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Abstract. Order-preserving symmetric encryption (OPE) is a deterministic 

encryption scheme which encryption function preserves numerical order of the 

plaintexts. That allows comparison operations to be directly applied on 

encrypted data in case, for example, decryption takes too much time or 

cryptographic key is unknown. That’s why it is successfully used in cloud 

databases as effective range queries can be performed based on. This paper 

presents order-preserving encryption scheme based on arithmetic coding. In the 

first part of it we review principles of arithmetic coding, which formed the basis 

of the algorithm, as well as changes that were made. Then we describe noise 

function approach, which makes algorithm cryptographically stronger and show 

modifications that can be made to obtain order-preserving hash function. 

Finally we analyze resulting vulnerability to chosen-plaintext attack. 

Keywords: Cloud computing security, order-preserving encryption, 

symmetric-key cryptosystems, order-preserving hash functions 

1 Introduction 

Nowadays, the amount of information stored in various databases steadily increases. 

In order to store and effectively manage large amounts of data it is needed to increase 

data storages capacity and allocate funds for its administration. Another way that was 

chosen by many companies is to give the database management to a third-party. Such 

service is managed by a cloud operator and is called Database as a Service, DBaaS. 

Obviously, this approach has its own flaws. And the most important of them is 

security issue. Data can be stolen by the service provider itself or by someone else 

from its storage. Fortunately, this problem can be solved by encryption. Of course if 

we just encrypt the whole database with a conventional encryption algorithm, we’ll 

have to encrypt and decrypt it each time we need something. So, all advantages will 

be lost. That’s why special encryption schemes, such as homomorphic encryption and 

order-preserving encryption, are developed. The first one allows us to handle 

encrypted data, and the second – to sort them and select the desired. 

All known order-preserving schemes have significant problems, such as low level 

of security (polynomial monotonic functions [1], spline approximation [2], linear 

functions with random noise [3]), low performance (summation of random numbers 



[4], B-trees [5]) or too-large numbers proceeding (scheme by Boldyreva [6]). 

Proposed scheme doesn’t have these disadvantages and, furthermore, unlike all the 

others can be used to encrypt real numbers. Also it can be used to obtain order-

preserving hash function. 

This algorithm combines two main ideas, which the majority of OPE schemes 

operate with: monotonic functions design and elements of coding theory (implicit 

monotonic functions design). It is claimed that scheme is based on arithmetic coding 

and noise function, but, in fact, this article considers only the case with binary 

alphabet. In theory, nothing prevents the use of an arbitrary one. 

First, let’s give a definition of order-preserving encryption. Assume there are two 

sets A  and B  with order relation < . Function f: A → B  is strictly increasing if 

∀x, y ∈ A, x < 𝑦 ⇔ 𝑓 x < 𝑓 y . Order-preserving encryption is deterministic 

symmetric encryption based on strictly increasing function. 

The described order-preserving encryption scheme was developed in Laboratory of 

Modern Computer Technologies of Novosibirsk State University Research 

Department as a part of “Protected Database” project
1
 and is based on arithmetic 

coding and noise function. Let us consider them precisely. 

2 Splitting procedure of arithmetic coding 

Suppose c is non-negative integer number requiring for its representation n bits, i.e.  

c =   αi2
i

n

i=1

 

 

where  α1, α2, … , αn  is a bit string, α1  is the MSB. Let us define the bijection f. 
Assume that the string  α1, α2, … , αn  defines certain real number s ∈   0, 1   as 

follows: 

s =  
c

2n . 

 

Let us find another representation for the number s. In order to do it, we use the 

idea of arithmetic coding. Notice that the number s satisfies the equation 2ns = c. 

The equation 

 G x = 2nx − c = 0 

 

has only one solution on the interval   0, 1  . If we solve this equation using a standard 

binary search, we get the initial number s after n steps. The main idea of arithmetic 

coding is that intervals can be split into parts randomly. In this case approximate 

solution of the equation can be found after the less number of steps. That allows us to 
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achieve compression of data while using arithmetic coding. First of all, let us consider 

the splitting procedure. 

Suppose γ =
p

p+q
, μ =

q

p+q
, where p, q  are random natural numbers. Obviously, 

γ + μ = 1 . Let us split the interval   0, 1  into two parts   0,
p

p+q
  ,   

p

p+q
, 1  . If 

G  
p

p+q
 > 0, the interval  0,

p

p+q
   is selected, and the output is 0-bit (β1 = 0). If 

G  
p

p+q
 < 0, the interval   

p

p+q
, 1   is selected, and β1 = 1. Let us denote   a1, b1   the 

interval was selected.  

This interval is again split into parts in the ratio γ: μ. According to the sign of 

functionG(x) in the splitting point, one of the segments is selected. Proceeding by 

induction, the interval   ak , bk   can be calculated for ∀k. Its length is γrμn−r , where 

r  is the number of zeros in string β . If ∀r: 
1

2n < γrμk−r , then s ∈   ak , bk   and 

c = 2n s are uniquely defined by β = (β1, … , βk). It is also obvious that this mapping 

preserves an order. 

Generalizing used in the adaptive arithmetic coding, as well as in the proposed 

algorithm, is that it is possible to use different ratio on each step. This allows us to 

achieve stronger security of encryption. 

3 Noise function 

It is known that the composition of two strictly increasing functions strictly increases. 

Therefore, to provide stronger security of cryptographic algorithm special random 

strictly increasing function is used in addition to the splitting procedure. In fact, we 

use inverse function of the one that was generated. 

It was proved [6] that OPE schemes cannot satisfy the standard notions of security, 

such as indistinguishability against chosen-plaintext attack (IND-CPA) [7], since they 

leak the ordering information of the plaintexts. If an adversary knows plaintexts 

p1 ,  p2  and corresponding ciphertexts c1, c2  and c , such that   c1 < 𝑐 < c2 , it is 

obvious that the plaintext for c  lies in the interval (p1, p2) . In addition, the 

adversary can always find the decryption function in some approximation, for 

instance, using linear interpolation. 

And moreover, in case of using, for example, encryption method developed by 

David A. Singer and Sun S. Chung [1], where strictly increasing polynomial functions 

f x = a0 + a1x + ⋯ + anxn  are used for encryption, the adversary can calculate the 

exact encryption function if he has (n + 1) arbitrary pairs (plaintext, ciphertext). It is 

enough to solve the system of equations: 

 

a0 + a1x0 + ⋯ + anx0
n = y0

a0 + a1x1 + ⋯ + anx1
n = y1

⋮
a0 + a1xn + ⋯ + anxn

n = yn

  

 



Thus, the adversary can get  a0, … an  and correspondingly encryption function 

f(x). 

In order to complicate his task it is necessary to maximize the amount of pairs 

required for this attack and complexity of the system of equations f xi = yi . 

Therefore, it was decided to generate noise function from class of function 

f x =   a0 + a1t + a2t2 (a3 + a4 sin a5 + a6t + a7 cos(a8 + a9t)) dt
x

c
, 

 

where c is an arbitrary constant and coefficients ai are selected so that 

 a0 + a1t + a2t2 (a3 + a4 sin a5 + a6t + a7 cos(a8 + a9t)) > 0 

 

for ∀t ∈ (c; xmax ). In this case f(x) is strictly increasing function (see Fig. 1). This 

integral can be calculated explicitly, which increases the speed of function value 

calculation. 

 

 

Fig. 1. Example of the correct noise function from the class. Due to such combination of sine 

and cosine, its behavior is hard to predict without  a0 , … a9  coefficients knowledge. 

Nevertheless, the system of equations 

 
 
 
 

 
 
  

 a0 + a1t + a2t2 (a3 + a4 sin a5 + a6t +
a7 cos(a8 + a9t)) dt

x0

c

= y0

 
 a0 + a1t + a2t2 (a3 + a4 sin a5 + a6t +

a7 cos(a8 + a9t)) dt

x1

c

= y1

⋮

 
 a0 + a1t + a2t2 (a3 + a4 sin a5 + a6t +

a7 cos(a8 + a9t)) dt

xk

c

= yk

  



 

is difficult to solve, which indicates that proposed algorithm is cryptographically 

strong against this type of attack. 

4 Cryptographic scheme 

4.1 Key generation 

As a private key of encryption algorithm we consider noise function f x =

  a0 + a1t + a2t2 (a3 + a4 sin a5 + a6t + a7 cos(a8 + a9t)) dt
x

c
 and a set of ratios 

 pi , qi . 

In order for an encrypted n-bit number to be uniquely decrypted, the length of 

intervals computed during decryption has to be less than 
1

2n . The largest length of the 

interval that can be obtained during decryption is  
max ⁡ pi ,q i 

pi +q i
i fmax

′ (x) . So the 

algorithm of calculation the set of ratios is:  

1. Generate random ratios pi , qi. 

2. Check the condition 

 
max⁡ pi , qi 

pi + qi
i

fmax
′  x <

1

2n
 

 

If this conditions if satisfied, go to the step 3, else 

go back to the step 1. 

3. Output the set of ratios  p1, q1 ,  p2, q2 , … ,  pk , qk . 

The key is the set K = [ a0, … , a9 ,  p1 , q1 ,  p2 , q2 , … ,  pk , qk ]. 

4.2 Encryption 

Assume we need to encrypt n-bit integer s with the key 

K = [f(x),  p1 , q1 ,  p2, q2 , … ,  pk , qk ], where f(x) is a noise function, f a0 = 0, 

f(b0) = 2n , and (pi , qi) is a set of ratios. Consider the i-th iteration of algorithm. 

The current interval   ai−1, bi−1   is split in the ratio pi : qi . Let it be split at the 

point x ∈   ai−1, bi−1  , i.е. 

x = ai−1 +
 bi−1 − ai−1 pi

pi + qi

. 

 

If f(x) > 𝑠, then βi = 0, ai = ai−1,  bi = x. Otherwise, βi = 1,  ai = x,  bi = bi−1. 

Notice that ∀i, f −1(s) ∈   ai , bi   according to the selection of ai  and bi . After 

performing k iterations, (where k is the size of the key, i.e. the number of ratios) we 

obtain the bit sequence β =  β1, … , βk , βi ∈  0,1 , which is a ciphertext for s. 



4.3 Decryption 

Suppose there is a bit sequence β =  β1, … , βk , βi ∈  0,1 , which is the ciphertext 

for s, encrypted with some key K. Let us consider the  i-th iteration of the algorithm. 

Similar to the encryption algorithm, current interval   ai−1, bi−1   is split in the ratio 

pi : qi . Let it be split at the point x ∈   ai−1, bi−1  , i.e. 

x = ai−1 +
 bi−1 − ai−1 pi

pi + qi

. 

 

If βi = 0, then ai = ai−1, bi = x. Otherwise, ai = x, bi = bi−1. 

After performing k iterations, we obtain the interval   ak , bk   and the 

condition  f(bk ) − f(ak) <
1

2n is satisfied according to the key selection. As s ∈

  f(ak), f(bk )  , the s is uniquely decoded as follows: 

s =  2n f(ak) + 1, 

 

where  x  is the largest integer, which comes before x. 

5 Scheme modifications 

5.1 Application of the scheme for fixed-point arithmetic 

It is easy to see that this scheme can be generalized to the set of rational numbers. 

Encryption and decryption algorithms are the same except for the final operation – the 

length of the segment   ak , bk   that determines encrypted number is reduced to 2l  

times, where l is the number of bit decimal places. It should be known at the stage of 

key generation and condition from point 2 takes the following form: 

 
max⁡ pi , qi 

pi + qi
i

∗  fmax
′ (x) <

1

2n+l
 

After key generation number l can’t be modified and is a part of the key. So, the 

secret key K now is the set [l,  a0, … , a9 ,  p1, q1 ,  p2, q2 , … ,  pk , qk ]. 

5.2 Strictly increasing hash function 

This algorithm can also be modified to produce a strictly increasing hash function. It 

can be used, for example, in encrypted database, if it stores two entities for each data: 

ciphertext, that was obtained from cryptographically strong algorithm and hash value 

returned by hash function. This allows both to be sure that the data won’t be 

decrypted by adversary (first entity is secure and the second can’t be decrypted at all) 

and apply comparison operations on encrypted data to some extent. 



To begin, we note that output has the same bit size as the number of ratios pi , qi  

from the secret key. So, in order to obtain a hash function, it is enough to change the 

procedure of key generation, and more precisely, its ratios generation part.  

Instead of the condition checking from the point 2, satisfaction of which 

guaranteed that the data can be decrypted, now we need to perform the first point – 

pair pi , qi  generation – a number of times. This number, evidently, is equal to the 

number of bits that hash function returns. 

Thus, the key generation algorithm for order-preserving m-bit hash function is: 

1. Select strictly increasing noise function f(x). To do 

this, generate  a0, … a9  so that 

 a0 + a1t + a2t2 (a3 + a4 sin a5 + a6t + a7 cos(a8 + a9t)) > 0 

 

for ∀t ∈ (c; xmax ), where c is a fixed constant. 

2. Generate random set of ratios  p1, q1 ,  p2, q2 , … ,  pm , qm  . 

3. The key is the set K = [ a0, … , a9 ,  p1 , q1 ,  p2 , q2 , … ,  pm , qm  ]. 
 

To get rid of the big numbers processing, for instance, if we need to get hash of a 

large file, it is possible to split input data into parts with acceptable size and calculate 

hash for each of them. The result hash value of the whole file can be found as their 

concatenation. This approach allows us to hash data of any predetermined dimension. 

So, there are three parameters that we can select arbitrarily depending on our 

purpose: s1 – size of the processed parts, s2 – hash size for each of them (s2 < s1), 

and s3 – maximum file size. Obviously, final hash is s2s3
s 1

-bit. 

Since encryption algorithm remains the same, the hash function running time 

depends linearly on its output size (it is equal to the number of algorithm iterations). 

Therefore, it is not recommended to choose too-big s2 number. 

In order to process files smaller than the maximum size, they can be padded with 

zeros on the left. In this case, order is still preserves. Since this is a hash function 

algorithm, decryption is no longer exists. 

6 Encryption security 

As we have seen (see Section 3) OPE schemes cannot satisfy the standard notions of 

security against chosen-plaintext attack. Different methods of cryptoanalysis are 

considered to determine the notion of order-preserving encryption security 

[2],[8],[9],[10]. Generally, the security of such schemes is based on the fact that 

monotonic function, the scheme is based on, must be completely indistinguishable 

from truly random monotonic function. This means that only an access to the private 

key allows performing accurate data decryption. 

So let us check this algorithm for this condition in practice. To do that, we 

encrypted all 16-bit numbers (from 0 to 65535) with the same random key and 

analyzed the results. 



As a subject of analysis we chose the difference between two ciphertexts for 

nearby integers. For example, if f x = 2186003864819  and f x + 1 =
2186004033407 , where f(x)  is encryption function, then f x + 1 − f x =
168588 is considered. One of the reasons for this choice was the fact that success of 

chosen-plaintext attack by interpolation depends on this differrences (see Fig. 2). 

 

Fig. 2. Chosen-plaintext attack using values interpolation. Ciphertext for some b1-bit plaintext 

x is approximated by the value of 
x

2b 2
, where b2 is size of ciphertext. Approximation in the 

other direction is counted similarly. 

As a result, we obtained the following data (see Fig. 3). In this chart the Y-axis 

displays the difference value between two ciphertexts (higher values were rounded), 

and the X-axis shows the number of them was found. 



 

Fig. 3. Frequency distribution of the differences between ciphertext. 

As we see, this chart and right hyperbola y =
1

x
 are alike. It is typical for monotonic 

functions that were generated randomly and indicates that the maximum available 

security of the algorithm was achieved. 

But the distribution of the differences itself is also important (see Fig. 4). The Y-

axis displays f x + 1 − f(x) when the X-axis shows x (from 0 to 65535). 

 

Fig. 4. Distribution of the differences on the interval.  

We can see that the differences are distributed very irregularly. As it is a feature of 

secure encryption, we can claim that proposed algorithm is cryptographically strong. 
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