N

N

Genetic Algorithm Application for Enhancing
State-Sensitivity Partitioning
Ammar Mohammed Sultan, Salmi Baharom, Abdul Abd Ghani, Jamilah Din,

Hazura Zulzalil

» To cite this version:

Ammar Mohammed Sultan, Salmi Baharom, Abdul Abd Ghani, Jamilah Din, Hazura Zulzalil. Ge-
netic Algorithm Application for Enhancing State-Sensitivity Partitioning. 27th IFIP International
Conference on Testing Software and Systems (ICTSS), Nov 2015, Sharjah and Dubai, United Arab
Emirates. pp.249-256, 10.1007/978-3-319-25945-1_16 . hal-01470151

HAL Id: hal-01470151
https://inria.hal.science/hal-01470151
Submitted on 17 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01470151
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Genetic Algorithm Application for Enhancing State-
Sensitivity Partitioning

Ammar Mohammed Sultan, Salmi Baharom, Abdul Azim Abd Ghani, Jamilah Din
and Hazura Zulzalil

Software Engineering and Information System Department
Faculty of Computer Science and Information Technology
Universiti Putra Malaysia, 43400 Serdang, Selangor
Malaysia

ammar.alsultan@hotmail.com; {salmi, azim, jamilahd,
hazura}@upm.edu.my

Abstract. Software testing is the most crucial phase in software development
life cycle which intends to find faults as much as possible. Test case generation
leads the research in software testing. So, many techniques were proposed for
the sake of automating the test case generation process. State sensitivity parti-
tioning is a technique that partitions the entire states of a module. The generated
test cases are composed of sequences of events. However, there is an infinite set
of sequences with no upper bound on the length of a sequence. Thus, a lengthy
test sequence might be encountered with redundant data states, which will in-
crease the size of test suite and, consequently, the process of testing will be in-
effective. Therefore, there is a need to optimize those test cases generated by
SSP. GA has been identified as the most common potential technique among
several optimization techniques. Thus, GA is investigated to integrate it with
the existing SSP. This paper addresses the issue on deriving the fitness function
for optimizing the sequence of events produced by SSP.

Keywords: genetic algorithm (GA); state-sensitivity partitioning (SSP); test
case; sequence of events; data state

1 Introduction

Amongst software development life cycle (SDLC) phases, software testing is the most
crucial one [1]. It intends to execute the software and find faults as much as possible.
Generally, test case generation dominates the research in software testing while other
research areas include test execution and test oracles. Hence, a number of techniques
were proposed for improving the effectiveness and efficiency of faults detection.
State-sensitivity portioning (SSP) is one of them [2-4].

mailto:ammar.alsultan@hotmail.com

SSP employs Parnas formal specifications in order to test a module that consists of
one or more access programs, which share the same data structure. The output de-
pends on the event triggered, input parameters, conditions and actions. Thus, test data
for a module might consist of event sequences (or test sequences) rather than a single
event. For the sake of avoiding the exhaustive testing of a module’s entire states, SSP
partitions the entire states according to their sensitiveness toward events, conditions
and actions. Test sequences are selected manually based on all-transitions coverage
criterion. However, the sequence of events can be very lengthy and might contain
redundant data states, which makes the testing expensive and relatively ineffective.

In the literature, many optimization techniques have been suggested. One tech-
nique is search techniques [5, 6] and, among them, genetic algorithm (GA) has been
identified as the most common for generating test cases [7]. The success stories of GA
inspired us to adopt GA in our work. Similar to other search techniques, the adoption
of GA requires the derivation fitness function [8]. Thus, this paper describes the on-
going research that addresses the issue of deriving a fitness function in order to search
within the population of states produced by SSP sequence of events. The remainder of
this paper is organized as follows: an overview of SSP is presented in the next sec-
tion; followed by a general overview on GA. Next, the fitness function application in
SSP is being described followed by a case study. Finally, the last section summarizes
the paper along with the conclusion.

2 State-Sensitivity Partitioning (SSP)

A module may consist of one or more access programs that share the same data struc-
ture. Its behavior is depending on the event triggered, the value of input parameters
and conditions. Consequently, generating test cases for such a module might involve a
large number of data states, which grows exponentially in terms of the number of
program variables. For example, approximately 1020 tests (232 X 232) have to be
performed in order to test the correctness of two variables A and B of 32 bit integers,
as in [9]. Hence, it would take more than 30,000 years of testing with the assumption
of performing 108 tests per second. Therefore, it is impossible to explore the space of
entire states with limited time resources and memories.

SSP is a test case generation technique for modules [2-4]. The states are partitioned
based on state’s sensitivity towards events, conditions (pre-conditions) and actions
(post-conditions). The goal is to group all states that behave similarly towards access-
programs (events), conditions and actions (either sensitive or insensitive) together.

SSP has six sequential steps, which are: (i) identifying sensitive access programs,
(ii) partitioning states into equivalence classes, (iii) constructing a state transition
model, (iv) selecting test cases based on all-transition coverage criteria, (v) adding the
insensitive events to the end of each selected test case and (vi) applying boundary
value analysis (BVA) technique in order to select the input parameters. Nonetheless,
each test case from the fourth step must be represented by at least one sequence of
events. The SSP sequence of events has to be selected randomly as long as it follows

the specified conditions of the constructed state transition model in step three (3).
Below is an example.

2.1 Example

In order to grasp the idea of SSP, let’s consider the example of circular queue. Circu-
lar queue has three access programs, which are: add(), remove(), and front(). The
former two access programs are sensitive as they modify the data states during their
execution while the latter is insensitive as it does not modify the data states. Accord-
ing to SSP, the entire data states are partitioned into equivalence classes based on the
number of identified sensitive access programs. So, the circular queue has four possi-
ble partitions. In the third step, a state transition model is constructed as in Fig. 1.

remove() [len =0] / add(x) [0< len <QSIZE-1] /
dataQ’="dataQ, front’="front, add(x) [len =0]/ _ dataQ’[rear J=x. rear’={‘rear+1)%QSIZE,
rear’="rear len’="len dataQ) [rear |=x, rear’={ ‘rear+1)%QSLZE, len'="len+1

len’="len+1

remove()[len=1]/
dataQ "[rear J=x. front"=(" front +1)%QSIZE,

len’="len-1 remove() [1< len <QSIZE]/
dataQ [rear’ J=x
front™=(" front +1)%QSIZE.
remove()[len = QSIZE] / len'="len-1
data) [rear =,
add(x) [len =QSIZE]/ rear'=(‘rear+1)%6QSIZE,
St = o et wdd(s)[lea = QSIZE-1] |
rear="rear, | dataQ[rear ==, Partition 4 add(x)remove))
lew'="len Partition 2 ear'=(‘rear+1)%QSIZE, [len=01] len ~QSIZE] /
Len=QSIZE len'="len+1 dataQ)’="dataQ, front'="front_

rear’="rear. len'="len

Fig. 1. State Transition model for circular queue

Once the state transition diagram is constructed, all-transitions coverage criteria
will be used for selecting test cases. Table 1 lists the ten test cases obtained from the
state transition model. Each test case will be represented by at least one sequence of
events. Then, the insensitive events is going to be added to the end of the sequence.
Lastly, the BVA technique is applied in order to determine the value of input parame-
ter. With the assumption that maximum length of the circular queue is five, here are
some examples of test sequences produced by SSP.

TC1: _.add(1).front()
TC2: _.remove().front()

TC3: _.add(1).add(-1).remove().add(1295644148).add(-1295644148).front()
TC4: _.add(0).add(Integer.Max_value).add(Integer.Min_value).add(1).add(-1).front()

Table 1. THE TEST CASES FOR CIRCULARQUEUE PROGRAM

P | Event Pre-Condition Post-Condition

1 1 | Add len=0 dataQ’[rear’]=x, rear’=("rear+1)%QSIZE, len’="len+1
2. 1 Remove | len=0 dataQ’=’dataQ, front’="front, rear’=’rear, len’ = ‘len

3. 2 | Add len = QSIZE dataQ’="dataQ, front’="front, rear’="rear, len’ = ‘len

4. 2 | Remove | len=QSIZE dataQ’[rear’]=x, front’=(’front+1)%QSIZE, len’="len—-1
5. 3 | Add 0<len<QSIZE -1 dataQ’[rear’]=x, rear’=("rear+1)%QSIZE, len’="len+1
6. 3 | Add len=QSIZE -1 dataQ’[rear’]=x, rear’=("rear+1)%QSIZE, len’="len+1
7. 3 remove 1<len<QSIZE dataQ’[rear’]=x, front’=(’front+1)%QSIZE, len’="len—1
8. 3 remove len=1 dataQ’[rear’]=x, front’=(’front+1)%QSIZE, len’="len—1
9. 4 | Add len<0 && len>QSIZE | dataQ’=’dataQ, front’="front, rear’="rear, len’ = ‘len
10. | 4 remove len<0 && len>QSIZE | dataQ’=’dataQ, front’=’front, rear’="rear, len’ = ‘len

As the SSP sequence of events is selected randomly, any sequence follows the
conditions specified by the state transition model is valid. For example, a sequence of
events for adding an item to a full queue might include adding twenty items; remov-
ing eighteen items, adding fifty more, removing fifty two, adding ten more, removing
ten, adding one more and checking the result. Hence, the sequence of events might be
lengthy and contain redundant data states. The lengthy sequence with redundant states
makes testing expensive and ineffective. Also, there is a redundancy occurs between
two or more test sequences (i.e. sequence of events), where a test sequence is subset
from other sequence(s). Therefore, there is a need to optimize the test suites through
removing redundant data states. Among the available techniques, search techniques
are the most common for obtaining optimized test suites.

3 Genetic Algorithm (GA)

The applications of search techniques in the domain of software testing grew dramati-
cally as they save efforts and times. For test cases generation, GA is the most com-
mon amongst all search techniques. It is a population based metaheuristic technique
that follows the theory of natural evolution by Darwin. In GA, the optimal solutions
evolved through applying reproduction and selection operations on populations over
successive generations [10]. The typical GA consists of five repetitive steps that con-
tinue till the stopping criteria is met. The stopping criteria is either finding an opti-
mum solution or reaching the maximum number of iterations. The GA steps are: 1)
random initialization of population that contains candidate solutions. Each solution is
represented as a chromosome or sequence of variables [11]; 2) evaluation of new
candidate solutions, if the stopping criteria is not met; 3) selection of promising can-
didate solutions based on fitness function. Fitness function is used for evaluating the
solution in terms of its ability to solve the problem; 4) crossover; and 5) mutation.

GA performs search in parallel, which leads to fast calculations. Consequently,
software testing leads the GA applications compared with other SDLC phases. This

includes different disciplines such as test cases generation [7, 12], test cases prioritiza-
tion within test suites [13], and test suites reductions [11].

However, prior to apply GA for optimizing the test cases, there is a need to derive
the fitness function. Besides, the invocation of each event in the sequence may lead to
different states. Therefore, there is a need to grasp the changes of states and search
within for good solutions to be used in GA next iterations. In the next section, the
derivation of fitness function is described.

4 Fitness Function Application in SSP

Fitness function plays an important role in guiding the search within a population of
solutions. It judges whether a potential solution presents a good candidate and, hence,
has to be used in GA next iterations. The fitness function comes from existing soft-
ware metrics followed by several refinements according to the results [8].

Anyhow, SSP sequences of events produced a group of states which are unique and
redundant states. In order to optimize SSP, we aim to remove the redundant states.
There are two types of redundancies: (1) redundancy in test case level and (2) redun-
dancy in test suite level. Therefore, the calculation of fitness function has to take both
types into consideration. We introduce two score namely test case states minimization
(TCSM) and test suite states minimization (TSSM). The fitness function is:

Fitness= TCSM + TSSM (D)

4.1 Test cases states minimization (TCSM)

TCSM aims to remove redundant states on the test case level, such as the states en-
countered when trying to add to after reaching the maximum in circular queue or re-
moving when there is no item to be removed. In order to calculate TCSM, there is a
need to differentiate between unique and redundant states per sequence of events. A
score of TCSM is calculated based on the following equation:

TCSM= USC+RSC (2
where USC is the unique states score per sequence of events and RSC is the redun-
dant states score per sequence of events. Let A be a set of unique states in a sequence
of events. The calculations for USC is shown in the following equation:

USC=|§||: A :| = 1 + 1 + ..+ 1 (3)
iZ1LMAX i MAX T MAX MAX
where |A| is the cardinality for set A, which counts the number of unique states in the
sequence of events and MAX is the maximum number of items that can be added to
the data structure. For the calculation of RSC, let B be the set of redundant states in a
sequence of events where B €A and BNA= B. The calculation for RSC as follows:
Bl —

Rsczigl[MABx]i :7Mix - M/lxx T M,lo\x ®
where |B| is the cardinality for set B, which counts the number of redundant states per
sequence of events. Obviously, the score of TCSM can produce a negative value,
which indicates that the sequence is unlikely to be in the GA next generations.

4.2 Test suites states minimization (TSSM)

TSSM focuses on removing redundancies between sequences of events in the test
suites. This is due to the fact that some sequences of events are subsets from others.
So, for a set C= {tcy, tc,... tcn} of test cases (tc), the TSSM is calculated as follows:
Tssm=1E9 ®)
ICl
where |C| is the cardinality for set C, which counts the number of test cases in the
population and TCO is a test case occurrence, which counts the occurrences of a spe-
cific sequence within the suite. In order to calculate TCO, every sequence (test case)
is considered as an individual set such as: {tci}, {tco}, {tc.}. If k is the counter for
counting the occurrence of similar test cases, the sets are compared as follows:

Vic, , =tk =k +1; 6)

5 Case Study

Assume that the following test suite is produced from the SSP technique based on the
circular queue example.

TC1: _.add(l).front()

TC2: _.remove().front()

TC3: _.add(1).add(-1).remove().add(1295644148).add(-1295644148).add(0).add(1).add(-1).front()
TC4: _.add(0).add(Integer.Max_value).add(Integer.Min_value).add(1).add(-1).front()

TC5: _.remove().remove().front()

To get the fitness, equation (1) will be used. However, the values may be greater than
or equal to one. So, there is a need to use the average fitness as follows:

Fitness (7)
Total Fitness
where Total Fitness is the summation of all fitness values in the population. Table 2
shows the fitness along with the average fitness for the population above.

Table 2. THE FITNESS VALUES

Average Fitness =

ID SC TSM Fitness Average Fitness

TC1 0.2 0.4 0.6 0.15

TC2 0.2 0.4 0.6 0.15

TC3 1.2 0.2 14 0.35

TC4 1 0.2 1.2 0.3

TC5 0 0.2 0.2 0.05
TOTAL 4 1

The results show that test cases with events close to the maximum number of items
that can be added to the data structure. Hence, TC3 got the highest value followed by
TC4. Besides, the test cases with redundant events, such as TC5, obtain the lowest
value.

6 Conclusion

The integration of SSP and GA is promising in order to optimize sequence of
events. Prior to any application, there is a need to derive a fitness function that guides
the search for solutions within a population. This is a part of an on-going research
which aims to enhance the effectiveness of test case generation technique for testing a
module with internal memory. We believe that the adoption of GA can improve the
effectiveness of SSP to overcome the redundancy issues in SSP and consequently will
produce optimized test cases.

7 References

1. Pressman, R.S., Software engineering: a practitioner's approach. 2010: McGraw-Hill
Higher Education.

2. Baharom, S. and Z. Shukur. Module documentation based testing using Grey-Box
approach. in ITSim 2008. International Symposium on Information Technology,
2008. 2008.

3. Baharom, S. and Z. Shukur. State-Sensitivity Partitioning Technique for Module

Documentation-based Testing. in Business Transformation through Innovation and
Knowledge Management An Academic Perspective. 2010. Istanbul, Turkey.

4. Baharom, S. and Z. Shukur, An experimental assessment of module documentation-
based testing. Information and Software Technology, 2011. 53(7): p. 747-760.

5. Alsmadi, |., et al., Effective Generation of Test Cases Using Genetic Algorithms and
Optimization Theory. Journal of Communication and Computer, 2010. 7(11): p. 72-
82.

6. Kulkarni, N.J., et al., Test Case Optimization Using Artificial Bee Colony Algorithm.
Advances in Computing and Communications, 2011: p. 570-579.

7. Ali, S., et al., A Systematic Review of the Application and Empirical Investigation of

Search-Based Test Case Generation. |IEEE Transactions on Software Engineering,
2010. 36(6): p. 742-762.

8. Harman, M., et al., Search based software engineering: Techniques, taxonomy,
tutorial, in Empirical Software Engineering and Verification, B. Meyer and M.
Nordio, Editors. 2012, Springer. p. 1-59.

9. Gannon, J.D., J. Purtilo, and M.V. Zelkowitz, Software Specification: A Comparison
of Formal Methods. 1994: Ablex Publishing Company.
10. Holland John, H., Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. USA:
University of Michigan, 1975.

11. Li, Z., M. Harman, and R.M. Hierons, Search Algorithms for Regression Test Case
Prioritization. IEEE Transactions on Software Engineering, 2007. 33(4): p. 225-237.

12. McMuinn, P., Search-based software test data generation: a survey. Software Testing,
Verification and Reliability, 2004. 14(2): p. 105-156.

13. Conrad, AP., R.S. Roos, and G.M. Kapfhammer. Empirically studying the role of

selection operators duringsearch-based test suite prioritization. 2010. ACM.

