〈B, E, F,G, B, F, E,G,H〉.
In this case it is not clear to which iteration the events E and G belong. In general, there
are infinitely many possible traces for a model that contains loops.

In order to compare the probabilities of these paths, we need to compute the probabil-
ity distributions of the activities on the paths and compare which model path and which
assignment explains the observed events’ timestamps best. To reduce the complexity,
we propose to decompose the problem into two separate problems, i) repair structure



Repair Logs Method

Repair
Structure

Insert
Time

Repaired log

Log with
missing entries

GDT_SPN
model

Fitting Log
with missing
time entries

Fig. 4: We divide the problem into two subproblems: repairing the control flow, and
repairing the timestamps.

and ii) insert time, as sketched in Fig. 4. The method uses as input a log that should be
repaired and a GDT_SPN model specifying the as-is process.

Note that by choosing this approach, we accept the limitation that missing events on
a path can only be detected, if at least one event in the log indicates that the path was
chosen.

5 Realization of Repairing Logs

In this section, we explain a realization of the method described above. For this realiza-
tion, we make the following assumptions:

– The supported models, i.e., the GDT_SPN models, are sound, cf. [17], and free-
choice, cf. [18], but do not necessarily need to be (block-)structured. This class of
models captures a large class of process models and does not impose unnecessary
constraints.

– The GDT_SPN model is normative, i.e., it reflects the as-is processes in structural,
behavioral and time dimension.

– Activity durations are independent and have normal probability distributions, con-
taining most of their probability mass in the positive domain.

– The recorded timestamps in the event logs are correct.
– Each trace in the log has at least one event, and all events contain a timestamp.
– The activity durations of a case do not depend on other cases, i.e., we do not consider

the resource perspective and there is no queuing.
– We assume that data is MAR, i.e., that the probability that an event is missing from

the log does not depend on the time values of the missing events.
The algorithm is depicted in Fig. 5, and repairs an event log as follows.

For each trace, we start by repairing the structure. This becomes trivial, once we
identified a path in the model that fits our observations in the trace best. The notion of
cost-based alignments [2] that we introduced in Section 3, is used for this part. It tells us
exactly:
a) when the model moves synchronously to the trace, i.e., where the events match
b) when the model moves alone, i.e., an event is missing from the trace
c) when the log moves alone, i.e., there is an observed event that does not fit into the

model at the recorded position
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Fig. 5: The repair approach described in more detail.

We set the costs of synchronous and model moves to 0, and the cost of log moves to
a high value, e.g., 1000. The alignment algorithm returns all paths through the model,
where the events in the trace are mapped to a corresponding activity. This works well for
acyclic models. For cyclic models, where infinite paths through a model exist, we need
to assign some small costs to model moves, in order to limit the number of resulting
alignments that we compare in the next step.

In the next step, cf. box Pick alignment in Fig. 5, we decide which of the returned
cost-minimal alignments to pick for repair. The algorithm replays the path taken through
the model and multiplies the probabilities of the decisions made along the path. This
allows us to take probabilistic information into account when picking an alignment and
enhances the alignment approach introduced in [2]. We also consider that, for one trace,
paths with many forgotten activities are less likely than others. That is, we allow to
specify the parameter of the missing data mechanism, i.e., the rate of missingness. We
let the domain expert define the probability to forget an event. The domain expert can
specify how to weigh these probabilities against each other, i.e., to give preference to
paths with higher probability, i.e., determined by immediate transition weights, or to
paths with less missing events that are required to be inserted into the trace. This novel
post-processing step on the cost-optimal alignments allows to control the probability of
paths in the model that are not reflected in a log by any event.

For example, consider a loop in a GDT_SPN model with n activities in the loop. By
setting the chance of missing entries low, e.g., setting the missingness probability to 0.1
(10% chance that an event is lost), an additional iteration through the loop will become
more unlikely, as its probability will be multiplied by the factor 0.1n. This factor is the
probability that all n events of an iteration are missing. We select the alignment with
the highest probability. Once we decided on the structure of the repaired trace, we can
continue and insert the times of the missing events in the trace, i.e., the identified model
moves.

To insert the timing information, it is not enough to look at the GDT_SPN model
alone. We need to find a way to add the information that we have for each trace, i.e., the



timestamps of the recorded events. Fortunately, as mentioned in Section 3, there exists a
solution for this task: Inference in Bayesian networks. Therefore, we convert the GDT
_SPN model into a Bayesian network to insert the evidence given by the observations to
be able to perform the inference.

In the previous step, we identified a probable path through the GDT_SPN model.
With the path given, we eliminate choices from the model by removing branches of the
process model that were not taken. We unfold the net from the initial marking along the
chosen path. Consider trace t3 = 〈A,D,C,C,D,H〉 and assume, we picked the following
alignment:

log A D C ⊥ C D H
model A D C A C D H

Then, the unfolded model looks like Fig. 6, where the black part marks the path taken
in the model. The grey part is removed while unfolding. Note that the unfolded model
still contains parallelism, but it is acyclic. Thus, we can convert it into a Bayesian network
with a similar structure, where the random variables represent timed transitions. As, due
to multiple iterations of loops, activities can happen multiple times, we differentiate
them by adding an index of their occurrence, e.g., A1 and A2 correspond to the first and
second occurrence of the transition A. The unfolding is done by traversing the model
along the path dictated by the alignment and keeping track of the occurrences of the
transitions.

A1

C1

D10.5 N(20,5)

N(10,2)

N(9,3)

1

H1

0.75 N(5,1)

A2

C2

D20.5 N(20,5)

N(10,2)

N(9,3)

1

1

1

Fig. 6: Unfolded model in Fig. 1 for path 〈A,D,C, A,C,D,H〉.

We transform the unfolded model into a Bayesian network with a similar structure.
Most immediate transitions are not needed in the Bayesian network, as these do not take
time and no choices need to be made in the unfolded process. Only immediate transitions
joining parallel branches will be kept.

Fig. 7 shows transformation patterns for sequences, parallel splits, and synchronizing
joins. These are the only constructs remaining in the unfolded form of the GDT_SPN
model. In the resulting Bayesian network, we use the sum and max relations to define the
random variables given their parents. More concretely, if timed transition ti is followed by
timed transition t j in a sequence, we can convert this fragment into a Bayesian network
with variables Xi and X j. From the GDT_SPN model, we use the transition duration
distributions D(ti) = Di(x) and D(t j) = D j(x). Then, the parent variable Xi has the
unconditional probability distribution P(Xi ≤ x) = Di(x) and the child variable X j has
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Fig. 7: Transformation of GDT_SPN models to Bayesian networks.

the probability distribution P(X j ≤ x | Xi) = P(X j + Xi ≤ x). For each value of the parent
xi ∈ Xi, the probability distribution is defined as P(X j ≤ x | Xi = xi) = D j(x − xi), i.e.,
the distribution of X j is shifted by its parent’s value to the right. A parallel split, cf. lower
left part in Fig. 7, is treated as two sequences sharing the same parent node.

The max relation that is required for joining branches at synchronization points, cf.
the lower right pattern in Fig. 7, is defined as follows. Let Xi and X j be the parents of Xk,
such that Xk is the maximum of its parents. Then, P(Xk ≤ x | Xi, X j) = P( max(Xi, X j) ≤
x) = P(Xi ≤ x) · P(X j ≤ x) = Di(x) · D j(x), i.e., the probability distribution functions
are multiplied. Note that the maximum of two normally distributed random variables
is not normally distributed. Therefore, we use a linear approximation, as described
in [19]. This means that we express the maximum as a normal distribution, with its
parameters depending linearly on the normal distributions of the joined branches. The
approximation is good, when the standard deviations of the joined distributions are
similar, and degrades when they differ, cf. [19]. The resulting Bayesian network model is
a linear Gaussian model, which is a class of continuous type Bayesian networks, where
inference is efficiently possible. More precisely, inference can be done in O

(
n3) where n

is the number of nodes [15]. Otherwise, inference in Bayesian networks is an NP-hard
problem [20].

Once we constructed the Bayesian network, we set the values for the observed events
for their corresponding random variables, i.e., we insert the evidence into the network.
Then, we perform inference in the form of querying the posterior probability distributions
of the unobserved variables. We use the Bayesian network toolkit for Matlab [16], where
these inference methods are implemented. This corresponds to the second step in the
insert time part of Fig. 5.

The posterior probabilities of the queried variables reflect the probabilities, when the
conditions are given according to the evidence. Our aim is to get the most likely time
values for the missing events. These most likely times are good estimators for when the
events occurred in reality, and thus can be used by process participants as clues during
root cause analysis. For example, in order to find the responsible person for the task
in question, an estimation of when it happened most likely can be helpful. Note that
repaired values with most likely time values need to be treated with caution, as they do
not capture the uncertainty in the values. Therefore, we mark repaired entries in the log
as artificial.

Once we determined probable values for the timestamps of all missing events in a
trace, we can proceed with the next trace starting another iteration of the algorithm.



6 Evaluation

We have implemented our approach in ProM1. To evaluate the quality of the algorithm,
we follow the experimental setup described in Fig. 8. The problem is that in reality we
do not know whether events did not happen, or only were not recorded. Therefore, we
conduct a controlled experiment. In order to have actual values to compare our repaired
results with, we first acquire traces that fit the model. We do this either by selecting the
fitting ones from original cases, or by simulation in artificial scenarios. In a second step,
we randomly remove a percentage of the events from these fitting traces. We pass the log
with missing entries to the repair algorithm, along with the model, according to which
we perform the repair.

GDT_SPN model

Log with 

missing entries

Repair logs 

algorithm

Repaired log with 

most likely entries

Log Evaluation

Add noise

  Measures:

- control-flow conformance

- time conformance

GDT_SPN

(see Fig. 1)

Simulation of 

1000 cases
Artificial log

Real-life log
performance 

analysis

GDT_SPN 

model
Select fitting 

traces

Log with 

fitting traces

Real-life example

Approach

Data

Synthetic example

Petri net

(see Fig. 10)

Fig. 8: Approach used to evaluate repair quality.

The repair algorithm’s output is then evaluated against the original traces to see, how
well we could restore the missing events. We use two measures for assessing the quality
of the repaired log. The cost-based fitness measure as defined in [2] compares how well a
model fits a log. Here, we compare the traces of the original and repaired log. Therefore,
we convert each original trace into a sequential Petri net model and measure its fitness
with the repaired trace.

Fitness deals with the structural quality, i.e., it is a good measure to check, whether
we repaired the right events in the right order. For measuring the quality of repaired
timestamps, we compare the real event’s time with the repaired event’s time. We use the
mean absolute error (MAE) of the events that have been inserted. This is the mean of the
absolute differences between repaired event times and original event times.

6.1 Artificial Example

We first evaluate the repair algorithm according to the artificial model introduced in
Section 3 in Fig. 1.

1 See package RepairLog in ProM http://www.promtools.org

http://www.promtools.org
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Fig. 9: Evaluation results for repairing 1000 traces of model in Fig. 1.

The experiment was done with a log of 1000 simulated traces. Figure 9 displays the
resulting quality measures of the repaired traces. Each dot is based on the repair results
of this log with a different percentage of randomly removed events. On the left-hand side
of the figure, you can see the performance values of the alignment. The solid line with
squares shows the number of synchronous moves. The other two lines are the number of
model moves (dotted line with circles) and the number of log moves (gray dashed line
with triangles) necessary to align the two traces.

Because of the structural properties of the model in Fig. 1, i.e., there is a choice
between two branches containing three (upper), and four (lower) activities, we can
restore the correct activities at low noise levels (around 30%). But we can not guarantee
for their ordering due to parallelism in the model. A change in the ordering of two events
in the repaired trace results in a synchronous move for one event, and a log move and a
model move for the other (to remove it from one position and insert it in another). Note
that at lower noise levels the number of log moves and model moves are equal. This
indicates incorrect ordering of parallel activities. At higher noise levels the number of
model moves increase further. Then, it gets more likely that there remains no single
event of an iteration of the loop in Fig. 1. The size of the gap between model moves and
log moves shows how much the repair quality suffers from the fact that the presented
algorithm, which repairs events with the most likely values, does not restore optional
paths of which no event is recorded in the trace.

On the right-hand side of Fig. 9 we see the mean absolute error in relative time units
specified in the model. The graph shows that the offset between original event’s time
and repaired event’s time increases with the amount of noise non-linearly.

6.2 Repairing a real example log of a hospital

In this second part of the evaluation, we look at the results obtained from repairing a
real log of a hospital. In contrast to the experimental setup, where we used the model
to generate the example log, now the log is given, and we try to estimate the model
parameters. To avoid using a model that was learned from the events, which we try to
repair, we use 10-fold cross-validation. That is, we divide the log into ten parts and use
nine parts to learn the model parameters and one to perform the repair with.

We use the log of a Dutch clinic for the ambulant surgery process, described in [21].
The process is depicted as a GDT_SPN model in Fig. 10. It is a sequential process



that deals with both ambulant patients and ordered stationary patients. Each transition
corresponds to a treatment step that a nurse records in a spread sheet with timestamps.
In the process, the patient arrives in the lock to be prepared for the surgery. Once the
operating room (OR) is ready, the patient leaves the lock and enters the OR. In the
OR, the anesthesia team starts the induction of the anesthesia. Afterwards, the patient
optionally gets an antibiotica prophylaxis treatment. The surgery starts with the incision,
i.e., the first cut with the scalpel, and finishes with the suture, i.e., the closure of the tissue
with stitches. Next, the anesthesia team performs the emergence from the anesthesia,
which ends when the patient has regained consciousness. Finally, the patient leaves the
OR and is transported to the recovery.

Patient
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Fig. 10: Real surgery model for a surgical procedure in a Dutch hospital.

Out of 1310 patient treatment cases, only 570 fit the model shown in Fig. 10 perfectly.
The other cases contain one or more missing events, which motivated our research. We
use the 570 fitting cases to evaluate, how well we can repair them after randomly
removing events.
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Fig. 11: Evaluation results for model in Fig. 10.

Figure 11 shows the evaluation results of the hospital event log. Observe that the
structure can be repaired better than in the artificial example in Fig. 9. This is due to
the sequential nature of the model—it comprises twelve sequential, and two optional
activities. With increasing number of missing events, the number of correctly repaired
events (synchronous moves) approaches twelve. That is, only twelve activities are
restored, because the algorithm is unable to repair single undetected optional events.

The mean absolute error in the restored events is higher than the artificial example.
This value depends on the variance in the activity durations. In this evaluated example,
the variance of certain activity durations in the model is high, due to outliers. Latter
activity durations exhibit many short durations with a few outliers, which can be better
captured with other distributions than the normal distribution.



Obviously, the ability to repair a log depends on the information content of observed
events in the trace and the remaining variability in the model. For instance, we can repair
a sequential model always with fitness 1.0 of the repaired log—if we observe only one
activity. However, the chance to pick the same path through a model composed of n
parallel activities with equally distributed times is only 1

n! .
The presented approach is unable to restore optional branches without structural

hints, i.e., at least one activity on an optional branch needs to be recorded. This affects
single optional activities most, as their absence will not be repaired. Still, many real-life
processes comprise only a sequence of activities, and can be repaired correctly.

7 Conclusion

We introduced a method to repair event logs to assist timely correction of documentation
errors in enterprises. Thereby, we present which, and also when activities should have
happened most likely according to a given stochastic model. The method decomposes
the problem into two sub-problems: i) repairing the structure, and ii) repairing the time.

Repairing the structure is done with a novel extension of the alignment approach [2]
based on path probabilities. And repairing the time is achieved by using inference in a
Bayesian network representing the structure of the individual trace in the model. The
algorithm can deal with a large and representative class of process models (any sound,
free-choice workflow net).

Our preliminary evaluations indicate that we can repair structure and time, if noise is
limited. Models exhibiting a high degree of parallelism are less likely to be repaired in
correct order than models with more dependencies between activities. However, there
are some limitations that we would like to address in subsequent research:
1. Separating structure from time during repair is a heuristic to reduce the compu-

tational complexity of the problem, as timestamps of events also influence path
probabilities.

2. The normal distribution, though having nice computational properties, is of limited
suitability to model activity durations, since its support also covers the negative
domain.

3. The independence assumption between activity durations and between traces might
be too strong, as resources play an important role in processes.

4. We assumed that the GDT_SPN model contains the truth, and deviations in the log
are caused by documentation errors, instead of deviations from the process model.
This assumption only is feasible for standardized processes with few deviations that
are captured in the model. Therefore, we advise to use this approach with care and
try to correct documentation errors using repaired logs as assistance.

Future work also needs to address the question of how to model causalities of activities
more directly. Thus, missing events that are very likely to be documentation errors, e.g.,
the missing event for enter OR, when exit OR is documented, need to be separately treated
from missing events of rather optional activities, e.g., missing event of do antibiotica
prophelaxe, where it is not clear, whether the absence of the event is caused by a
documentation error. An integration with the proposed technique in [7], seems promising
to address this issue.
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