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Abstract. Defect prediction is a powerful tool that greatly helps fo-
cusing quality assurance efforts during development. In the case of the
availability of fault data from a particular context, there are different
ways of using such fault predictions in practice. Companies like Google,
Bell Labs and Cisco make use of fault prediction, whereas its use within
automotive industry has not yet gained a lot of attraction, although,
modern cars require a huge amount of software to operate. In this pa-
per, we want to contribute the adoption of fault prediction techniques
for automotive software projects. Hereby we rely on a publicly available
data set comprising fault data from three automotive software projects.
When learning a fault prediction model from the data of one particular
project, we achieve a remarkably high and nearly perfect prediction per-
formance for the same project. However, when applying a cross-project
prediction we obtain rather poor results. These results are rather sur-
prising, because of the fact that the underlying projects are as similar as
two distinct projects can possibly be within a certain application context.
Therefore we investigate the reasons behind this observation through cor-
relation and factor analyses techniques. We further report the obtained
findings and discuss the consequences for future applications of Cross-
Project Fault Prediction (CPFP) in the domain of automotive software.

Keywords: project fault prediction, cross project fault prediction, au-
tomotive, principal component analysis

1 Introduction

A modern day premium car like the 2016s Audi Q7 contains up to 90 Electronic
Control Unit (ECU)s, 11 different communication networks (Controller Area
Network (CAN), FlexRay, etc.) and a wide range of Advanced Driver Assistance
Systems (ADAS) that are all realized using software. An analysis carried out by
Broy [4] states that software consumes up to 40% of a cars development budget.
Software used in cars has up to 10 million Lines Of Code (LOC). Assuring



quality of software thus is a major challenge as its complexity is still rising
and the currently used testing approaches like Hardware in the Loop (HiL) tests
might not scale well. In the automotive industry software engineering follows the
W-development process [15], where testing is a core part of every development
stage. Predictions about the locations of faults would be a powerful tool to
support this process. This paper uses metrics data obtained when carrying out
projects for making fault predictions.

In this paper, we contribute to this goal of having tools for fault predic-
tion in the automotive industry. In this work, we consider both the performance
of prediction within the context of a project, i.e., fault predictions based on
earlier revisions of a project, as well as cross-project predictions, i.e., fault pre-
dictions based data from other projects. Considering cross-project predictions is
required because empirical data of a project is of course missing when starting
the project. In our empirical analysis we focus on the question of whether a strict
development process applied for safety and security relevant software modules
actually supports fault prediction performance due to restrictive policies. The
results obtained do not indicate that a strict development process has an influ-
ence on prediction performance. Hence, we also performed an in-depth analysis
of possible reasons behind it and discuss this analysis in detail in this paper.

The main contributions of this paper are, an empirical study on within-
project and CPFP for safety-critical automotive software as well as an in-depth
analysis of the obtained results.

The remainder of this paper is structured as follows. We discuss related work
in Section 2. Then we present our fault prediction study in Section 3. Afterwards,
we perform an in-depth analysis on the causes behind the obtained prediction
performance in Section 4. In addition we discuss threats to its validity in Section
5 and finally conclude the paper in Section 6.

2 Related Work

Altinger et.al. [2] identified Matlab Simulink as the major development envi-
ronment in the automotive industry, which is often combined with model-based
testing and unit testing. In the testing stage there is an equal distribution be-
tween Model in the Loop (MiL), Software in the Loop (SiL) and HiL where
more than 50% of the developers are using white or grey box testing techniques.
The applicability of Software Fault Prediction (SFP) techniques in such an auto-
motive software development was analysed by Rakesh et.al [23]. They surveyed
eight different methods and their best operation time along the life cycle as well
as their required input data and their potential to enhance software quality.
In comparison to Rakesh et. al., the projects we consider in this paper follow
a different development process. Our underlying process comprises at least 4
Releases. One represents an interface freeze, where external interfaces (CAN,
Application Programming Interface (API), methods, etc.) need to be fixed and
are not allowed to be changed anymore. feature freeze, where all functions need
to be implemented, but might not run fully. They just need to be call-able from



external functions. The last release prior to the shipment with the car to cus-
tomers is 100% Software which means that it is the last delivery. After this
point, there will be only bug fixes and parameter optimisations, but no feature
enhancements.

2.1 Industrial Fault Prediction

SFP is still a very active research field where many datasets are available and
studies have been performed. Since we focus on the industrial application of fault
prediction in the automotive industry, we only discuss related work in the context
of papers dealing with industrial applications of fault prediction methods. For
surveys and benchmarks for fault prediction in general we refer the interested
reader to, e.g., [6]. The available industrial reports are mainly from Bell labs
reporting on their obtained experiences, e.g., Bell et.al. [3], Ostrand et.al. [21]
and et.al. [22]. There the authors report a high prediction performance of up to
80% true positives using three different telecom software products which were
developed at AT&T. The authors claim industrial developers benefit from their
achieved performance. All reports benefit from a strict bug reporting policy. The
underlying fault prediction approach is mainly based on recent changes to files. In
contrast to this paper, we consider a machine learning based approach that relies
on metrics that can be easily obtained from the software during development.

2.2 Cross-Project Fault Prediction

To overcome the lack of historical data in the early stages of a project’s devel-
opment CPFP uses data from other projects to train fault prediction models.
Due to the heterogeneity between different projects, this is a difficult problem.
Zimmermann et.al. [29] performed a cross-project study on industrial code from
Microsoft as well as popular open source software. They state that only 3.4% of
their analysed cross-project predictions achieve more than 0.75 recall, precision
and f-measure. However, they demonstrated that whenever project factors are
included in the selection of training data during the learning of a decision tree,
the likelihood of good predictions can be improved.

Throughout the last years various approaches for improving fault predic-
tions were proposed. In this work, we apply the k-nearest neighbour approach
for data selection by Turhan et.al. [26] and the normalization approaches by
Watanabe et.al. [27] and Nam et.al. [20]. Other approaches that could be ap-
plied are, e.g., a data weighting technique by Ma et.al. [18] or transformation of
the data according to Camargo Cruz et.al. [5]. Moreover, approaches based on
the selection of appropriate projects for training, like proposed by He et.al. [12]
and Herbold [14] are not considered, because we only rely on a setting comprising
two projects, where a further selection is obviously not possible.



3 Defect Prediction Case Study

In this section, we present a case study in which we tackle the following research
question:

RQ1: Can CPFP be applied in projects using automatically generated code
and restrictive coding standards like MISRA [25] which was developed
for the same target platform?

This research question RQ1is answered by the evaluation of two hypothe-
ses that we initially suspect to be true based on our experience obtained from
previous research:

H1: Within-project fault prediction can be applied successfully to automati-
cally generated code.

H2: CPFP is enabled by auto-generated code within a restrictive setting.

Our rational for H1 is that there are many examples for successful fault
predictions in a within-project setting reported in the literature (see, e.g., Catal
et.al [6] for an overview). We expect that this is also true for the generated code.

Our rational for H2 is that differences between metrics due to developer
characteristics, etc. can be excluded. Moreover, we expect that the rules used by
code generators lead to repetitive patterns in the generated source code. This,
in turn, should lead to patterns in the metric values, which should lead to strong
correlations between the metric values, even between projects.

Rational for H2 is that differences between the project context are one of the
conjectured greatest threats to CPFP. Zimmermann et.al. [29] showed that with
a simple decision tree based on context factors the performance of predictions
can be greatly improved. In a more recent publication Zhang et.al. [28] again
demonstrated the power of using context factors. The context factors of the
projects we consider are nearly identical. They were developed by the same
company, using the same development process, with source code automatically
generated with the same code generator following a strict coding standard. This
removes a lot of project-specific and developer-specific noise from the data.

3.1 Evaluation Criteria

To evaluate the performance of the fault prediction models, we use the following
metrics.

recall =
tp

tp+ fn
(1)

precision =
tp

tp+ fp
(2)

F -measure = 2 · recall · precision
recall + precision

(3)



In the above definition, tp, respectively tn are the number of true positive respec-
tively negative predictions, fp, respectively fn are the number of false positive
respectively negative predictions. The recall measures how many of the existing
faults are found. The precision measures how many of the found results are ac-
tually faults. The F-measure is the harmonic mean between precision and recall.
The error measures the overall rate of misclassification.

3.2 Data Description

We use the data from a publicity available dataset released by Altinger et. al.
[1]. The dataset contains fault data of three automotive projects for proprietary
reasons simply refereed as A, K, and L. The size of the projects ranges from
10.000 LOC to 36.500 LOC. Two of the three projects are safety relevant, which
means that the testing effort had been very high. A special attribute of the data
is that the software was not developed by writing source code but by creating
Matlab/Simulink models. The source code is then generated automatically us-
ing the dSpace TargetLink code generator that fulfils the MISRA [25] guidelines.
The workflow during the software development cycle is visualized in Figure 1.
The revisions from all development tools have been analysed and tested. There-
fore, the projects stay with the same software during their whole life cycle. As
the three projects are from the same time scale, the versions and settings are
identical.

Whereas the dataset contains three projects, we only consider the A and the
K project in this paper. The reason for this is that the third project L has a
very low fault rate, with only three unique faults detected during development.
This fault rate is too low to be used in a machine learning approach for fault
prediction.

Fig. 1. workflow during software development

3.3 Defect Prediction Models

In this paper, we use one classification model for within-project predictions and
six classification models for cross-project predictions. With the first model, we



look at the performance of within-project predictions for baseline comparison
reasons. For the cross-project predictions, we predict the faults in the A using
the data from K and the faults in K using the data from A. The classification
models we use are the following:

– WP: a within-project fault prediction model. Since the data is ordered by
time, we use the data from the oldest 50% of revisions for training and the
remaining 50% of revisions for evaluation of predictions.

– KNN: cross-project prediction with the k-nearest neighbour approach for
data selection introduced by Turhan et.al. [26]. We use k = 10, which is
the same as for the original study. This means, for every entity in the target
project, we select the 10 closest entities in the training project for our training
data.

– N1: cross-project prediction with min-max normalization [17] of the training
and target data separately to the interval [0,1], i.e.,

m̂i(s) =
mi(s)−mins′∈S mi(s

′)

maxs′∈S mi(s′)−mins′∈S mi(s′)
.

This approach for normalization is quite common and, e.g., used by [27, 13,
18, 12, 14, 20].

– N2: cross-project prediction with z-score normalization [17], which trans-
forms the training and the target data separately such that the mean value
and the standard deviation to one, see e.g. Nam et.al. [20], i.e.,

m̂i(s) =
mi(s)−mean(mi(S))

std(mi(S))
.

– N4:4 Cross-project prediction with z-score normalization of the training and
target data, both based on the mean and standard deviation of the target
data after Nam et.al. [20], i.e.,

m̂i(s) =
mi(s)−mean(mi(S

∗))

std(mi(S∗))
.

– N5: cross-project prediction with normalization of data according to the
mean standardization proposed by Watanabe et.al. [27], i.e.,

m̂i(s) =
mi(s) ·mean(mi(S

∗))

mean(mi(S))
.

For the training of all classification models, we used under sampling [8] to
treat the bias towards non-fault-prone classifications due to the small number of
fault-prone entities in the data sets. As classifier, we used a Support Vector Ma-
chine (SVM) with a Radial Basis Function (RBF) kernel [24], one of the overall
best performing classifiers from the machine learning literature [10]. Please note
that we did not use a cross-project model without normalization. The reasons
for this are that we used a SVM as classifier and SVMs often perform poorly if
no scaling or normalization is used [10].

4 We use N4 instead of N3 to be consistent to the naming of Nam et.al. [20].



3.4 Prediction Performance

In the following, we report the results obtained for fault prediction. Table 1 lists
the values for recall, precision, and F-measure achieved with the prediction mod-
els. The first column contains the within-project predictions, the other columns
the results for the cross-project predictions with the various transfer learning
techniques.

Table 1. Results achieved with the various classification models on the data sets.
Abbreviations see section 3.3

WP KNN N1 N2 N4 N5

recall

A 0.59 - - - - -
K → A - 0.48 0.48 0.48 0.48 0.48
K 0.89 - - - - -
A → K - 0.75 0.75 0.75 0.75 0.69

precision

A 0.16 - - - - -
K → A - 0.19 0.19 0.19 0.19 0.18
K 0.21 - - - - -
A → K - 0.20 0.17 0.17 0.17 0.24

F-measure

A 0.25 - - - - -
K → A - 0.28 0.28 0.28 0.28 0.27
K 0.34 - - - - -
A → K - 0.32 0.27 0.27 0.27 0.36

For the within-project predictions, our results show a mediocre value of 0.59
for the project A and a very good recall of 0.89 for the project K. The precision
is very low in both cases with 0.16 for A and 0.21 for K. Hence, the F-measure
is low in both projects, i.e., 0.25 for A and 0.34 for K.

The cross-projects recall predictions is lower than for within-project predic-
tions on both A and K. The value of recall is almost always 0.48 for A, and 0.75
for K with the exception of the prediction of K when using N5 normalization,
where the recall is slightly worse with 0.69. In terms of precision, we observe a
mixed picture. For project A, the precision of the cross-predictions are actually
slightly better than the within-project predictions with a value of 0.19 for KNN,
N1, N2, and N4 and 0.18 for N5. However, the difference is rather small with
0.03 and 0.02, respectively. For Project K, the precision of the within-project
prediction is better than the KNN, N1, N2, and N4 model. KNN achieves a
precision of 0.20 and N1, N2, and N4 a value of 0.17. The N5 model beats the
within-project prediction with a value of 0.24, i.e., a small gain of 0.03. This gain
in precision seems to be the reason for the slightly worse recall. This mixture of
the results is also reflected by the F-measure. For project A, the F-measure of
the cross-project predictions is slightly higher with a value of 0.28 for KNN, N1,
N2, and N4 and 0.27 for N5. This gain in F-measure is due to the slightly higher
precision, which offsets the lower recall. For the project K, the F-measure for



KNN, N1, N2, and N4 is lower than for the within-project model. Only N5 beats
the within-project prediction slightly with a value of 0.36, i.e., a very small gain
of 0.02 in comparison to the within-project prediction.

In summary: the N5 cross-project prediction model performs consistently
best in terms of F-measure, but has a lower recall than the within-project pre-
dictions obtained. However, the precision of all models is quite low, i.e., less than
0.25 in all cases. Accordingly to the testing experts we consulted, finding 80%
of the fault-prone instances would still be a great enhancement during the test-
ing stages, which means that such a low precision might be acceptable for the
practical implementation and is comparable to statements by Ostrand et.al. [21].

3.5 Hypotheses Evaluation

In this section, we discuss the consequences of the results obtained for fault
prediction on the hypotheses H1, H2 as well as on our underlying research
question RQ1.

H1: Within-project fault prediction can be applied successfully to
automatically generated code. Our results show a good recall for within-
project predictions, i.e., it is possible to find the faults, but the precision is
rather low. However, according to the testing experts that were involved in the
Projects A and K, predicting 80% of the fault-prone instances would still be a
great enhancement during the testing stages, which means that a low precision
might be acceptable in practice. Due to the high recall, we find some support
for this hypothesis, but further studies need to be performed to see if the low
precision really is acceptable for the practitioners.

H2: CPFP is enabled by auto-generated code within a restrictive
setting. Our results for the cross-project prediction are not much worse than
for the within-project prediction, even though we note some drop in the recall.
However, the F-measure of the N5 normalization is even better than for within-
project prediction. Hence, we conclude that it also depends on the practitioners
point of view, if the rather low precision is acceptable.

RQ1: Can CPFP be applied in projects using automatically gen-
erated code and restrictive coding standards like MISRA [25] that
was developed for the same target platform? Based on our findings, we
conclude that further research in this direction is warranted but the overall per-
formance is not as good as we initially expected. Further insights are required
to improve the prediction models in the future to increase precision. Moreover,
a test carried out in a practical setting, where testing experts evaluate the ap-
proach in a pilot project, would be very much helpful to evaluate the question
of whether or not low values of precision are really acceptable.

4 Causes for the obtained prediction performance

Our results show an overall surprisingly low prediction performance, especially
in terms of precision. Due to the extremely high similarity between the projects



A and K in terms of the development process and, additionally, the fact that
the source code is automatically generated, which should further increase the
similarities, we were expecting much better prediction results. Therefore, we
further investigated in the following research questions.

RQ2: What are the reasons for the low performance of the used fault prediction
models?

To answer this question we perform an in-depth analysis. We postulate three
hypothesis, which we believe should be true for good fault prediction models.
Then, we evaluate whether these hypothesis are true for our data and, thereby,
try to gain insights into why the precision of our predictions is low. The hy-
potheses are the following:

H3: Metric values are strongly correlated between software projects based on
automatically generated code.

H4: The available software metrics carry information about the faults.
H5: The faulty regions in the training and test data are similar.

Our rational for H3 is that differences between metrics due to developer
characteristics, etc. can be excluded. Moreover, we expect that the rules of code
generators lead to repetitive patterns within the generated source code. This,
in turn, should lead to patterns within the metric values, which should lead
to strong correlations between the metric values, even between projects. Strong
correlations between software projects are a pre-requisite for good cross-project
predictions and week correlations here might by a reasons for a lower prediction
performance.

With H4, we simply state the underlying assumption of fault prediction
models based on software metrics and machine learning: that the metrics actually
contain information about the location of the faults. Similarly, with H5, we want
to investigate a general assumption for machine learning: that the distributions
of the training and test data are similar. If this is not the case, the prediction
model is trained using a wrong distribution that in turn decreases the prediction
performance, which is somehow comparable to He et al’s [?] findings.

4.1 Correlation Analysis

From the Dataset, [1], one can see a strong correlation between the static code
metrics LOC, Halstead (Volume (Hv), Difficultly (Hd) and Effort (He)) and
number of functions (nfunctions). A similar strong correlation has been obtained
between change metrics (LOC add and removed per commit), but only a weak
correlation to the author. We used Kendall’s τ [16] correlation analysis to in-
vestigate the influence of the selected attributes. See Table 2 for the results. In
general there is a small correlation between bugs and all 11 metrics. LOC can be
seen as the strongest correlation to bugs, but is still weak at 0.23. These results
are in correlation with the attribute influence analysis in Table 3, where LOC is
among the first influencing metric attributes to fault prediction.



Table 2. Kandals τ correlation analysis for metrics with bugs
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g Project A 0.22 0.16 0.23 0.23 0.22 0.15 0.10 0.10 -0.12 -0.08 -0.10

Project K 0.23 0.26 0.24 0.23 0.24 0.22 0.13 0.13 0.02 0.05 0.03

To see if the bug regions are correlated we selected all commits containing
a fault and correlated their metric attributes with each other. In general there
is a weak or small negative correlation between those two projects, which might
be caused by different bug regions. Again the strongest correlation values are
achieved by static source code metrics (LOC, Halstead, McCab).

Based on this one might conclude ”within projects fault prediction” report
on bad performance and ”cross project fault prediction” will be impossible, at
least based on the selected attribute metrics.

4.2 Information Gain

We analyzed the influence of 11 attributes using Information Gain. See Ta-
ble 3 for the results, which delivers consistent values to the Kendall τ cor-
relation analysis given in Table 2, where static source code attributes (LOC,
number of functions, etc.) have got a higher correlation than change metrics
(LOC add, LOC remove, ...). This ranking is in contrast to Graves et.al. [11] or
Meneely et.al. [19] but similar to Curtis et.al. [7]. This might be caused by the
development method, as the code generator can be seen as the same author for
the actual code files. Due to the fact that a code generator uses templates and the
developer is limited to a finite set of blocks when designing the Matlab/Simulink
Model, the code structure itself is very comparable among the methods. The in-
fluence of a developer’s style is little, because every block will be generated in
the same way.

4.3 Visual Analysis

In addition to the correlation analysis, we performed a visual analysis to deter-
mine possible reasons for prediction errors. To visualize the fault data, we use
Principle Component Analysis (PCA) [9] to reduce the dimension of the data.
PCA is a technique that orthogonally transforms into linearly uncorrelated vari-
ables, such that the first principle component has the largest possible variance
and, thereby, explains as much of the variance in the data as possible. In our
case, we can explain 89%-92% percent of the variance within the data by using



Table 3. ranked error types with explanation

Information Gain Rank Attribute Explanation

0.16637 1 Hv Halstead Volume

0.13540 2 McCab McCab Cylomatic Complexity

0.13505 3 Hd Halstead Difficulty

0.12628 4 He Halstead Effort

0.12303 5 sloc Lines Of Code

0.05445 6 nfunctions Number of Functions

0.03483 7 commit age Number of Days since last commit

0.02384 8 loc add LOC Added since last commit

0.02358 9 loc remove LOC Removed since last commit

0.00948 10 num commits Number of total commits to file

0 11 author Last commiting Author

just the first two principle components. This allows us to create two-dimensional
scatter plots in which we can visually compare data.

In Figures 2(a) and 2(b) we show the visual representation of the data of A
and K used for the within-project evaluation. The training data are the oldest
50% revisions in the data, the test data are the newest 50%. We have three types
of interesting areas in those figures.

1. Defects from the training data that are the same area as in the test data.
These faults should be detected correctly.

2. Defects in the training data are located in a region in which no faults are
present in the test data. These faults should lead to false positives and,
therefore, decrease the precision.

3. Defects in the training data are not in the same area as faults in the test
data. These faults are probably not detected by the classification model and
lead to a decrease in recall.

The figures show that for the most part, we are in the first areas, where we
find faults in both data sets. However, in both data sets there are also areas
where there is no overlap. These lead to the drops in recall and precision. As the
figures also show, there are many more non-fault-prone entities than fault-prone
entities. This is the reasons for the low precision: even if only a relatively small
area in the training data contains faults, where there are no faults in the test
data, the precision drops drastically. Moreover, in the K project, there is also
the problem that the area around the coordinates (0,0) is heavily populated by
both fault-prone and non-fault-prone entities in both the training and test data.
This leads to additional noise in the data and a further drop in the precision and
recall. To further analyze these effects, we compare the training and test data
of the cross-project predictions using the four normalization techniques N1, N2,
N4 and N5 in figures 2(c)–2(f). The areas of interest are similar.

1. Defects from the data of project A/K that are the same as in the other
project. These faults should be detected correctly by the cross-project pre-
diction.
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(c) A and K with N1 normalization
applied to both
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(d) A and K with N2 normaliza-
tion applied to both
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(e) A and K with N4 normalization
applied to A
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(f) A and K with N5 normalization
applied to A

Fig. 2. Data visualization with PCA. The PCA is performed with all plotted data
points, i.e., with the full data from A/K for the sub-figures 2(a) and 2(b) and with the
data from both A and K for sub-figures 2(c)–2(f). The first two principle components
of the data explain between 89%-92% of the variance.



2. Defects in the data of project A that are located in a region in which no faults
are present in the project K. These faults should lead to false positives in
the cross-project prediction A → K and, therefore, decrease the precision.
Moreover, these faults are likely not detected in the cross-project prediction
K → A and lead to a decrease in recall.

3. Defects in the data of project K that are located in a region in which no faults
are present in the project A. These faults should lead to false positives in
the cross-project prediction K → A and, therefore, decrease the precision.
Moreover, these faults are likely not detected in the cross-project prediction
A→ K and lead to a decrease in recall.

As can be seen on all four plots, the faults between A and K are for the most
part non-overlapping. Hence, we are for the most parts in the two “bad” areas
of interest, which reduce the recall and precision. However, a closer look reveals
that whereas the faulty areas themselves are not overlapping, the faults are still
in somewhat similar areas in the data. For example, many faults of K are in all
four plots close to the coordinates (0,0). On the Y-axis only very few instances of
K are located below that cluster. Hence, fault predictors might assume the full
area below those faults as fault-prone. Within that area many faulty instances
of A are located, which then may be predicted correctly as fault prone. Such
effects explain the still relatively good values for the recall. However, the plots
also show that within the very same area below (0,0) many non-faulty instances
of A are also located. They would all also be predicted as faulty, which explains
the very low precision.

In addition, we are interested in the general overlap between non-fault-prone
instances of the two projects, i.e., how often the non-fault-prone are within the
same area. The task of the normalization is exactly this: transform the non-
faulty instances in such a way that they are within similar areas. We observe
that the overlap depends on the normalization technique. With N1, i.e., simple
min-max normalization, we see most instances of K in the top-left quadrant of
the plot, whereas the instances of A are distributed scattered through the whole
area of the plot. With the other normalization technique N2, N4, and N5, such a
differentiation is not possible and the data seems to be more evenly distributed
for both projects.

4.4 Hypothesis Evaluation

In this section, we discuss the results of the fault predictions, the hypotheses
H3–H5, as well as our underlying research question RQ2.

H3: Metric values are strongly correlated between software projects
based on automatically generated code. Our correlation analysis perfor-
mance shows a very weak correlation between the two projects A and K. There-
fore, we do not find support for this hypothesis. This weak correlation is the
possible source for the low precision and overall bad performance of the cross-
project predictions.



H4: The available software metrics carry information about the
faults. The correlation analysis shows that most of the metrics are weakly corre-
lated with the fault information, with the exception of the commit age, for which
we find almost no correlation. Additionally, we considered the information gain
of the attributes in relation to the fault information. Here, we determined that
about half of the metrics carry information about the faults, however, also only
weak information. The other attributes carry almost no information about the
faults. If we consider this together, this is another reason for low performance,
but it also explains why the predictions did not fail completely, since we found
weak correlations and mutual information between the metrics and the fault
information.

H5: The faulty regions in the training and test data are similar.
Our PCA based visual analysis shows that the faulty regions are not overlapping
as expected, but only to some degree. We consider this the main source of the
problems with the precision. The transfer learning only helps to fix this to a
minor degree.

RQ2: What are the reasons for the low performance of the used
fault prediction models? In our analysis, we found that all three hypotheses
we had are actually not well supported by our data. Hence, it is not surprising
that we have trouble with the overall prediction performance. The reasons we
determined are merely weak instead of strong correlations of the metrics between
projects, weak correlation and low mutual information of the metrics and the
fault information, and a bad overlapping of the faulty regions in the training
and test data.

5 Threats to Validity

We identified several threats to the validity of our results. First of all, our results
are restricted to a narrow setting within the automotive industry. It is unclear
how this translates to other settings, which is a threat to the external validity
of our results. Moreover, the templates used by the code generators may impact
our study. Different templates, which might be part of a new major release on
the code generator, maybe will change our findings. Additionally, we used only
two data sets for our case study. Furthermore, both data sets contain only few
errors. The results may change if projects have many errors.

6 Conclusion and Outlook

In this paper, we present a case study on fault prediction models in the context
of software development in the automotive industry, which is based on projects
comprising automatically generated code. In our study, we considered both the
within-project and the cross-project setting. Our findings show that predict-
ing faults is possible. However, the precision of the predictions is rather low.
Due to this, we presented an in-depth analysis of possible reasons for this lack
of precision. Our analysis shows that the correlation and mutual information



between the software metrics and the bugs is rather weak. Moreover, the corre-
lation between the projects is also worse then expected, as we show both with a
correlation analysis as well as a visual analysis of the data.

Using these results as a starting point, we suggest multiple venues for future
investigations. Since our findings regarding the metric correlation and mutual
information are rather weak, we suspect that possibly using model-level metrics,
instead of source code level metrics would lead to better results. Therefore, we
plan to study the impact of using model-level metrics on the fault predictions.
As part of this extension to model-level metrics, we also plan to investigate the
influence of static code metrics, change metrics, and social metrics again. Most
modern literature that considers the impact of social and change metrics is based
on modern languages like Java, whereas we consider C code with restrictive
coding conventions. It is unclear if the findings hold in this setting.
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