
HAL Id: hal-01446266
https://inria.hal.science/hal-01446266

Submitted on 25 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Minimizing Walking Length in Map Matching
Amin Gheibi, Anil Maheshwari, Jörg-Rüdiger Sack

To cite this version:
Amin Gheibi, Anil Maheshwari, Jörg-Rüdiger Sack. Minimizing Walking Length in Map Matching.
1st International Conference on Theoretical Computer Science (TTCS), Aug 2015, Tehran, Iran.
pp.105-120, �10.1007/978-3-319-28678-5_8�. �hal-01446266�

https://inria.hal.science/hal-01446266
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Minimizing Walking Length in Map Matching

Amin Gheibi∗, Anil Maheshwari∗, and Jörg-Rüdiger Sack ∗

School of Computer Science, Carleton University, Ottawa, ON, Canada
[agheibi,anil,sack]@scs.carleton.ca

Abstract. In this paper, we propose a geometric algorithm for a map
matching problem. More specifically, we are given a planar graph, H,
with a straight-line embedding in a plane, a directed polygonal curve,
T , and a distance value ε > 0. The task is to find a path, P , in H,
and a parameterization of T , that minimize the sum of the length of
walks on T and P whereby the distance between the entities moving
along P and T is at most ε, at any time during the walks. It is al-
lowed to walk forwards and backwards on T and edges of H. We pro-
pose an algorithm with O (mn (m + n) log(mn)) time complexity and
O (mn (m + n)) space complexity, where m (n, respectively) is the num-
ber of edges of H (of T , respectively). As we show, the algorithm can be
generalized to work also for weighted non-planar graphs within the same
time and space complexities.

1 Introduction

Trajectory data are often obtained from global positioning system (GPS) de-
vices. Such devices have accuracy limitations due to noise, sampling intervals,
or poor signals (e.g., inside buildings) thus raw spatial trajectories tend not to
be accurate. Under the assumption that the travel captured by the trajectory
was following edges of a map (stored as a graph) the map matching problem
arises. It asks to find a path on the map that “corresponds well” to the given
trajectory. Map matching arises in different contexts and is a necessary step in
preprocessing raw data before data mining [1]. A variety of approaches have been
used to solve the map matching problem (e.g. geometric, probabilistic methods,
fuzzy logic, neural networks). In [2], Chen et al. discussed recent map match-
ing algorithms when a trajectory is obtained from low-frequency GPS data of
vehicles driving on a road network. Ruan et al. [3] studied indoor map match-
ing technology based on personal motion states. In [4], Asakura et al. proposed
a pedestrian-oriented map matching algorithm in the context of disasters. In
this context, refugees have battery-driven mobile GPS terminals and move to
shelters at walking speed. They stated that in order to reduce battery consump-
tion (which is vital in this context), they chose a geometric approach in which
computation resources are less utilized when compared e.g., with probabilistic
methods.

∗ Research supported by Natural Sciences and Engineering Research Council of
Canada

In this paper, we focus on geometric approaches. We assume that a map is
given as a planar graph via a straight-line embedding in a plane. Therefore, a
path in the graph corresponds to a polygonal curve in the plane. A trajectory
is given as a directed polygonal curve from a starting point to an ending point.
The objective is to find a path in the map which is most similar to the given
trajectory.

To measure similarity, [1] and [7] observe that methods which consider global
features of the input trajectories achieve more accurate results than local ap-
proaches. The Fréchet distance is a global similarity measure between curves,
see e.g., the seminal paper [6]. Commonly, the Fréchet distance is illustrated as
follows: Suppose a person wants to walk along one curve and his/her dog on
another; the person is keeping the dog at a leash. Both person and dog walk,
from starting point to ending points along their respective curves. The standard
Fréchet distance is the minimum leash length required without either person or
dog needing to backtrack. The weak Fréchet distance is a variant of the stan-
dard Fréchet distance in which backtracking on one or both curves is allowed. Alt
and Godau [6] proposed algorithms to compute the standard and weak Fréchet
distances in O(n2 log n) time, where n is the maximum number of segments in
the input polygonal curves. Har-Peled and Raichel [15] showed that the weak
Fréchet distance can be computed in quadratic time.

In [5], Alt et al. discussed the map matching problem set in the context of the
standard Fréchet distance. I.e., their algorithm finds a path in the planar graph
with minimum Fréchet distance to the given trajectory. The time complexity
of their algorithm is O(mn log2mn) where m (n, respectively) is the number
of edges in the input planar graph (the input polygonal curve, respectively).
Brakatsoulas et al. [7], extended the map matching algorithm of [5] for the weak
Fréchet distance. The time complexity of their algorithm is O(mn logmn). In [8],
Chen et al. proposed a (1 + ε)-approximation algorithm for the map matching
problem when the similarity measure is the standard Fréchet distance and input
model is more “realistic”. They assumed that the input polygonal curve is c-
packed and the input graph is φ-low density in Rd (see Section 2 of [8]).

In [10], Gheibi et al. studied a natural optimization problem on the weak
Fréchet distance, called the minimum backward Fréchet distance (MBFD) prob-
lem. There, the task is to determine a pair of walks for a given input leash
length such that the total length of backtracking on both input polygonal curves
is minimized. The cost of backtracking could represent, for example, the cost of
moving against a flow, or the cost for a moving entity (e.g., a human, a humanoid
robot) to move backwards because of the entity’s physiology [9]. They proposed
an algorithm solving this problem within time complexity O(n2 log n) and space
complexity O(n2), where n is the maximum number of segments in the polygonal
curves. In [11], the weighted variant of the MBFD problem is solved in O(n3)
time. In this variant, each edge of the input polygonal curves has an associated
non-negative weight to capture different costs for backward movement.

In this paper, we study the map matching problem when the similarity mea-
sure is the MBFD. More specifically, as input, we are given: a planar graph, H,

2

with a straight-line embedding in a plane, a directed polygonal curve, T , and a
distance ε > 0. As motions, both forward and backward motions along T and
the edges of H are allowed. The objective is to find a path, P , in H, and a
parameterization of T , that minimize the sum of the walk lengths along T and
P while keeping a leash length of at most ε. We restrict the start and end point
of P to be at a vertex of H. However, P may partially contain an edge of H.
The difference between this problem setting and that optimization setting of [5]
and [7], is that here the total walking length along T and P is minimized while
in the other settings the leash length is minimized. The optimization problem
introduced in this paper, can also be used to track objects moving on road net-
works. To ensure high-quality tracking, the mobile tracker must remain within a
distance of ε to the moving object, at all time. To minimize energy consumption,
the tracker wants to minimizes walking distance. This type of scenario has been
discussed in the context of wireless networks (see [12] and [13]).

Figure 1 shows an example of an embedding of a planar graph, H, in R2, a
polygonal curve, T , and a length ε. The dog walks on T from T (0) to T (4) and the
person chooses a path in H, from one vertex of H to another vertex. Two points,
a and b, are determined on 〈v4, v5〉 and 〈v3, v4〉 respectively. A path in H, and
a walk on T , that minimize the walking lengths on H and T , are as follows: the
dog starts at T (0) and continues on T . The person starts at v1 and walks on the
edges 〈v1, v3〉, 〈v3, v4〉, and 〈v4, v5〉. They move together in a forward direction
until the dog reaches the end of the second segment of T and the person reaches
the point a on 〈v4, v5〉. Then, the dog continues to move forwards until the end
of the third segment of T is reached, while the person moves backwards from a
to v4 and then to b. At the final step, they move forwards again together until
the dog reaches the end of T and the person reaches v5. We show the path in
the graph by the sequence of its vertices, P ∗ = [v1, v3, v4, a, v4, b, v4, v5].

The structure of this paper is as follows. In Section 2, we discuss preliminaries
and define the problem formally. In Section 3, we propose a polynomial time
algorithm for the map matching problem introduced. Then, in Section 4, we
develop an algorithm with improved time and space complexities. In Section 5,
we sketch a solution to a weighted problem variant. Finally, in Section 6, we
conclude the paper.

2 Preliminaries and Definitions

A geometric path in R2 is a sequence of points in 2D Euclidean space, R2. A
polygonal curve, or a discrete geometric path, is a geometric path, sampled by a
finite sequence of points (called vertices), which are connected by line segments
(called edges) in order. Let T : [0, n]→ R2 be a polygonal curve with n segments.
A vertex of T is denoted by T (i), i = 0, . . . , n. Let H = 〈VH , EH〉 be a planar
graph with a straight-line embedding in R2 where VH (EH , respectively) is the
set of vertices (edges, respectively) of H. In this paper, the geometric embedding
of H is crucial and we simply refer to the straight-line embedding of the graph

3

Fig. 1. An embedding of a planar graph, H, a polygonal curve, T , and a length ε are
given. The path P ∗ = [v1, v3, v4, a, v4, b, v4, v5], in H, is a part of a solution to the map
matching problem instance. The edges of H that P ∗ lies on, are illustrated in bold.

in R2 as H. A path, P , in H, is a polygonal curve P : [0, 1] → H, such that
P ⊂ H and P (0), P (1) ∈ VH .

A parameterization of a polygonal curve, T : [0, n] → R2, is a continuous
function f : [0, 1] → [0, n], where f(0) = 0 and f(1) = n. Note that a parame-
terization is corresponding to a walk on T and the interval [0, 1] is representing
time during the walk.

Walking Length. Let f be a parameterization of a polygonal curve, T . Let
Df ⊆ [0, 1] be the closure of the set of times in which f(t) is decreasing (i.e.,
the movement is backward). The walking length of T is defined by Formula 1,
where ‖.‖ is the Euclidean norm and (.)′ is derivative.

Lf (T) := ||T ||+ 2

∫
t∈Df

||(T (f (t)))′||dt (1)

Note that if f is monotone (i.e., there is no backward movements on T), then
Lf (T) = ||T ||.
Problem Definition. Suppose H, T and a length, ε > 0, are given. The ob-
jective is to find a path in H and a parameterization of T such that sum of the
length of P and the walking length of T is minimized (Formula 2). We consider
only paths in the graph and parameterizations of T that guarantee to maintain
the leash length at most ε, during the walks.

4

Mε(H,T) := inf
P⊂H,f

{||P ||+ Lf (T)} (2)

Deformed free-space surface. The free-space diagram is a structure, used
to decide whether the Fréchet distance between two polygonal curves is upper
bounded by a given ε [6]. In [5], Alt et al. introduced a 3D structure, called
free-space surface, to solve the decision version of their map matching problem.
Here, we use both free-space diagram and free-space surface. However, we modify
them slightly, to fit our problem setting.

Let P : [0, 1] → H be a path in H with k + 1 vertices, [p0, p1, . . . , pk]. The
free-space diagram is the rectangle [0, 1]×[0, 1], partitioned into n columns and k
rows. It consists of nk parameter cells Cx,y, for x = 1, ..., n and y = 1, ..., k. Cell
Cx,y is the result of the product of two sub-intervals of [0, 1] that are mapped

to edge
−−−−−−−−−→
T (x− 1)T (x) of T and edge −−−−→py−1py of P , respectively. We call a point

(t1, t2) ∈ [0, 1]2 white if d(T (f(t2)), P (t1)) ≤ ε, where d is the Euclidean distance;
otherwise, we call it black. It has been shown that the set of all white points
inside a cell Cx,y is determined by the intersection of an ellipse with Cx,y. This
set is called the free-space region of that cell. The boundaries of a cell and its
corresponding ellipse intersect at most eight times. These intersection points
form at most four intervals of white points on the boundary of the cell (i.e., at
most one interval per side of the cell). Note that two adjacent cells have the
same interval on the shared side between the cells. The union of all cells’ free-
spaces is the free-space (or white-space) of the diagram; it is denoted by WP .
The complement of WP is the forbidden-space (or black-space) of the diagram
and is denoted by BP . We stretch/compress the columns and rows of the free-
space diagram, such that their widths and heights are equal to the lengths of
the corresponding segments of T and P , respectively. The resulting diagram is
called the deformed free-space diagram and is denoted by Fε(T, P). In Figure 2,
the free-space diagram Fε(T, P

∗) is drawn, where P ∗ = [v1, v3, v4, a, v4, b, v4, v5]
is a path in H, denoted as a sequence of its vertices.

Note that if the path P contains only a single vertex of H, vi ∈ VH , then
Fε(T, P) is a line segment and its length is equal to the Euclidean length of T .
We call this 1D free-space diagram, Fi, the deformed free-space line of vi. We
denote the left endpoint of Fi (i.e., the endpoint corresponding to T (0)) by si
and the right endpoint of Fi (i.e., the endpoint corresponding to T (n)) by ti. If
P contains only an edge, 〈vi, vj〉 ∈ EH , of H, then Fε(T, P) has only one row.

We call this row the deformed free-space face of 〈vi, vj〉, and denote it by F j
i .

Note that F j
i and Fk

j have Fj in common. Therefore, gluing F j
i and Fk

j along
Fj produces a conforming surface. Thus, we can construct the deformed free-
space surface as follows. We first lay out the straight-line embedding of H in the
xy-plane. For each edge 〈vi, vj〉 ∈ EH , we lay out F j

i , orthogonal to the xy-plane,
along z axis, such that Fi (Fj , respectively) is on top of vi (vj , respectively) and

si (sj , respectively) is in the xy-plane. Note that F j
i is stretched along z axis

from the plane z = 0 to the plane z = ‖T‖. Suppose Adj(vj) is the set of all

vertices vk ∈ VH such that 〈vj , vk〉 ∈ EH . We glue F j
i to Fk

j along Fj , where

5

a

b

T

P ∗

v3

v4

v4

v4

v5

Fig. 2. The free-space diagram Fε(T, P ∗) is drawn. WP is the white area and BP is
the gray area.

vk ∈ Adj(vj). Also, we glue F j
i to F i

h along Fi, where vi ∈ Adj(vh). The result
is a conforming 3D surface between two planes, z = 0 and z = ‖T‖, called
deformed free-space surface and is denoted by S = H × [0, ‖T‖]. Note that si is
on the plane z = 0 and ti is on the plane z = ‖T‖, i = 1, . . . , |VH |. The union of
the white-space (black-space, respectively) of all faces of S is called the white-
surface (black-surface, respectively) and is denoted by W (B, respectively). For
the given planar graphH, the polygonal curve T , and the length ε in Figure 1, the
corresponding deformed free-space surface is shown in Figure 3, from two points
of views. Since the white-space of each cell of any F j

i is convex, for simplicity, we
just draw the white-space intervals on the boundary of the cells. In this figure,
the red dashed polygonal curve is a path on the white-surface W, from s1 to
t5, that realizes P ∗ = [v1, v3, v4, a, v4, b, v4, v5], in H, and a parameterization of
T , that is an optimal solution to our problem setting. It intersects the following
free-space faces sequentially: F3

1 , F4
3 , F5

4 , F4
3 , F5

4 .

3 Algorithm

In this section, we first transform the map matching problem to a shortest path
problem on a weighted graph, G = 〈V,E〉; this yields a polynomial time algo-
rithm. Before discussing the construction of G, we introduce a set of Steiner
points on the boundary of the cells of S.

Steiner Points. We position Steiner points so as to create intervals on the
boundary of the cells of S. There are two types of intervals, Type 1 and Type
2. We classify the Steiner points based on the type of the intervals that they
belong to. We denote the set of Type 1 (Type 2, respectively) Steiner points by
S1 (S2, respectively).

6

Fig. 3. The free-space surface for the example of Figure 1 is drawn from two different
viewpoints in 3D. The yellow line segments show the intervals on the cell boundaries.
The red dashed polygonal curve is a path on the white-surface that realizes an optimal
solution to our problem setting.

Type 1. We say an interval is Type 1, if it lies completely in a plane, z = c,
parallel to the xy-plane, where c is a constant. Each deformed free-space face,
F j

i , may have n + 1 Type 1 intervals, FIji (`), ` = 0, . . . , n, shared between its

cells (where n is the number of edges in T). For each interval FIji (`), we project

the endpoints of FIji (`) orthogonally to all FIji (k), k 6= `. If the line segment

from an endpoint of FIji (`) to its projection on FIji (k) lies in the free-space of

F j
i and the projection point is not identical with an endpoint of FIji (k), then

we take the projection point as a Type 1 Steiner point (see Figure 4). The set
of all Steiner points, obtained by the projections on F j

i , for all 〈vi, vj〉 ∈ EH , is
denoted by S1.

Type 2. We say an interval is Type 2 if it lies completely on a deformed free-
space line. As we mentioned in Section 2, a plane z = c corresponds to a point
on the given trajectory T . The intersection of z = c and S is an instance of H,
denoted by Hc. Note that some part (possibly empty) of Hc is in W. Let z = hj
be the corresponding plane of T (j), a vertex of T . The part of the deformed

7

〈vi, vj〉
Fig. 4. The free-space face Fj

i is drawn. The endpoints of the intervals, FIj
i (`), are

shown by points and the Type 1 Steiner points are shown by squares.

free-space surface, S, between the two parallel planes, z = hj−1 and z = hj ,

j = 1, . . . , n, corresponds to edge
−−−−−−−−−→
T (j − 1)T (j) of T . We denote this part of

S by T j
j−1 = H × [hj−1hj]. In T j

j−1, j = 1, . . . , n, there is at most one Type

2 interval per vertex vi ∈ VH . We denote these Type 2 intervals by T Ijj−1(i),
i = 1, . . . , |VH |. Suppose z = c is the plane that is passing through an endpoint,
p, of T Ijj−1(i). Let the intersection of z = c with T Ijj−1(k), k 6= i, be qk.
Note that both p and qk are on the graph Hc. Then, if qk is not an endpoint
of T Ijj−1(k) and there is a path, from p to qk, in Hc, that is in W, then qk is
a Type 2 Steiner Point. The set of all Type 2 Steiner points is denoted by S2.
An example is given in Figure 5. Suppose it is T j

j−1, for j = 1. In this example,

there are four yellow intervals, T Ijj−1(1), T Ijj−1(3), T Ijj−1(5), and T Ijj−1(6).
The black points show the interval endpoints and red points show the Type 2
Steiner points. For simplicity, only two, out of eight planes, are drawn. The plane
z3 (z6, respectively) is passing through an endpoint of T Ijj−1(3) (T Ijj−1(6),

respectively). The intersections of z3 with T Ijj−1(5) and T Ijj−1(6) are Steiner

points. However, the intersection of z6 with T Ijj−1(3) is not a Steiner point.

Constructing Graph. Now, we explain the construction of G = 〈V,E〉. Recall
that the white-surface (the white-space of S) is denoted by W. The vertices of
W are the end points of the intervals on the boundary of the cells in S (at most

8

Fig. 5. An example of T j
j−1, for j = 1, is drawn. In this example, there are four intervals

that are shown by yellow color. The black balls show the interval endpoints and red
balls show the Type 2 Steiner points.

4 intervals may exist per cell). We denote the set of vertices of W by VW . The
set of vertices, V , of G, is V = VW ∪ S1 ∪ S2. Note that V contains all si and
ti if they are in W. Every two vertices, v1, v2 ∈ V , that are on the boundary of
a cell, are linked by two directed edges in E, from v1 to v2, 〈v1, v2〉, and vice
versa, 〈v2, v1〉. The weight of an edge e = 〈v1, v2〉 ∈ E, is its length in the L1

metric, |e|1.
Obtain an Optimal Solution. In order to have an optimal solution, at least
one si and one tj , i, j = 1, . . . , |VH |, must be in W. The main steps of the
algorithm are as follows:

– Find all the vertices in VH that are in ε distance of T (0) (T (n), respectively),
vi1 , . . . , vik1

(vj1 , . . . , vjk2
, respectively).

– Add an extra node, s′, to G, and add k1 extra directed edges, 〈s′, si1〉, . . . , 〈s′, sik1
〉,

to E. The weight of these k1 edges are set to zero. Analogously, add another
extra node, t′, to G, and add k2 extra directed edges, 〈tj1 , t′〉, . . . , 〈tjk2

, t′〉,
to E. The weight of these k2 edges are also set to zero.

– Find a shortest path, from s′ to t′, in G. Note that if there is no path from
s′ to t′ in G, then there is no solution for the given leash length.

– Remove s′ and t′ from the head and tail of the shortest path. The remaining
path is from one si to one tj . It gives an optimal solution to our problem
setting.

Note that, a vertex of G (except s′ and t′) is also represented by a point in
W. Therefore, the geometric embedding of a path, from one si to one tj , in G,
is constructed by connecting the consecutive vertices of the path in W by line
segments.

Observation 1 Let Π be a path in the white-space, W, of a deformed free-space
surface, S, from one si to one tj. Π realizes a path, P : [0, 1]→ H, in H, and a

9

parameterization, f : [0, 1]→ [0, n], of T , that maintain the leash length at most
ε, for all t ∈ [0, 1].

Constructing a path in H. We can construct a path P in H, from the given
path Π in W, as follows. As we mentioned earlier in this section, we have two
types of intervals on the boundary of the cells, Type 1 and Type 2. A Type 1
interval lies completely on a plane, z = c, parallel to the xy-plane. A Type 2
interval lies completely on a deformed free-space line, Fi. The path Π intersects
a sequence of intervals (of both types). The path P in H is constructed by
processing the intervals in this sequence. For each interval in this sequence, if it
is Type 2 interval, on Fi, then we append vi to the tail of P . If it is Type 1, then
the intersection point, q, of Π and that interval, is appended to the tail of P , as
a vertex of P . Note that q may not be a vertex of H. However, it is a point on
an edge of H. At the end, we connect the consecutive vertices in P by straight
line segments.
Correctness. To establish the correctness, we use norms in two spaces: (1)
the Euclidean space of the embedding of the input graph and the polygonal
curve, called the input space, (2) the deformed free-space surface, called the
configuration space. In the input space, we denote the Euclidean length of a
polygonal curve T by ‖T‖. We also defined walking length of T , Lf (T), based
on a parameterization f . Note that if f is a monotone parameterization, then
Lf (T) = ‖T‖. In configuration space, a path from an si to a tj in W, is also
denoted by its vertices, Π : 〈si = p1, p2, . . . , pk = tj〉. The length, |.|1, of each
segment of Π is calculated by the L1 metric. The length of a path, |Π|1, is the
sum of the length of its segments.

Lemma 1 is at the heart of the correctness proof. This section is concluded
by a corollary to Lemma 1 and Observation 1, that is, in order to find a solution
for our problem setting, it suffices to find a shortest path from s′ to t′ in G.

Lemma 1 For any path Π : 〈si = p1, p2, . . . , pk1 = tj〉 in W, there is a path
Π ′ : 〈si = p′1, p

′
2, . . . , p

′
k2

= tj〉 in W such that Π ′ ⊂ G and |Π ′|1 ≤ |Π|1.

Proof. The pathΠ intersects a sequence, SF , of deformed free-space faces. Every
two consecutive faces in SF share a deformed free-space line. Therefore, we can
unfold the free-space faces in the sequence, along the shared free-space lines. The
result is a 2D free-space diagram, denoted by Fε(SF). W.l.o.g., we can assume
that Fε(SF) is axis aligned in R2. The path Π is also unfolded into a 2D path
in the white-space, WSF , of Fε(SF). Note that unfolding does not change the
length of a path. As an example, in Figure 6a, the result of unfolding the faces
that are intersected by the red dashed polygonal curve in Figure 3, is shown.

Let Πopt : 〈si = q1, q2, . . . , qk3 = tj〉 be a L1 shortest path, from si to tj , in
WSF . Then, |Πopt|1 ≤ |Π|1. To prove the lemma, it suffices to show that there
is a path Π ′ ⊂ G = 〈V,E〉, from si to tj , in WSF , such that |Π ′|1 = |Πopt|1.

We know that the vertices of Πopt are endpoints of some intervals on the
boundary of the cells of Fε(SF) [14] (the well known rubber band property of
shortest paths). Therefore, the vertices of Πopt are in V (i.e., the set of vertices

10

a
b

T
s1

t5

a b

qi

qi+1

〈v1, v3〉

〈v3, v4〉

〈v4, v5〉

Fig. 6. a) The result of unfolding the sequence of deformed free-space faces that are
intersected by the red dashed polygonal curve in Figure 3. It is a 2D free-space diagram,
Fε(SF). The red dashed polygonal curve is shown after unfolding. b) Illustration of
case 1 in the proof of Lemma 1.

of G). Thus, it is sufficient to show that for each edge, −−−→qiqi+1, of Πopt, there
is a path, πqiqi+1

, from qi to qi+1, in G, that |−−−→qiqi+1|1 = |πqiqi+1
|1. Two cases

arise depending on whether −−−→qiqi+1 lies completely within a row (or a column) of
Fε(SF), or not. We need a definition before discussing these cases. We assume
that Fε(SF) is an axis-aligned rectangle in a 2D Cartesian coordinate system,
where the x-axis corresponds to T (Figure 6a). We say a path Π ∈ WSF is
x-monotone (y-monotone, respectively), if any vertical (horizontal, respectively)
line intersects it at most ones. Π is said to be xy-monotone, if it is both x- and
y-monotone.

Case 1. In this case, −−−→qiqi+1 lies completely within a column (or a row) of
Fε(SF). Here, we discuss the case when it lies within a column (see Figure 6b);
the arguments are analogous for case of a row. W.l.o.g we assume that −−−→qiqi+1 is
xy-increasing. The other cases are symmetric. Edge −−−→qiqi+1 intersects a sequence
of horizontal intervals, Iz, within a column. They are sorted based on their y
coordinates. We construct πqiqi+1

sequentially and always denote the last vertex
appended to πqiqi+1

by πlast. Initially, πqiqi+1
contains only qi and πlast = qi. The

sequence of intervals are processed sequentially. Suppose we processed interval
Iz and now we want to process Iz+1. We project orthogonally from πlast to
Iz+1. If the projection point exists (i.e., the perpendicular line from πlast to Iz+1

intersects Iz+1), then append the projection point on Iz+1 to πqiqi+1
and update

πlast. Otherwise, the closest endpoint of Iz+1 to πlast is appended to πqiqi+1
and

we update πlast. When all intervals, Iz, have been processed, qi+1 is appended
to πqiqi+1 .

Since the sorted list of intervals withing a column are traversed by πqiqi+1

sequentially, the path πqiqi+1 is y-monotone. Also, by construction, each vertex

11

of πqiqi+1
either has the same x as its preceding vertex in πqiqi+1

(i.e., it is the
result of the orthogonal projection) or its x is greater than its preceding vertex’s x
(since the orthogonal projection does not exist and −−−→qiqi+1 is xy-increasing inside
the white-space). Therefore, the path πqiqi+1 is x-monotone. Thus, the path
πqiqi+1

is xy-monotone. We know that the L1 length of two xy-monotone paths
that have the same starting and ending points, are equal. Therefore, |−−−→qiqi+1|1 =
|πqiqi+1

|1.
Now, we prove that πqiqi+1 ⊂ G = 〈V,E〉. It suffices to show that each vertex

of πqiqi+1 is in V and between every two consecutive vertices of πqiqi+1 there is an
edge in E. Each vertex of πqiqi+1

is either the result of the orthogonal projection
or an endpoint of an interval. Therefore, each vertex is either a Steiner point
or a vertex of the white-surface. In both cases, the vertex is in V . In addition,
between every two consecutive vertices of πqiqi+1

there is an edge in E because
every two consecutive vertices of πqiqi+1 lie on the boundary of a cell and, by the
construction of G, all members of V that lie on the boundary of a cell are linked
by edges in E.

Case 2. In [11], Section 4, Lemma 4, it is proved that if −−−→qiqi+1 does not lie
completely within a row and within a column of Fε(SF), then there is a xy-
monotone path π′qiqi+1

, from qi to qi+1, such that its edges lie completely within
a row and within a column of Fε(SF). For each edge of π′qiqi+1

, we apply case
1. Then, we concatenate the resulting xy-monotone paths for edges of π′qiqi+1

,
to obtain πqiqi+1

. Since, xy-monotone paths for edges of π′qiqi+1
are in G (as

we proved in Case 1), the resulting path, πqiqi+1
, is a xy-monotone path in G.

Therefore, |−−−→qiqi+1|1 = |πqiqi+1
|1.

Corollary 1 For any pair of si and tj, if tj is reachable from si by a path in
W, then there is a path from si to tj, in G, that is a L1 shortest path in W.

Corollary 2 A shortest path in G, from s′ to t′, yields an optimal solution for
our problem setting.

Proof. Let Π ′opt be a shortest path in G, from s′ to t′. We remove s′ and t′

from the head and tail of Π ′opt. The result, Πij , is a shortest path from si to tj .
Therefore, among all possible shortest paths Πk`, for sk and t`, k, ` = 1, . . . , |VH |,
the pair (si, tj) has a shortest L1 shortest path, Πij . By Corollary 1, Πij ⊂ G is
a L1 shortest path in W. Each point on Πij is corresponding to a point, p, on
H and a point, q, on T , such that the Euclidean distance of p and q is less than
ε. By Observation 1, Πij , is corresponding to a path, P , in H, from vi ∈ VH
to vj ∈ VH , and a parameterization, f , of T . The summation of the Euclidean
length of P , ‖P‖, and the walking length of T , Lf (T), is equal to the L1 length
of Πij . Since Πij is a shortest L1 shortest path, P and f minimize the matching
cost, Mε(H,T) (Equation 2).

Theorem 1 Let H be a planar graph with a straight-line embedding in a plane,
T be a directed polygonal curve, and ε > 0 be a distance. A path, P : [0, 1]→ H,
between two vertices of H, and a parameterization, f , of T , that minimize the
sum of the walking length of T and P , can be found in polynomial time and

12

space. It is guaranteed that at any time t ∈ [0, 1], the Euclidean distance between
P (t) and T (f(t)) is at most ε.

Proof. The correctness follows directly from Corollary 2. The deformed free-
space surface, S, has O(mn) cells, where m (n, respectively) is the number
of edges of H (T , respectively). Each cell of S has at most four intervals and
at most O(m + n) Steiner points on its intervals. Therefore, the graph G has
O (mn(m+ n)) vertices and O

(
mn(m+ n)2

)
edges (including the extra edges

that connect s′ and t′ to the graph). In addition, it takes O
(
n2
)

time to compute
all Type 1 Steiner points for each free-space face. Therefore, computing S1 takes
O
(
mn2

)
time. In order to compute Type 2 Steiner points, we use breadth first

search for each interval endpoint to propagate the projection on the instance
of the graph, Hc, in the plane z = c. Therefore, computing S2 takes O

(
nm2

)
time. At the end, it is possible to find a shortest path in G, from s′ to t′, in
O
(
mn(m+ n)2

)
time, by using Dijkstra’s algorithm. Therefore, both the total

time and space complexities are O
(
mn(m+ n)2

)
.

4 Improvement

In Section 3, we showed that the graph G = 〈V,E〉 contains a path that yields an
optimal solution for our problem setting. The bottleneck in the time complexity
of the algorithm in Section 3 is due to the number of edges of G. In this section,
we construct a new graph G′ = 〈V,E′〉, such that |E′| < |E| and it preserves the
connectivity information of G. More precisely, if there is a path, from vi ∈ V to
vj ∈ V , in G, then there is a path, from vi to vj , in G′, with the same L1 length.

Based on the construction of G, there are at most O(m + n) vertices in V
(including the interval endpoints and Steiner points) on the boundary of each
cell, C, of S. We connect these O(m+ n) vertices by a linear number of edges,
in E′, as follows. The weight of each edge in E′ is equal to its L1-length. Let
T , B, L, and R be the intervals on the top, bottom, left and right side of C,
respectively. Suppose cell C is in a 2D Cartesian coordinate system and the
vertices on each interval I ∈ {T,B,L,R} are sorted by x and y. Every two
adjacent vertices, vi and vi+1, on I, are linked by two directed edges, 〈vi, vi+1〉
and 〈vi+1, vi〉 (Figure 7). Every two of the eight interval endpoints are linked
by two directed edges assuming they are not identical. A vertex vi on interval L
(T , respectively), is linked by two directed edges to another vertex v′i on R (B,
respectively) if v′i has the same y (x, respectively) coordinate as vi; the two edges
are denoted by 〈vi, v′i〉 and 〈v′i, vi〉, respectively. By this approach, each vertex
of G′ on the boundary of C is connected to a constant number of vertices of G′
on the boundary of C. It is now straightforward to prove the following lemma.

Lemma 2 Let vi and vj be two vertices, in V , on the boundary of a cell, C, of
S. There is a path, from vi to vj, in G′, that has the same L1 length as the direct
line segment between them.

Corollary 3 There is a path in G′ that realizes an optimal solution for our
problem setting.

13

T

B

L
R

Fig. 7. A cell of the free-space surface is drawn. The red solid line segments show the
four intervals on the boundary of the cell. The arcs show the edges in E′ that connect
every two adjacent vertices of G′, on each interval. The dashed black line segments show
the edges in E′ that connect a vertex with its orthogonal projection on the opposite
side of the cell. The dash dotted blue line segments show some of the edges that connect
endpoints of the intervals. For simplicity, we did not draw all of them.

Theorem 2 Let H be a planar graph with a straight-line embedding in a plane,
T be a directed polygonal curve, and ε > 0 be a distance. A path, P : [0, 1]→ H,
between two vertices of H, and a parameterization, f , of T , that minimize the
sum of the walking length of T and P , can be found in O(nm(n + m) log(nm))
time and O(nm(n+m)) space, where n (m, respectively) is the number of edges
of T (H, respectively). It is guaranteed that at any time t ∈ [0, 1], the Euclidean
distance between P (t) and T (f(t)) is at most ε.

Proof. The correctness follows directly from Corollary 3. The number of vertices
and edges of G′ (and the total space complexity) is upper-bounded by O(nm(n+
m)). Using Dijkstra’s algorithm, we find a shortest path in G′, from s′ to t′.
Therefore, the time complexity of our algorithm is O(nm(n+m) log(nm)). Note
that if there is no pair of (sk, t`), k, ` = 1, . . . , |VH |, in a connected component
of G′, then there is no feasible solution.

5 Weighted non-planar graphs

We assumed that the input graph H is planar. That makes the illustration of
the algorithm easier since the faces of the free-space surface do not intersect
except at the boundary of the faces. However, all lemmas and theorems, derived
in Section 3 and 4, are proved without making an assumption regarding the
planarity of H. Therefore, the algorithm proposed in this paper remains correct
for any graph for which a straight-line embedding in a plane is provided (see [5],
Section 2.7). In the embedding, the edges of the graph may intersect. Transition
from one edge to another is allowed only at a vertex.

14

We also assumed that H is unweighted. Here, we sketch how the proposed
algorithm can be generalized to also handle the problem instance, when H is
weighted. Suppose that each edge of H has a non-negative, real weight. A weight
could represent the cost of moving on the edge of the graph. The edges of the
input polygonal curve T could also have weights capturing the costs of moving
forwards and backwards. The objective is to find a path in H whose weighted
walking length is minimized. In the weighted problem setting, inside each cell of
the free-space surface, there are two weights, one corresponding to an edge of T
and one corresponding to an edge ofH. These weights are fixed inside the cell and
do not change. Therefore, in the construction of G or G′, instead of computing
the L1 length for each edge, e, we compute the orthogonal projections of e
onto H and T . Then, we multiply the projection lengths with the corresponding
weights, and the sum of these multiplications is the weight that we assign to e.
The remaining parts of the algorithm remains the same and the time and space
complexities do not change.

6 Conclusion

In this paper, we discussed a geometric algorithm for the map matching problem
that minimizes the walking length. We established that this problem setting is
dual to a weighted shortest path problem. Then, we proposed an algorithm with
O (mn (m+ n) log(mn)) time and O (mn (m+ n)) space complexities, where m
(n, respectively) is the number of edges of H (T , respectively). At the end, we
discussed that the proposed algorithm is easily adaptable to handle weighted
non-planar graphs. It is still open if we can improve the proposed algorithm
further, for planar graphs. The main challenge here is the existence of cycles in
the input graph and propagation through the cycles.

7 Acknowledgment

The authors would like to thank Carola Wenk for suggesting this topic and
constructive comments, and Omid Gheibi for valuable discussions.

References

1. Y. Zheng. Trajectory Data Mining: An Overview. ACM Trans. Intelligent Systems
and Technology, 6(3), Article 1, 2015.

2. B. Chen, H. Yuan, Q. Li, W. Lam, S. Shaw, K. Yan, Map-matching algorithm for
large-scale low-frequency floating car data. Int. J. Geogr. Inf. Sc., 28(1):22-38, 2014.

3. F. Ruan, Z. Deng, Q. An, K. Wang, X. Li. A Method of Map Matching in Indoor
Positioning. In CSNC 2014 Proceedings: Volume III, Lecture Notes in Electrical
Engineering, 305, pp. 669-679, 2014.

4. K. Asakura, M. Takeuchi, T. Watanabe. A Pedestrian-oriented Map Matching Al-
gorithm for Map Information Sharing Systems in Disaster Areas, Int. J. Know. Web
Intel., 3(4):328-342, 2012.

15

5. H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. In Proceeding of
the fourteenth annual ACM-SIAM symposium on discrete algorithms, pp. 589-598,
2003.

6. H. Alt and M. Godau. Computing the Fréchet distance between two polygonal
curves. Int. J. Comput. Geometry Appl., 5:75-91, 1995.

7. S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle track-
ing data. In Proceeding of VLDB, pp. 853-864. ACM, 2005.

8. D. Chen, A. Driemel, L. Guibas, A. Nguyen, C. Wenk. Approximate Map Matching
with respect to the Frchet Distance. In Proceeding of 13th ALENEX, pp.75-83, 2011.

9. T. Flynn, S. Connery, M. Smutok, R. Zeballos, I. Weisman. Comparison of car-
diopulmonary responses to forward and backward walking and running. Med. Sci.
Sports Exerc., 26(1):89-94, January 1994.

10. A. Gheibi, A. Maheshwari, J.-R. Sack, C. Scheffer. Minimum Backward Fréchet
Distance. In Proceedings of the 22nd ACM SIGSPATIAL, pp. 381-388, 2014.

11. A. Gheibi, A. Maheshwari, J.-R. Sack. Weighted Minimum Backward Fréchet
Distance. accepted to 27th CCCG, Kingston, 2015.

12. M. Z. A. Bhuiyan, G. Wang, A. V. Vasilakos. Local Area Prediction-Based Mobile
Target Tracking in Wireless Sensor Networks, IEEE Trans. Comput., 64(7):1968-
1982, 2015.

13. H. Vachhani. Continuous Spatio Temporal Tracking of Mobile Targets, Master’s
Thesis, Arizona State University, 2014.

14. S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing
visibility graphs. SIAM J. Comput., 20(5):888-910, 1991.

15. S. Har-Peled and B. Raichel. The Fréchet Distance Revisited and Extended. In
Proceedings of the 27th ACM SoCG, pp. 448-457, 2011.

16

