
HAL Id: hal-01466690
https://inria.hal.science/hal-01466690

Submitted on 13 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Evaluating the Impact of Integrating a Security Module
on the Real-Time Properties of a System

Sunil Malipatlolla, Ingo Stierand

To cite this version:
Sunil Malipatlolla, Ingo Stierand. Evaluating the Impact of Integrating a Security Module on the
Real-Time Properties of a System. 4th International Embedded Systems Symposium (IESS), Jun
2013, Paderborn, Germany. pp.343-352, �10.1007/978-3-642-38853-8_31�. �hal-01466690�

https://inria.hal.science/hal-01466690
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Evaluating the Impact of Integrating a Security
Module on the Real-Time Properties of a

System ?

Sunil Malipatlolla1 and Ingo Stierand2

1 OFFIS - Institute for Information Technology
Oldenburg, Germany

sunil.malipatlolla@offis.de
2 Carl von Ossietzky Universität Oldenburg

Oldenburg, Germany
stierand@informatik.uni-oldenburg.de

Abstract. With a rise in the deployment of electronics in today’s sys-
tems especially in automobiles, the task of securing them against various
attacks has become a major challenge. In particular, the most vulnera-
ble points are: (i) communication paths between the Electronic Control
Units (ECUs) and between sensors & actuators and the ECU, (ii) re-
mote software updates from the manufacturer and the in-field system.
However, when including additional mechanisms to secure such systems,
especially real-time systems, there will be a major impact on the real-
time properties and on the overall performance of the system. Therefore,
the goal of this work is to deploy a minimal security module in a target
real-time system and to analyze its impact on the aforementioned prop-
erties of the system, while achieving the goals of secure communication
and authentic system update. From this analysis, it has been observed
that, with the integration of such a security module into the ECU, the
response time of the system is strictly dependent on the utilized commu-
nication interface between the ECU processor and the security module.
The analysis is performed utilizing the security module operating at dif-
ferent frequencies and communicating over two different interfaces i.e.,
Low-Pin-Count (LPC) bus and Memory-Mapped I/O (MMIO) method.

Keywords: Security, FPGA, Interfaces, Real-Time Systems

1 Introduction and Related Work

Real-time applications such as railway signaling control and car-to-car communi-
cation are becoming increasingly important. However, such systems require high
quality of security to assure the confidentiality and integrity of the information
during their operation. For example, in a railway signaling control system, the

? This work was supported by the Federal Ministry for Education and Research
(BMBF) under support code 01IS11035M, ’Automotive, Railway and Avionics Mul-
ticore Systems (ARAMiS)



control center must be provided with data about position and speed of the ap-
proaching train so that a command specifying which track to follow may be sent
back. In such a case, it must be assured that the messages exchanged between
the two parties are not intercepted and altered by a malicious entity to avoid
possible accidents. Additionally, it is mandatory to confirm that the incoming
data to the control center is in fact from the approaching train and not from
an adversary. Similar requirements are needed in a car-to-car communication
system. Thus, there is a need to integrate a security mechanism inside such sys-
tems to avoid possible attacks on them. Furthermore, above considered systems
are highly safety relevant, thus the real-time properties typically play an impor-
tant role in such systems. In general, the goal of a real-time system is to satisfy
its real-time properties, such as meeting deadlines, in addition to guaranteeing
functional correctness. This raises the question, what will be the impact on these
properties of such a system when including, for example, security as an addi-
tional feature? To understand this, we integrate a minimal security module in
the target real-time system and evaluate its impact on the real-time properties
as a part of this work.

There exist some work in the literature which addresses the issue of includ-
ing security mechanisms inside real-time applications. For example, Lin et al.
[9] have extended the real-time schedulability algorithm Earliest Deadline First
(EDF) with security awareness features to achieve a static schedulability driven
security optimization in a real-time system. For this, they extended the EDF
algorithm with a group-based security model to optimize the combined security
value of selected security services while guaranteeing schedulability of the real-
time tasks. In a group-based security model, security services are partitioned
into several groups depending on the security type and their individual quality
so that a combination of both results in a better quality of security. However,
this approach had a major challenge as how to define a quality value for a certain
security service and to compute the overhead due to those services. In another
work, authors Marko et al. have designed and implemented a vehicular security
module, which provides trusted computing [12] like features in a car [13]. This
security module protects the in-vehicle ECUs and the communication between
them, and is designed for a specific use in e-safety applications such as emergency
breaking and emergency call. Further, the authors have given technical details
about hardware design and prototypical implementation of the security module
in addition to comparing its performance with existing similar security modules
in the market. Additionally, the automotive industry consortium, autosar, spec-
ified a service, referred to as Crypto Service Manager (CSM), which provides a
cryptographic functionality in an automobile, based on a software library or on
a hardware module [2]. Though the CSM is a service based on a software library,
it may be supported by cryptographic algorithms at the hardware level for se-
curing the applications executing on the application layer. However, to the best
of our knowledge, none of the aforementioned approaches addresses the issue of
analyzing the impact on the real-time properties of a system when integrating a
hardware security module inside it.



Fig. 1. System Scenario

The rest of the paper is organized as follows. Section 2 gives a detailed de-
scription of the system under consideration and its operation with the security
module internals and the adversarial model. Section 3 evaluates the system oper-
ation with three different test scenarios, and presents the corresponding analysis
results. Section 4 concludes the paper and gives some hints on future work.

2 System Specifications

2.1 System Model

The system under consideration is depicted in Figure 1. It comprises of a sensor,
an actuator, an electronic control unit (ECU) with a processor & a security
module, and an update server. The system realizes a simple real-time control
application, where sensor data are processed by the control application in order
to operate the plant due to an actuator. The concrete control application is not
of interest in the context of this paper. It might represent the engine control of
a car, or a driver assistant system such as an automatic breaking system (ABS).

The scenario depicted in Figure 1 consists of the following flow: Sensor peri-
odically delivers data from the plant over the bus (1), which is in an encrypted
form to avoid its interception and cloning by an attacker. The data is received
by the input communication task ComIn, which is part of the operating system
(OS). Each time the input communication task receives a packet, it calls the
security service (SecSrv), which is also part of the OS, for decryption of the
packet (2). The security service provides the hardware abstraction for security
operations, and schedules service calls. The decryption call from the communi-
cation task is forwarded to the security module (3), which processes the packet
data. The cryptographic operations of the security module modeled by Dec, Enc,
and Auth are realized as hardware blocks. The decrypted data is sent back to
the security service, which is in turn returned to the ComIn. Now the data is
ready for transmission to the application (4), which is modeled by a single task
App. The application task is activated by the incoming packet, and processes
the sensor data. The controller implementation of the task calculates respective



actuator data and sends it to the communication task ComOut (5) for transmis-
sion to the Actuator. However, before sending the data to the Actuator, the
communication task again calls the security service (6), which in turn accesses
the security module for data encryption (7). After Enc has encrypted the data,
it is sent back to the communication task ComOut via SecSrv, which delivers the
packet to the Actuator (8). It is required that the control application finishes
the described flow within a single control period, i.e., before the next sensor data
arrives.

Additionally, the system implements a function for software updates. To up-
date the system with new software, the UpdateServer sends the data to the Upd

task (a) via a communication medium (e.g., over Internet) to the outside. This
received data must be authenticity verified and decrypted before loading it into
the system. For this, the Upd forwards the data to the SecSrv, which utilizes the
Auth block of the security module (b). Only after a successful authentication,
the data is decrypted and loaded into the system else it is rejected.

The security module, integrated into the ECU, is a hardware module com-
prising of cryptographic hardware blocks for performing operations such as en-
cryption, decryption, and authenticity verification. Though these operations are
denoted as tasks in the system view, they are implemented as hardware blocks.
Further, a controller (a state machine), a memory block, and an I/O interface
are included inside the security module (not depicted in Figure 1). Whereas the
controller executes the commands for the aforementioned cryptographic opera-
tions, the memory block acts as a data buffer. The commands arrive as requests
form the SecSrv on the processor, and the responses from the security module
are sent back. In essence, the SecSrv acts as a software abstraction of the hard-
ware security module, for providing the required cryptographic operations to the
executing tasks on the processor.

The security module is equipped with particular support for update function-
ality i.e., authenticity verification. In normal operation, the data is temporarily
stored in the memory block of the security module to compare the attached
Hash-based Message Authentication Code (HMAC) value by the update server
with the computed HMAC value in the security module before decrypting and
loading it. This kind of operation, where all update data is stored in memory of
the security module, and authentication being applied at once on the data, is
however not appropriate in the context of the considered real-time application.
This is because, while the security module is performing authentication, other
operations such as decryption of incoming sensor data or encryption of outgoing
actuator data are blocked. Given this, large update data can block the device
for a long time span, resulting in a violation of allowed delay by the control
algorithm.

To avoid such a situation in the considered scenario, for authenticity verifi-
cation, the HMAC is calculated in two steps. In the first step, a checksum of the
update data is calculated using a public hash algorithm such as Secure Hash Al-
gorithm (SHA-1). In the second step, the HMAC is computed on this checksum.
The Upd task thus calculates and sends only the checksum of the data instead of



whole data itself to the security module via SecSrv. Since the update process is
not time critical, Upd task is executed with low priority, preventing any undesired
interference with the real-time application. Therefore, only the interference for
authentication of the single checksum has to be considered. However, since the
update data being encrypted, Upd task needs to access the security module for its
decryption. To this end, the data is split into packets and decrypted piece-wise.
The impact of these operations has to be considered in the real-time analysis.

Another possibility to verify the authenticity of the update data would be to
compute the HMAC iteratively within the security module. For this, the update
data from the Upd task is sent to the security module in a block-by-block basis
via the SecSrv. The computed HMAC on the received block is stored inside
the memory block of the security module. Before sending the next block, the
SecSrv checks for any pending requests for encryption or decryption operation
from other high priority tasks. If there exists such a request, it is executed be-
fore sending the next block of data for HMAC computation. In order to handle
this procedure, the security module should be equipped with an additional hard-
ware block performing the scheduling of cryptographic operations. Further, the
communication interface between the SecSrv and the security module has to
be modified. Though, this method is currently not supported by our security
module it is definitely a desired feature.

The goal of the security module is to provide a secure communication path
between the sensor and the actuator and to provide authentic updates of the sys-
tem. For this, the cryptographic blocks of the security module utilize standard-
ized algorithms for providing the cryptographic operations such as encryption,
decryption, hash computation, and HMAC generation & verification. Having
said that, all the aforementioned cryptographic operations performed by the se-
curity module in the considered system utilize a single block cipher algorithm
i.e., Advanced Encryption Standard (AES) as the base [10]. It is a symmetric key
algorithm i.e., it utilizes a single secret key for both encryption and decryption
operations. In addition to being standardized by National Institute for Standards
and Technology (NIST), the AES-based security mechanisms consume very few
computational resources, which is essential in resource constrained embedded
systems.

2.2 Adversarial Model

To describe all possible attack points in the considered system, an adversar-
ial model is formulated as depicted in Figure 2. The model highlights all the
components (with a simplified ECU block) and the corresponding internal and
external communication paths (i.e., numbered circles) of the original system (c.f.
Figure 1). The adversary considered in the model is an active eavesdropper (c.f.
Dolev-Yao Model [5]), i.e., someone who first taps the communication line to
obtain messages and then tries everything in order to discover the plain text. In
particular he is able to perform different types of attacks such as classical crypt-
analysis and implementation attacks, as defined in taxonomy of cryptographic
attacks by Popp in [11]. While classical cryptanalysis attacks include cloning by



Fig. 2. Adversarial Model

interception, replay, and man-in-the-middle attacks, the implementation attacks
include side-channel analysis, reverse engineering, and others.

For our analysis, we assume that the attacker is only able to perform clas-
sical cryptanalytic attacks on the external communication links (indicated by
thick arrows coming from adversary) i.e., from sensor to ECU, ECU to actuator,
and update server to ECU. In specific, under cloning by interception attack, the
adversary is capable of reading the packets being sent to the ECU and store
them for using during a replay attack. Whereas in a man-in-the-middle attack,
the adversary can either pose as an ECU to authenticate himself to the update
server or vice versa. In the former case, he would know the content of the update
data and in the latter he may update the ECU with a malicious data to destroy
the system. However, to protect the systems against the classical cryptanalytic
attacks, strong encryption and authentication techniques need to be utilized.
With reference to this, the security module in here provides techniques such as
confidentiality, integrity, and authenticity which overcome these attacks. We rule
out the possibility of attacker being eavesdropping the ECU’s internal commu-
nication (indicated by a dotted arrow coming from adversary) because such an
attack implies that the attacker is having a physical access to the ECU and thus
control the running OS and the tasks themselves.

3 System Analysis

To analyze the impact of including the security feature on the real-time proper-
ties of the system, we consider three different test cases as detailed in the sequel.
A brief description about the system set-up and the utilized tools is given before
delving into the obtained results with the test cases.

The control application is executed with a frequency of 10 kHz, i.e., the
Sensor sends each 100µs a data packet to the ECU. The update service is
modeled as a sporadic application with typically very large time spans between
individual invocations. All tasks of the processor are scheduled by a fixed pri-
ority scheduling scheme with preemption, where lower priority tasks can be in-
terrupted by higher priority tasks. Furthermore, all tasks belonging to the OS
(depicted by a dark gray shaded area of Figure 1) get higher priority than the
application tasks. The priorities in descending order are ComIn, ComOut, SecSrv,



Fig. 3. Scenario 1 w/o security feature

App, and Upd. The operations of the security module are not scheduled, and
the module can be considered as a shared resource. The SecSrv task processes
incoming security operation requests for the security module in first-in-first-out
(FIFO) order.

For all test cases, the processor of the ECU is a 50MHz processor (20ns cycle
time) that is equipped with internal memory for storing data and code. Internal
memory is accessed by reading and writing 16 Bit words within a single processor
cycle. Communication between the ECU, the sensor, and the actuator is realized
by a controller area network (CAN) bus. For simplicity, we assume that all data
are transferred between the processor and the CAN bus interface via I/O regis-
ters of 16 bit width, and with a delay of four processor cycles. Communication
over CAN is restricted to 64 Bit user data, and we assume that this is also the
size of packets transmitted between the ECU and the sensor/actuator. In order
to transmit 128 Bit data as required by the operation of the security module,
each transmission consists of two packets. Receiving and transmitting data thus
requires 16 Byte data transfer between the CAN bus controller and the proces-
sor, summing up to 64 processor cycles (1.28µs). Storing the packet into the OS
internal memory costs additional 320ns. Bus latencies are not further specified
in our setting, as we concentrate on the timing of the ECU application.

The utilized AES algorithm inside the security module operates on 128 Bit
blocks of input data at a time. Thus, all the blocks (enc, dec, and Auth) of
the security module, operate on same data size because they utilize the same
algorithm. The security module is implemented as a proof-of-concept on a Xilinx
Virtex-5 Field Programmable Gate Array (FPGA) [7] platform. The individual
cryptographic blocks of the security module are simulated and synthesized uti-
lizing the device specific tools. Utilizing an operating frequency of 358 MHz for
the FPGA, the execution time for each of encryption, decryption, and authenti-
cation operations is determined (by simulation) to be 46ns for a 128 Bit block of
input data. The timing parameters for other operating frequencies of the secu-
rity module are obtained by simple scaling. The utilized FPGA device supports
storage in the form of block RAM with 36 kb size, which is large enough to be
used as memory block of the security module.

We apply timing analysis in order to find the worst-case end-to-end response
time of the control application, starting from the reception of sensor data up
to the sending of actuator data (shown in Figure 3). Various static scheduling



Scenario 1 Scenario 2 Scenario 3
50MHz 50MHz 50MHz 358MHz

Task LPC LPC MMIO MMIO

App 50.0µs 50.0µs 50.0µs 50.0µs 50.0µs

ComIn 1.6µs 1.6µs 1.6µs 1.6µs 1.6µs

ComOut 1.6µs 1.6µs 1.6µs 1.6µs 1.6µs

SecSrv — 80ns 80ns 80ns 80ns

Comm. CPU/SM — 1.46µs 1.46µs 400ns 200ns

Dec — 358ns 358ns 358ns 46ns

Enc — 358ns 358ns 358ns 46ns

Auth — — 358ns 358ns 46ns

Response Time 53.2µs 60.1µs 62.0µs 56.7µs 54.96µs
Table 1. Analysis Results

analysis tools are available for this task (e.g. [6, 1]). The system however is suf-
ficiently small for a more precise analysis based on real-time model-checking [4].
To this end, the system is translated into a Uppaal model [3]. The worst-case
response time is obtained by a binary search on the value range of respective
model variable.

3.1 Target system without any security features

In the first scenario, which is shown in Figure 3, the communication tasks send
the data directly to the control application and to the communication bus with-
out encryption or decryption. The resulting end-to-end response time is shown
in column “Scenario 1” of Table 1. As expected, the analysis shows that the
execution times are simply summed up for the involved tasks since no further
interferences occur in this simple setting. Indeed the situation would be different
when multiple application tasks are executed on the same ECU, which would
cause additional interferences.

3.2 Target system with secure communication feature

In the second scenario, only the secure communication feature between the ECU
and the sensor and the actuator is enabled. The update service however is
switched off. This implies that the security module has to perform only encryp-
tion and decryption but no authentication. For this scenario, we assume that the
security module communicates with the processor via a Low-Pin-Count (LPC)
bus [8]. LPC is a 4 Bit wide serial bus defined with a clock rate of 33 MHz. Ac-
cording to the specification [8], the transfer of 128 Bit data plus 16 Bit command
requires about 1.46µs, when the bus operates with typical timing parameters.
Each invocation of the SecSrv involves a transfer of the data to or from the
security module, plus the execution time of the task of 80ns for internal copying
operations. The security module operating at a clock rate of 50 MHz results in



an individual execution time of 358ns for encryption and decryption (from sim-
ulation results). With this set-up, the timing analysis shows (column “Scenario
2” of Table 1), that enabling only the secure communication feature results in a
significant raise in the response time of the system i.e., about 13% more than in
the previous scenario.

3.3 Target system with secure communication and secure update
features

For the third scenario, both secure communication and authentic update features
are enabled. This scenario has been analyzed with three different sets of timing
parameters.

The first setting assumes the same parameters as for Scenario 2. Hence the
security module operates at a clock rate of 50 MHz, and communicates with the
processor via LPC. The results show a further raise in the end-to-end response
time of the application because the update service might call the authentication
service, which incurs an additional execution time to the pending encryption
and decryption operations of the security module. Thus, it can be seen that the
end-to-end response time is around 16% higher than in the first scenario.

For the second setting, we assume that the security module communicates
with the processor via a Memory-Mapped I/O (MMIO) interface. Memory trans-
fers are assumed to operate with 16 Bit words, and a delay of four processor
cycles, resulting in transfer times of 80ns. A transfer between the processor and
the security module now sums up to 400ns.

The final setting works with a very fast security module, and memory trans-
fers only having two cycles delay. The security module operates at 358 MHz,
which results in all cryptographic operations with 46ns of execution time.

Surprisingly, the end-to-end response time in the second and the final setting
has reduced and is only around 6.5% and 3.5% respectively. This implies that the
type of communication interface between the processor and the security module
has a significant impact on the resulting overall response time of the system.

In all settings, the software update function is assumed to perform the op-
erations as discussed in Section 2. After calculating the checksum of the update
data, task Upd sends an authentication request to SecSrv. When the authenti-
cation is successful (which is always true in the considered scenario), the task
successively sends decryption requests for each packet of the update data, while
waiting for the reply before sending a new request. The results shown in the table
represent the worst-case behavior obtained with various values of the execution
time (between 10ns and 1µs) needed by Upd between successive decryption re-
quests. The impact of the operation of Upd remains rather small, which can be
explained by the fact that the task is executed with low priority. However, the
selection of the execution times was not exhaustive, and thus do not guarantee
absence of race conditions. To enforce limited impact of the update function, the
SecSrv should be modified by running with priority inheritance, where requests
are executed with the same priority as the calling task. A more comprehensive
analysis of this issue is subject of future work.



4 Conclusion

In this work, a real-time system integrated with a security module is analyzed to
determine the impact of the latter on the worst-case response time of the system.
For this, different communication interfaces such as LPC bus and MMIO method
are utilized between the security module and the control unit processor of the
system, for performing cryptographic operations such as encryption, decryption,
and authentication. It is observed that the worst-case response time of the system
is high for a slower interface (i.e., LPC) and decreases drastically for a faster
interface (i.e., MMIO). Thus, when including a security mechanism in real-time
systems it is necessary to consider about the type of communication interface
being utilized. Though, the target system in here has a single ECU, a sensor,
and an actuator, the typical systems have multiple such components which need
a further investigation.

References

1. Anssi, S., Albers, K., Dörfel, M., Gérard, S.: chronVAL/chronSIM: A Tool Suite for
Timing Verification of Automotive Applications. In: Proc. Embedded Real-Time
Software and Systems (ERTS) (2012)

2. Autosar Organization: Specification of Crypto Service Manager.
http://www.autosar.org/download/R4.0/AUTOSAR SWS CryptoServiceManager.pdf
(2011)

3. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal 2004-11-17. Tech.
rep., Aalborg University, Denmark (Nov 2004)

4. Dierks, H., Metzner, A., Stierand, I.: Efficient Model-Checking for Real-Time
Task Networks. In: International Conference on Embedded Software and Systems
(ICESS) (2009)

5. Dolev, D., Yao, A.C.: On the security of public key protocols. Tech. rep., Stanford
University, Stanford, CA, USA (1981)

6. Hamann, A., Jersak, M., Richter, K., Ernst, R.: A framework for modular analysis
and exploration of heterogeneous embedded systems. Real-Time Systems 33(1-3),
101–137 (jul 2006)

7. Inc., X.: Xilinx, http://www.xilinx.com/support/documentation/virtex-5.htm
8. Intel: Low Pin Count (LPC) Interface Specification. Intel Corp. (August 2002)
9. Lin, M., Xu, L., Yang, L., Qin, X., Zheng, N., Wu, Z., Qiu, M.: Static security

optimization for real-time systems. IEEE Transactions on Industrial Informatics
5(1), 22 –37 (Feb 2009)

10. National Institute of Standards and Technology (NIST): Advanced Encryption
Standard (AES) (2001)

11. Popp, T.: An Introduction to Implementation Attacks and Countermeasures. In:
Proceedings of IEEE/ACM International Conference on Formal Methods and Mod-
els for Co-Design (MEMOCODE’09). pp. 108 –115 (Jul 2009)

12. Trusted Computing Group, Inc.: Trusted Platform Module (TPM) specifications.
http://www.trustedcomputinggroup.org/resources/tpm main specification (2010)

13. Wolf, M., Gendrullis, T.: Design, implementation, and evaluation of a vehicular
hardware security module. In: Kim, H. (ed.) Information Security and Cryptology
- ICISC 2011, Lecture Notes in Computer Science, vol. 7259, pp. 302–318. Springer
Berlin Heidelberg (2012)


