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Relational lattices via duality

Luigi Santocanale

LIF, CNRS UMR 7279, Aix-Marseille Université

Abstract. The natural join and the inner union combine in different
ways tables of a relational database. Tropashko [18] observed that these
two operations are the meet and join in a class of lattices—called the
relational lattices—and proposed lattice theory as an alternative alge-
braic approach to databases. Aiming at query optimization, Litak et al.
[12] initiated the study of the equational theory of these lattices. We
carry on with this project, making use of the duality theory developed
in [16]. The contributions of this paper are as follows. Let A be a set of
column’s names and D be a set of cell values; we characterize the dual
space of the relational lattice R(D,A) by means of a generalized ultra-
metric space, whose elements are the functions from A to D, with the
P (A)-valued distance being the Hamming one but lifted to subsets of A.
We use the dual space to present an equational axiomatization of these
lattices that reflects the combinatorial properties of these generalized ul-
trametric spaces: symmetry and pairwise completeness. Finally, we argue
that these equations correspond to combinatorial properties of the dual
spaces of lattices, in a technical sense analogous of correspondence the-
ory in modal logic. In particular, this leads to an exact characterization
of the finite lattices satisfying these equations.

1 Introduction

Tropashko [18] has recently observed that the natural join and the inner union,
two fundamental operations of the relational algebra initiated by Codd [2]—the
algebra by which we construct queries—can be considered as the meet and join
operations in a class of lattices, known by now as the class of relational lattices.
Elements of the relational lattice R(D,A) are the relations whose variables are
listed by a subset of a total set A of attributes, and whose tuples’ entries are
taken from a set D. Roughly speaking, we can consider a relation as a table of
a database, its variables as the columns’ names, its tuples being the rows.

Let us illustrate these operations with examples. The natural join takes two
tables and constructs a new one whose columns are indexed by the union of the
headers, and whose rows are the glueings of the rows along identical values in
common columns. As we emphasize in this paper the lattice theoretic aspects of
the natural join operation, we shall depart from the standard practice of denoting
it by the symbol ./ and use instead the meet symbol ∧.
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The inner union restricts two tables to the common columns and lists all the
possible rows. The following example suggests how to construct, using this op-
eration, a table of users given two (or more) tables of people having different
roles.
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Considering the lattice signature as a subsignature of the relational algebra,
Litak, Mikulás and Hidders [12] proposed to study the equational theory of the
relational lattices. The capability to recognize when two queries are equivalent—
that is, a solution to the word problem of such a theory—is of course an impor-
tant step towards query optimization.

Spight and Tropashko [17] exhibited equational principles in a signature
strictly larger than the one of lattice theory. A main contribution of Litak et
al. [12]—a work to which we are indebted in many respects—was to show that
the quasiequational theory of relational lattices with the header constant is un-
decidable. The authors also proposed a base of equations for the theory in the
signature extended with the header constant, and exhibited two non-trivial pure
lattice equations holding on relational lattices. It was argued there that the lat-
tice R(D,A) arises via a closure operator on the powerset P (A t DA) and, at
the same time, as the Grothendieck construction for the functor P (D(−)), from
P (A)op to SL∨ (the category of complete lattices and join-preserving mappings),
sending X ⊆ A to DX and then DX covariantly to P (DX).

The focus of this paper is on the pure lattice signature. We tackle the study
of the equational theory of relational lattices in a coalgebraic fashion, that is, by
using the duality theory developed in [16] for finite lattices and here partially
extended to infinite lattices. Let us recall some key ideas from the theory, which
in turn relies on Nation’s representation Theorem [14, §2]. For a complete lattice
L, a join-cover of x ∈ L is a subset Y ⊆ L such that x ≤

∨
Y . A lattice is

pluperfect if it is a complete spatial lattice and every join-cover of a completely
join-irreducible element refines to a minimal one—see Section 2 for a complete
definition. Every finite lattice is pluperfect; moreover, relational lattices are plu-
perfect, even when they are infinite. This property, i.e. pluperfectness, allows
to define the dual structure of a lattice L, named the OD-graph in [14]. This
is the triple 〈J (L),≤,Cm〉 with J (L) the set of completely join-irreducible el-
ements, ≤ the restriction of the order to J (L), and the relation j Cm C holds
when j ∈ J (L), C ⊆ J (L), and C is a minimal join-cover of j. The original
lattice L can be recovered up to isomorphism from its OD-graph as the lattice
of closed downsets of J (L)—where a downset X ⊆ J (L) is closed if jCmC ⊆ X
implies j ∈ X.

We characterize the OD-graph of the lattice R(D,A) as follows. Firstly
recall from [12] that we can identify completely join-irreducible elements of
R(D,A) with elements of the disjoint sum A t DA. The order on completely



join-irreducible elements is trivial, i.e. it is the equality. All the elements of A
are join-prime, whence the only minimal join-cover of some a ∈ A is the sin-
gleton {a}. The minimal join-covers of elements in DA are described via an
ultrametric distance valued in the join-semilattice P (A); this is, morally, the
Hamming distance, δ(f, g) = {x ∈ A | f(x) 6= g(x)}. Whenever f, g ∈ DA we
have f Cm δ(f, g) ∪ {g} and these are all the minimal join-covers of f .

As in correspondence theory for modal logic, the combinatorial structure of
the dual spaces is an important source for discovering axioms/equations that
uniformly hold in a class of models. For relational lattices, most of these com-
binatorial properties stem from the structure of the ultrametric space (DA, δ).
When we firstly attempted to show that equations (RL1) and (RL2) from [12]
hold in relational lattices using duality, we realized that the properties necessary
to enforce these equations were the following:

P1. Every non-trivial minimal join-cover contains at most one join-irreducible
element which is not join-prime.

Moreover, the generalized ultrametric space (DA, δ) is

P2. symmetric, i.e. δ(f, g) = δ(g, f), for each f, g ∈ DA,
P3. pairwise complete: if δ(f, g) ⊆ X ∪ Y , then δ(f, h) ⊆ X and δ(h, g) ⊆ Y for

some h ∈ DA.

Various notions of completeness for generalized ultrametric spaces are discussed
in [1]. At first we called pairwise completeness the Beck-Chevalley-Malcev prop-
erty of (DA, δ). Indeed, it is equivalent to saying that the functor P (D(−)) :
P (A)op−−→ SL∨ mentioned above sends a pullback square (i.e., a square of inclu-
sions with objectsX∩Y,X, Y, Z) to a square satisfying the Beck-Chevalley condi-
tion. As the property implies that a collection of congruences of join-semilattices
commute, it is also a sort of Malcev condition.

We show with Theorem 4 that property P1 of an OD-graph is definable by
an equation that we name (Unjp). We investigate the deductive strength of this
equation and show in particular that (RL2) is derivable from (Unjp), but not
the converse.

In presence of P1, symmetry and pairwise completeness can also be under-
stood as properties of an OD-graph. Symmetry is the following property: if
k0 Cm C ∪ {k1} with k1 not join-prime, then k1 Cm C ∪ {k0}. Pairwise complete-
ness can be read as follows: if k0 Cm C0 ∪ C1 ∪ {k2} with k2 not join-prime and
C0, C1, {k2} pairwise disjoint, then k0CmC0 ∪{k1} and k1CmC1 ∪{k2} for some
completely join-irreducible element k1.

We exhibit in Section 6 three equations valid on relational lattices and charac-
terize, via a set of properties of their OD-graphs, the pluperfect lattices satisfying
(Unjp) and these equations. We propose these four equations as an axiomatiza-
tion of the theory of relational lattices that we call [[AxRel]]. The main result of
this paper, Theorem 7, sounds as follows. If we restrict to finite lattices that are
atomistic—that is, lattices in which any element is the join of the atoms below
it, so the order on join-irreducible elements in the dual space is trivial—then a



lattice satisfies [[AxRel]] if and only if its OD-graph is symmetric and pairwise
complete, in the sense just explained.

We can build lattices similar to the relational lattices from P (A)-valued ul-
trametric spaces. It is tempting to look for further equations so to represent the
OD-graph of finite atomistic lattices satisfying these equations as P (A)-valued
ultrametric space. Unfortunately this is not possible, since a key property of the
OD-graph of lattices of ultrametric spaces—the ones ensuring that the distance
function is well defined—is not definable by lattice equations. Yet Theorem 7
also exhibits a deep connection between the OD-graph of finite atomistic lattices
satisfying [[AxRel]] and the frames of the commutator logic [S5]A, see [10]. Con-
sidering the complexity of the theory of combination of modal logics, Theorem 7
can be used to foresee and shape future researches. For example, we shall discuss
in Section 7 how to derive undecidability results from the correspondent ones in
multidimensional modal logic. In particular, a refinement of the main result of
Litak et al. [12, Corollary 4.8] can be derived.

The paper is structured as follows. We introduce in Section 2 the notation as
well as the least lattice theoretic tools that shall allow the reader to go through
the paper. In Section 3 we describe the relational lattices, present some known
results in the literature, and give a personal twist to these results. In particular,
we shall introduce semidirect products of lattices, ultrametric spaces as a tool for
studying relational lattices, emphasize the role of the Beck-Chevalley property
in the theory. In Section 4 we characterize the OD-graphs of relational lattices.
In Section 5 we present our results on the equation (Unjp). In Section 6, we
describe our results relating equations valid on relational lattices to symmetry
and pairwise completeness. In the last Section we discuss the results presented
as well as ongoing researches, by the author and by other researchers, trace a
road-map for future work.

2 Some elementary lattice theory

A lattice is a poset L such that every finite non-empty subset X ⊆ L admits
a smallest upper bound

∨
X and a greatest lower bound

∧
X. We assume a

minimal knowledge of lattice theory—otherwise, we invite the reader to consult
a standard monograph on the subject, such as [3] or [5]. The technical tools that
we use may be found in the monograph [4], that we also invite to explore. A
lattice can also be understood as a structure A for the functional signature (∨,∧),
such that the interpretations of these two binary function symbols both give
A the structure of an idempotent commutative semigroup, the two semigroup
structures being tied up by the absorption laws x∧(y∨x) = x and x∨(y∧x) = x.
Once a lattice is presented as such structure, the order is recovered by stating
that x ≤ y holds if and only if x ∧ y = x.

A lattice L is complete if any subset X ⊆ L admits a smallest upper bound∨
X. It can be shown that this condition implies that any subset X ⊆ L admits

a greatest lower bound
∧
X. A complete lattice is bounded, since ⊥ :=

∨
∅ and

> :=
∧
∅ are respectively the least and greatest elements of the lattice.



A closure operator on a complete lattice L is an order-preserving function
j : L −−→ L such that x ≤ j(x) and j2(x) = j(x), for each x ∈ L. We shall
use Clop(L) to denote the poset of closure operators on L, under the pointwise
ordering. It can be shown that Clop(L) is itself a complete lattice. If j ∈ Clop(L),
then the set L/j of fixed points of j is itself a complete lattice, with

∧
L/j X =∧

LX and
∨
L/j X = j(

∨
LX). For the correspondence between closure operators

and congruences in the category of complete join-semilattices, see [9].
Let L be a complete lattice. An element j ∈ L is said to be completely join-

irreducible if j =
∨
X implies j ∈ X, for each X ⊆ L; the set of completely

join-irreducible element of L is denoted here J (L). A complete lattice is spatial
if every element is the join of the completely join-irreducible elements below it.
An element j ∈ J (L) is said to be join-prime if j ≤

∨
X implies j ≤ x for some

x ∈ X, for each finite subset X of L. We say that j ∈ J (L) is non-join-prime
if it is not join-prime. An atom of a lattice L is an element of L such that ⊥ is
the only element strictly below it. A spatial lattice is atomistic if every element
of J (L) is an atom.

For j ∈ J (L), a join-cover of j is a subset X ⊆ L such that j ≤
∨
X.

For X,Y ⊆ L, we say that X refines Y , and write X � Y , if for all x ∈ X
there exists y ∈ Y such that x ≤ y. A join-cover X of j is said to be minimal
if j ≤

∨
Y and Y � X implies X ⊆ Y ; we write j Cm X if X is a minimal

join-cover of j. In a spatial lattice, if j Cm X, then X ⊆ J (L). If j Cm X, then
we say that X is a non-trivial minimal join-cover of j if X 6= {j}. It is common
to use the word perfect for a lattice which is both spatial and dually spatial. We
need here something different:

Definition 1. A complete lattice is pluperfect if it is spatial and for each j ∈
J (L) and X ⊆ L, if j ≤

∨
X, then Y � X for some Y such that j Cm Y . The

OD-graph of a pluperfect lattice L is the structure 〈J (L),≤,Cm〉.

That is, in a pluperfect lattice every cover refines to a minimal one. Notice that
every finite lattice is pluperfect. If L is a pluperfect lattice, then we say that
X ⊆ J (L) is closed if it is a downset and j Cm C ⊆ X implies j ∈ X. As from
standard theory, the mapping X 7→

⋂
{Y ⊆ J (L) | X ⊆ Y, Y is closed} defines

a closure operator whose fixed points are exactly the closed subsets of J (L). The
interest of considering pluperfect lattices stems from the following representation
Theorem.

Theorem 1 (Nation [14]). Let L be a pluperfect lattice and let L(J (L),≤,Cm)
be the lattice of closed subsets of J (L). The mapping l 7→ {j ∈ J (L) | j ≤ l} is
a lattice isomorphism from L to L(J (L),≤,Cm).

It was shown in [16] how to extend this representation theorem to a duality be-
tween the category of finite lattices and the category of OD-graphs. The following
Lemma shall be repeatedly used in the proofs of our statements.

Lemma 1. Let L be a pluperfect lattice, let j Cm C and k ∈ C. If j ≤
∨
D with

D � {
∨

(C \ {k}), k}, then k ∈ D. In particular, if k′ < k, then {
∨
C \ {k}, k′}

is not a cover of j.



3 The relational lattices R(D,A)

In this Section we define relational lattices, recall some known facts, and develop
then some tools to be used later, semidirect products of lattices, generalized
ultrametric spaces, a precise connection to the theory of combination of modal
logics (as well as multidimensional modal logic and relational algebras).

Let A be a collection of attributes (or column names) and let D be a set of
cell values. A relation (or, more informally, a table) on A and D is a pair (X,T )
where X ⊆ A and T ⊆ DX ; X is the header of the table while T is the collection
of rows. Elements of the relational lattice R(D,A) are relations on A and D.

Before we define the natural join, the inner union operations, and the order
on R(D,A), let us recall a few key operations. If X ⊆ Y ⊆ A and f ∈ DY ,
then we shall use f�X ∈ DX for the restriction of f to X; if T ⊆ DY , then T��X
shall denote projection to X, that is, the direct image of T along restriction,
T��X := {f�X | f ∈ T}; if T ⊆ DX , then iY (T ) shall denote cylindrification to Y ,
that is, the inverse image of restriction, iY (T ) := {f ∈ DY | f�X ∈ T}. Recall
that iY is right adjoint to ��X . With this in mind, the natural join and the inner
union of tables are respectively described by the following formulas:

(X1, T1) ∧ (X2, T2) := (X1 ∪X2, T )

where T = {f | f�Xi
∈ Ti, i = 1, 2} = iX1∪X2

(T1) ∩ iX1∪X2
(T2) ,

(X1, T1) ∨ (X2, T2) := (X1 ∩X2, T )

where T = {f | ∃i ∈ {1, 2},∃g ∈ Ti s.t. g�X1∩X2
= f}

= T1��X1∩X2
∪T2��X1∩X2

.

The order is then given by

(X1, T1) ≤ (X2, T2) iff X2 ⊆ X1 and T1��X2
⊆ T2 .

It was observed in [12] that R(D,A) arises—as a category with at most one
arrow between two objects—via the Grothendieck construction for the functor
sending X ⊆ A contravariantly to DX and then DX covariantly to P (DX). Let
us record the following important property:

Lemma 2. The image of a pullback square by the functor P (D(−)) : P (A)op −−→
SL∨ satisfies the Beck-Chevalley property.

P (DX1∩X2)

iX2

++
P (DX2)

��X1∩X2

oo

P (DX1)

iX3

++
��X1∩X2

OO

P (DX3)

��X2

OO

��X1

oo

The above statement means that if
we apply the functor to inclusions of
the form X1∩X2 ⊆ Xi ⊆ X3, i = 1, 2,
then the two possible diagonals in the
diagram on the right, ��X2 ◦ iX3 and
iX2 ◦ ��X1∩X2 , are equal. The Beck-
Chevalley property is a consequence of the glueing property of functions: if f ∈
DX2 , g ∈ DX1 and f�X1∩X2

= g�X1∩X2
, then there exists h ∈ DX3 such that

h�X2
= f and h�X1

= g.



We can recast the previous category-theoretic observations in an algebraic
framework. An action of a complete lattice L over a complete lattice M is a
monotonic mapping 〈 〉 : L −−→ Clop(M), thus sending X ∈ L to a closure
operator 〈X〉 on M . Given such an action, if we define j(X,T ) := (X, 〈X〉T ),
then j(X,T ) is a closure operator on the product L×M . In particular, the set
of j-fixed points, Lnj M := {(X,T ) ∈ L×M | 〈X〉T = T}, is itself a complete
lattice, where the meet coincides with the one from L×M , while the join is given
by the formula (X1, T1)∨LnjM (X2, T2) := (X1∨X2, 〈X1∨X2〉(T1∨T2)). We call
LnjM the semidirect product of L and M via j. The naming is chosen here after
the semidirect product of groups, which is a similar instance of the Grothendieck
construction. Given such an action, the correspondence X 7→ M/〈X〉 gives rise
to a covariant functor from L to the category SL∨, so that it makes sense to ask
when the Beck-Chevalley property holds, as in Lemma 2. This happens—and
then we say that an action 〈 〉 satisfies the Beck-Chevalley property—exactly
when

〈X1 ∨X2〉T = 〈X1〉〈X2〉T , for each X1, X2 ∈ L and T ∈M . (1)

Notice that the identity 〈X1〉〈X2〉T = 〈X2〉〈X1〉T is a consequence of (1). As
these closure operators correspond to congruences of complete join-semilattices,
we also think of the Beck-Chevalley property as a form of Malcev property,
stating that a collection of congruences (thought as binary relations) pairwise
commute (w.r.t composition of relations).

Relational lattices from ultrametric spaces. Let us come back to the lattice
R(D,A). Define on the set DA the following P (A)-valued ultrametric distance:

δ(f, g) := {x ∈ A | f(x) 6= g(x)} .

Thus δ(f, f) ⊆ ∅ and δ(f, g) ⊆ δ(f, h) ∪ δ(h, g) for any f, g, h ∈ DA, making
(DA, δ) into a generalized metric space in the sense of [11].1 With respect to the
latter work—where axioms for the distance are those of a category enriched over
(P (A)op, ∅,∪)—for f, g ∈ DA we also have that δ(f, g) = ∅ implies f = g and
symmetry, δ(f, g) = δ(g, f). We can define then an action of P (A) on P (DA):

〈X〉T = {f ∈ DA | ∃g ∈ T s.t. δ(f, g) ⊆ X} . (2)

We can now restate (and refine) Lemma 2.1 from [12]—which constructs the
lattice R(D,A) via a closure operator on P (A+DA)—as follows:

Theorem 2. The correspondence sending (X,T ) to (A \ X, iA(T )) is an iso-
morphism bewteen the relational lattice R(D,A) and P (A) nj P (DA).

1 This is a lifting of the Hamming distance to subsets. Yet, in view of [15] and of their
work on generalized ultrametric spaces, such a distance might reasonably tributed
to Priess-Crampe and Ribenboim.



The action defined in (2) satisfies the identity (1). As a matter of fact, (1) is
equivalent to pairwise completeness of (DA, δ) as an ultrametric space, see [1],
namely the following property:

if δ(f, g) ⊆ X1 ∪X2,

then there exists h such that δ(f, h) ⊆ X1 and δ(h, g) ⊆ X2 . (3)

It is easily verified that (3) is yet another spelling of the glueing property of
functions.

Observe that, given any generalized ultrametric space (F, δ) whose distance
takes values in P (A), equation (2)—with DA replaced by F—defines an action
of P (A) on P (F ). The lattice P (A)njP (F ) shall have similar properties to those
of the lattices R(D,A) and will be useful when studying the variety generated
by the relational lattices. As an example, we construct typed relational lattices,
i.e. lattices of relations where each column has a fixed type. To this goal, fix a
surjective mapping π : D −−→ A. For each a ∈ A, we think of the set Da = π−1(a)
as the type of the attribute a. Let S(π) be the set of sections of π, that is, s ∈ S(π)
if and only if s(a) ∈ Da, for each a ∈ A. Notice that (S(π), δ) is a pairwise
complete sub-metric space of (DA, δ). The lattice R(π) := P (A) nj P (S(π)) is
the typed relational lattice. It can be shown that relational lattices and typed
relational lattices generate the same variety.

Relational lattices from multidimensional modal logics. In order to illustrate and
stress the value of identity (1), i.e. of the Beck-Chevalley-Malcev property, we
derive next a useful formula for computing the join of two tables under the
P (A) nj P (DA) representation.

(X1, T1) ∨ (X2, T2) = (X1 ∪X2, 〈X1 ∪X2〉(T1 ∪ T2))

= (X1 ∪X2, 〈X1 ∪X2〉T1 ∪ 〈X1 ∪X2〉T2)
since the modal operators 〈X〉 are normal, in the usual sense of modal logic,

= (X1 ∪X2, 〈X2〉〈X1〉T1 ∪ 〈X1〉〈X2〉T2) by (1)

= (X1 ∪X2, 〈X2〉T1 ∪ 〈X1〉T2)
since 〈X1〉T1 = T1 and 〈X2〉T2 = T2.

Theorem 2 suggests that a possible way to study the equational theory of the
lattices R(D,A) is to interpret the lattice operations in a two sorted modal
logic, where the modal operators are indexed by the first sort and act on the
second. It is easily recongnized that each modal operator satisfies the S5 axioms,
while equation (1) implies that, when A is finite, each modal operator 〈X〉 is
determined by the modal operators of the form 〈a〉 with a an atom below X.
That is, the kind of modal logic we need to interpret the lattice theory is the
commutator logic [S5]n = [S5, . . . ,S5︸ ︷︷ ︸

n-times

], with n = cardA, see [10, Definition 18].



4 Minimal join-covers in R(D,A)

The lattices R(D,A) are pluperfect, even when A or D is an infinite set. The
completely join-irreducible elements were characterized in [12] together with
the meet-irreducible elements and the canonical context (see [3, Chapter 3] for
the definition of canonical context). If we stick to the representation given in
Theorem 2, the completely join-irreducible elements are of the form â = ({a}, ∅)
and f̂ = (∅, {f}). We can think of â as an empty named column, while f̂ is
an everywhere defined row. They are all atoms, so that, in particular, we shall
not be concerned with the restriction of the order to J (R(D,A)) (since this
order coincides with the equality). In order to characterize the OD-graph of the
lattice R(D,A), we only need to characterize the minimal join-covers. Taking
into account that if an element j ∈ J (L) is join-prime, then it has just one
minimal join-cover, the singleton {j}, the following Theorem achieves this goal.

Theorem 3. The lattices R(D,A) are atomistic pluperfect lattices. As a matter
of fact, every element â, a ∈ A, is join-prime; for f ∈ DA, the minimal join-
covers of f̂ are of the form

f̂ ≤
∨
a∈δ(f,g) â ∨ ĝ , for g ∈ DA.

The proof of this statement is almost straightforward, given the characterization
of R(D,A) as the semidirect product P (A) nj P (DA) and the definition of the
closure operators given with equation (2). For this reason, we skip it.

In particular, every minimal join-cover contains at most one non-join-prime
element. In view of Theorem 1, we obtain a more precise description of the closure
operator described in [12, Lemma 2.1] that gives rise to relational lattices.

Corollary 1. The relational lattice R(D,A) is isomorphic to the lattice of closed
subsets of AtDA, where a subset X is closed if δ(f, g)∪{g} ⊆ X implies f ∈ X.

In order to ease the reading, we shall use in the rest of this paper the same
notation for a completely join-irreducible element of R(D,A) and an element of
A tDA. This is consistent with the above Corollary, as under the isomorphism
we have â = {a} and f̂ = {f}. Thus a shall stand for â, and f for f̂ .

In a spatial lattice L (thus in a relational lattice), an inequation s ≤ t holds
if and only if j ≤ s implies j ≤ t, for each j ∈ J (L)—thus we shall often
consider inequations of the form j ≤ s with j ∈ J (L). When L = R(D,A), the
characterization of minimal join-cover leads to the following principle that we
shall repeatedly use:

f ≤ x1 ∨ . . . ∨ xn iff δ(f, g) ∪ {g} � {x1, . . . , xn}, for some g ∈ DA. (4)

5 Uniqueness of non-join-prime elements

For an inclusion we mean a pair (s, t) of terms (in the signature of lattice theory)
such that the equation t ∨ s = s (i.e. the inequality t ≤ s) is derivable from the



usual axioms of lattices. Thus, the equality s = t reduces to the inequality s ≤ t.
We write s ≤ t for a lattice inclusion and say it holds in a lattice if the identity
s = t holds in that lattice. Next, let us set

d`(u) := u0 ∧ (u1 ∨ u2) , dρ(u) := (u0 ∧ u1) ∨ (u0 ∧ u2) ,

so d`(u) ≤ dρ(u) is (an inclusion equivalent to) the usual distributive law. Con-
sider the following inclusion:

x ∧ (d`(y) ∨ d`(z) ∨ w) (Unjp)

≤ (x ∧ (dρ(y) ∨ d`(z) ∨ w)) ∨ (x ∧ (d`(y) ∨ dρ(z) ∨ w)) .

Theorem 4. The inclusion (Unjp) holds on relational lattices. As a matter of
fact, (Unjp) holds in a pluperfect lattice if and only if every minimal join-cover
contains at most one non-join-prime element.

Proof. Let us prove the first statement. To this goal, it will be enough to argue
that any join-irreducible element below the left-hand side of the inclusion is
below its right-hand side. Let k be such a join-irreducible element. It is not
difficult to see that if k is join-prime, then k is also below the right-hand side
of the inclusion. Suppose then that k is non-join-prime, whence k = f for some
f ∈ DA. From f ≤ d`(y)∨ d`(z)∨w and (4), it follows that there exists g ∈ DA

such that δ(f, g) ∪ {g} � {d`(y), d`(z), w}. In particular, {g} � {d`(y), w} or
{g} � {d`(z), w}. We firstly suppose that the last case holds. If a ∈ δ(f, g)
and a ≤ d`(y) = y0 ∧ (y1 ∨ y2), then a ≤ (y0 ∧ y1) ∨ (y0 ∧ y2) = dρ(y), since
a is join-prime. It follows that δ(f, g) ∪ {g} � {dρ(y), d`(z), w}, whence f ≤
x ∧ (d`(y) ∨ d`(z) ∨ w). If {g} � {d`(y), w}, then we conclude similarly that
f ≤ x ∧ (d`(y) ∨ dρ(z) ∨ w). Whence k is below the right-hand side of this
inclusion, and the inclusion holds since k was arbitrary.

We leave the reader to generalize the argument above so to prove that if a
pluperfect lattice is such that every minimal join-cover has at most one non-
join-prime element, then (Unjp) holds. For the converse we argue as follows.

Let L be a pluperfect lattice, let kx ∈ J (L), Cx ⊆ J (L) with kx Cm Cx,
and suppose that ky, kz ∈ Cx are distinct and non-join-prime. For u ∈ {y, z},
since ku is non-join-prime, there is a non-trivial minimal join-cover kuCm Cu; as
every non-trivial minimal join-cover has at least two elements, let Cu,1, Cu,2 be
a partition of Cu such that Cu,i 6= ∅ for each i = 1, 2.

We construct a valuation which fails (Unjp). Let x := kx, y0 := ky, z0 := kz,
w :=

∨
(Cx \ {ky, kz}) and, for u ∈ {y, z} and i = 1, 2, let ui :=

∨
Cu,i. The left-

hand side of the (Unjp) evaluates to kx. Assume, by the way of contradiction,
that (Unjp) holds, so kx is below the right-hand side of the inclusion. Since the
only minimal join-cover D of kx such that D � {kx} is {kx}, either kx ≤ dρ(y)∨
d`(z) ∨w or kx ≤ d`(y) ∨ dρ(z) ∨w; let us assume that the first case holds. We
have then kx ≤ dρ(y)∨kz∨

∨
(Cx\{ky, kz}) = dρ(y)∨

∨
(Cx\{ky}). Considering

that dρ(y) ≤ ky, Lemma 1 implies that ky = dρ(y) = (y0 ∧ y1)∨ (y0 ∧ y2). Since
ky is join-irreducible ky = y0 ∧ yi for some i ∈ {1, 2}. Yet this is not possible,
as such relation implies that Cy,i is a join-cover of ky; considering that Cy,i is



a proper subset of the minimal join-cover Cy, this contradicts the minimality of
Cy. If kx ≤ d`(y) ∨ dρ(z) ∨ w, then we get to a similar contradiction. Whence,
kx is not below the right-hand side of (Unjp), which therefore fails. ut

It is worth noticing that the statement “every minimal join-cover contains
exactly one non-join-prime element” is not definable by equations: for A = D =
{0, 1}, there is a sublattice of R(D,A) which fails this property.

While Theorem 4 gives a semantic characterization of (Unjp), we might also
wish to measure its power at the syntactic level. Theorem 5 and Corollary 2
illustrate the deductive strength of (Unjp), by pinpointing an infinite set of its
consequences.

Theorem 5. If s` = sρ and t` = tρ are equations valid on distributive lattices,
then the equation

(x ∧ (s` ∨ t` ∨ w)) ∨ (x ∧ (sρ ∨ tρ ∨ w))

= (x ∧ (sρ ∨ t` ∨ w)) ∨ (x ∧ (s` ∨ tρ ∨ w))

is derivable from (Unjp) and general lattice axioms.

Proof. For a lattice term s, let dnf(s) be its disjunctive normal form. Recall that
we can obtain dnf(s) from s by means of a sequence s = s0, . . . , sn = dnf(s)
where, for each i = 0, . . . , n − 1, si+1 is obtained from si by one application of
the distributive law at the toplevel of the term, and by general lattice axioms.
Thus, for two lattice terms s1, s2, let s1i , i = 0, . . . , n, and s2j , j = 0, . . . ,m be
the sequences leading to the respective normal forms.

For i = 0, . . . , n and j = 0, . . . ,m, let now ti,j = x ∧ (s1i ∨ s2j ∨ w). Using
(Unjp) and general lattice axioms, we can compute as follows:

t0,0 = t1,0 ∨ t0,1 = t2,0 ∨ t1,1 ∨ t0,2 = . . .

=
∨

j=0,...,m

tn,j ∨
∨

i=0,...,n

ti,m
?
= tn,0 ∨ t0,m ,

where only the last equality needs to be justified. Notice that the relation ski+1 ≤
ski holds in every lattice. Whence we have ski′ ≤ ski when i < i′, and both
tn,j ≤ tn,0 and ti,m ≤ ti,0. It follows that the indexed join at the last line
evaluates to tn,0 ∨ t0,m. We have derived, up to now, the identity

x ∧ (s1 ∨ s2 ∨ w) = (x ∧ (dnf(s1) ∨ s2 ∨ w)) ∨ (x ∧ (s1 ∨ dnf(s2) ∨ w))

for every pair of lattice terms s1 and s2.
Let us call co-clause a conjunction of variables. By using lattice axioms only,

we can suppose that, within dnf(t), there are no repeated literals in co-clauses
and that no co-clause subsumes another. Under this assumption, we have that
an identity s` = sρ holds in all distributive lattices if and only if dnf(s`) is equal
to dnf(sρ). Whence, to derive the statement of the Theorem, we can compute
as follows:

(x ∧ (s` ∨ tρ ∨ w)) ∨ (x ∧ (sρ ∨ t` ∨ w))



= (x ∧ (dnf(s`) ∨ tρ ∨ w)) ∨ (x ∧ (s` ∨ dnf(tρ) ∨ w))

∨ (x ∧ (dnf(sρ) ∨ t` ∨ w)) ∨ (x ∧ (sρ ∨ dnf(t`) ∨ w))

= (x ∧ (dnf(sρ) ∨ tρ) ∨ w) ∨ (x ∧ (s` ∨ dnf(t`) ∨ w))

∨ (x ∧ (dnf(s`) ∨ t` ∨ w)) ∨ (x ∧ (sρ ∨ dnf(tρ) ∨ w))

= (x ∧ (dnf(s`) ∨ t` ∨ w)) ∨ (x ∧ (s` ∨ dnf(t`) ∨ w))

∨ (x ∧ (dnf(sρ) ∨ tρ ∨ w)) ∨ (x ∧ (sρ ∨ dnf(tρ) ∨ w))
—where we have permuted the order of the four joinands

= (x ∧ (s` ∨ t` ∨ w)) ∨ (x ∧ (sρ ∨ tρ ∨ w)) . ut

In [12] two equations were shown to hold on relational lattices. One of them
is (RL2) that we describe next. Set

do`(u) := (u0 ∨ u1) ∧ (u0 ∨ u2) , doρ(u) := u0 ∨ (u1 ∧ u2) ,

the equation is

x ∧ (do`(y) ∨ do`(z)) ≤ (x ∧ (doρ(y) ∨ do`(z))) ∨ (x ∧ (do`(y) ∨ doρ(z))) (RL2)

Corollary 2. If s` = sρ and t` = tρ are equations valid on distributive lattices,
then the inequation

(x ∧ (s` ∨ t` ∨ w)) ≤ (x ∧ (sρ ∨ t` ∨ w)) ∨ (x ∧ (s` ∨ tρ ∨ w)) (5)

is derivable from (Unjp). In particular (RL2) is derivable from (Unjp).

The Corollary follows from the Theorem and from the fact that x ≤ x ∨ y. In
order to derive (RL2) from (5) (if we do not include the bottom constant ⊥ as
part of the signature of lattice theory), we instantiate s` := do`(y), sρ := doρ(y),
t` := do`(z), tρ := doρ(z), and w := doρ(z).

It can be shown that (Unjp) is not derivable from (RL2)—mainly due to
the role of the variable w in the (Unjp). The construction of a lattice L satis-
fying (RL2) but failing (Unjp) proceeds via the construction of its OD-graph
〈J(L),≤,Cm〉. Due to the consistent number of variables in the two equations,
an automated tool such as Mace4 [13] could not help finding a countermodel.
Similarly, automated tools such as Prover9 and Waldmeister [13,6] were of no
help to show that (RL2) is a consequence of (Unjp).

Natural questions—e.g. decidability—may be raised concerning the equa-
tional theory of (Unjp). Since we can give an easy semantic proof that an equa-
tion of the form (5) holds on finite lattices (or pluperfect) satisfying (Unjp), a
reasonable conjecture is that this theory has some sort of finite model property.
Yet, proving this might not be immediate, since the variety of lattices satisfying
(Unjp) is not locally finite (i.e., not every finitely generated lattice satisfying
(Unjp) is finite). The construction used in [16, Proposition 7.5] may be used
to argue that the lattice freely generated in this variety by three generators is
infinite.



6 Symmetry and pairwise completeness

Due to its syntactic shape (Unjp) falls in a class of inclusions described in [16,
Section 8] that admit a correspondent property in the OD-graph. Here, the mean-
ing of the word correspondent is analogous to its use in modal logic, where some
formulas might be uniformly valid in a frame if and only if the frame satisfies
a correspondent first order property. Thus Theorem 4 is not completely unex-
pected. A more surprising result comes from considering the three equations
below, that fall outside the syntactic fragment described in [16]; a strengthen-
ing of Lemma 1 (Lemma 4 to follow) allows to characterize the OD-graphs of
pluperfect lattices satisfying (Unjp) and these equations, see Theorem 8.

x ∧ (y ∨ z) ≤ (SymPC)

(x ∧ (y ∨ (z ∧ (x ∨ y)))) ∨ (x ∧ (z ∨ (y ∧ (x ∨ z))))
x ∧ ((y ∧ z) ∨ (y ∧ x) ∨ (z ∧ x)) ≤ (x ∧ y) ∨ (x ∧ z) (VarRL1)

x ∧ ((x ∧ y) ∨ d`(z)) ≤ (x ∧ ((x ∧ y) ∨ dρ(z))) ∨ (x ∧ d`(z))
(RMod)

Let us first illustrate the way in which these equations hold in relational lattices.
In particular, the proof shall illustrate the crucial role played by symmetry and
pairwise completeness—i.e., condition (3)—of the ultrametric space (DA, δ).

Theorem 6. The inclusions (SymPC), (VarRL1), (RMod) hold in relational
lattices.

Proof. (SymPC). Let k be a join-irreducible element below x∧(y∨z). If k is join-
prime, then k is also below (x∧y)∨(x∧z), whence it is below the right-hand side
of this inclusion. Therefore, let k be non-join-prime, so k = f for some f ∈ DA;
by (4), let g ∈ DA be such that δ(f, g) ∪ {g} � {y, z}. Let us suppose first that
g ≤ z. Since δ(f, g)� {y, z}, using pairwise completeness we can find h such that
δ(f, h)� {y} and δ(h, g)� {z}. It follows that h ≤

∨
δ(h, g)∨g ≤ z; moreover,

since f ≤ x, δ(h, f) = δ(f, h), and δ(f, h) � {y}, then h ≤ δ(h, f) ∨ f ≤ x ∨ y.
Consequently, we have h ≤ z ∧ (x ∨ y) and, considering that δ(f, h) � {y},
we have f ≤ x ∧ (y ∨ (z ∧ (x ∨ y))). If g ≤ y, then we similarly deduce that
f ≤ x ∧ (z ∨ (y ∧ (x ∨ z))). In both cases, f is below the right-hand side of this
inclusion.

(VarRL1). Let k be below the left-hand side of this inclusion. If k is join-
prime, then it is below the right-hand side of this inclusion as well. Otherwise
k = f is non-join-prime and δ(f, g)∪{g} � {y∧z, y∧x, z∧x} for some g ∈ DA.

Since g ≤ r for some r ∈ {y ∧ z, y ∧ x, z ∧ x}, we consider three cases; by
pairwise completeness we can also assume that g is the only element of δ(f, g)∪
{g} below r—since if δ(f, g′) � {y ∧ z, y ∧ x, z ∧ x} \ {r} and δ(g′, g) � {r},
then g′ ≤ r. Also, the last two cases, g ≤ y ∧ x and g ≤ z ∧ x, are symmetric in
y and z, so that we consider among them the second-to-last only.

Suppose firstly that g ≤ y∧z. Then, from δ(g, f) = δ(f, g)� {x∧y, x∧z} �
{x} and f ≤ x, we deduce g ≤ x; whence g ≤ x ∧ y and f ≤ (x ∧ z) ∨ (x ∧ y).



Suppose next that g ≤ x ∧ y. By pairwise completeness, let h be such that
δ(f, h)� {x∧z} and δ(h, g)� {y∧z}. We deduce then h ≤ y from δ(h, g)� {y}
and g ≤ y, and h ≤ x, from δ(h, f) = δ(f, h)� {x} and f ≤ x. Thus h ≤ x ∧ y
and f ≤ (x ∧ z) ∨ (x ∧ y).

(RMod). Let k be a join-irreducible below the left-hand side of this inclusion.
If k is join-prime, then k is below x∧ ((x∧ y)∨ dρ(z)). Otherwise k = f and, for
some g ∈ DA, δ(f, g) ∪ {g} � {x ∧ y, d`(z)}. If g ≤ x ∧ y, then all the elements
that are not below x∧ y are below d`(z) and join-prime, whence they are below
dρ(z). It follows that f ≤ x ∧ ((x ∧ y) ∨ dρ(z)). Otherwise g ≤ d`(z) and, by
pairwise completeness, we can also assume that g is the only element below d`(z),
so δ(f, g) � {x ∧ y}. It follows then that δ(g, f) ∪ {f} = δ(f, g) ∪ {f} � {x},
g ≤ x, whence g ≤ x∧d`(z). Consequently, f ≤ (x∧y)∨ (x∧d`(z)) ≤ (x∧ ((x∧
y) ∨ dρ(z))) ∨ (x ∧ d`(z)). ut

In [12] a second inclusion was shown to hold on relational lattices:

x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ (y ∨ x))) ≤ (x ∧ y) ∨ (x ∧ z) (RL1)

The same kind of tools used in the proof of Theorem 6 can be used to argue
that this inclusion holds on relational lattices. The reader will have noticed the
similarity of (VarRL1) with (RL1). As a matter of fact, (VarRL1) was suggested
when trying to derive (RL1) from (Unjp) and the other equations as in the
following Proposition.

Proposition 1. (RL1) is a consequence of (Unjp), (RMod) and (VarRL1).

Proof. Using (Unjp) and considering that y ∧ z ≤ z ∧ (y ∨ x), we have:

x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ (y ∨ x)))

= (x ∧ ((y ∧ x) ∨ (z ∧ (y ∨ x)))) ∨ (x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ x)))) .

Using now (RMod) and considering that x ∧ z ≤ y ∨ x, we compute as follows:

x ∧ ((y ∧ x) ∨ (z ∧ (y ∨ x)))

= (x ∧ ((y ∧ x) ∨ (z ∧ y) ∨ (z ∧ x))) ∨ (x ∧ z ∧ (y ∨ x))

= (x ∧ ((y ∧ x) ∨ (z ∧ y) ∨ (z ∧ x))) ∨ (x ∧ z)
= x ∧ ((y ∧ z) ∨ (y ∧ x) ∨ (z ∧ x)) .

Considering the symmetric role of y and z, we obtain:

x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ (y ∨ x))) = x ∧ ((y ∧ z) ∨ (y ∧ x) ∨ (z ∧ x))

= (x ∧ y) ∨ (x ∧ z) , by (VarRL1). ut

We present now what we consider our strongest result in the study of the
equational theory of relational lattices. To this end, let us denote by [[AxRel]] the
(set composed of the) four equations (Unjp), (VarRL1), (RMod) and (SymPC).
Also, given that we restrict to lattices satisfying (Unjp), and considering the
characterization given with Theorem 4, it is convenient to introduce the notation
k0 CCm k1 for the statement k0, k1 ∈ J(L), k1 is non-join-prime, k1 6∈ C, and
k0 Cm C ∪ {k1}.



Theorem 7. Let L be a finite atomistic lattice. Then L |= [[AxRel]] if and
only if every nontrivial minimal join-cover contains exactly one non-join-prime
element and, moreover, the following properties hold in the OD-graph:

• If k0 C
C
m k1, then k1 C

C
m k0. (6)

• If k0 C
C0tC1
m k2, then k0 C

C0
m k1 and k1 C

C1
m k2, for some k1 ∈ J (L).

Given Theorem 7, it becomes tempting to look for a representation Theorem.
Given a pluperfect atomistic lattice satisfying the above four equations, we would
like to define an ultrametric space on the set of non-join-prime elements with
distance valued on the powerset of the join-prime ones, and then argue that
the lattice constructed via the standard action, defined in (2), is isomorphic to
the given lattice. Unfortunately, this idea does not work, since if we try to set
δ(k0, k1) = C whenever k0 CCm k1, this might be ill defined since the implication
“k0 CCm k1 and k0 CDm k1 implies C = D” might fail. Moreover, there is no
equation nor quasiequation enforcing this, as an immediate consequence of the
next Proposition.

Proposition 2. There is an atomistic sublattice of R({0, 1}, {0, 1}) which does
not arise from an ultrametric space.

Theorem 7 is a consequence of a more general Theorem, to be stated next,
characterizing the OD-graphs of pluperfect lattices in the variety axiomatized by
[[AxRel]]. While the conditions stated next may appear quite complex, they are
the ones to retain if we aim at studying further the theories of relational lattices
by duality—e.g., a sublattice of a relational lattice need not be atomistic.

Theorem 8. A pluperfect lattice belongs to the variety axiomatized by [[AxRel]]
if and only if every minimal join-cover contains at most one non-join-prime
element and, moreover, the following properties hold in its OD-graph:

• If k0 Cm C, then there exists at most one c ∈ C with c ≤ k0. (π-VarRL1)

• If k0 C
C
m k1, then no element of C is below k0. (π-RMod)

• if k Cm C0 t C1 with C0, C1 non-empty, then for some k′ ∈ J (L),

either k Cm {k′} t C1, k′ Cm C0, and k′ ≤
∨
C1 ∨ k,

or k Cm C0 t {k′}, k′ Cm C1, and k′ ≤
∨
C0 ∨ k. (π-StrongSymPC)

Let us notice that the conditions

• If k0 C
C0tC1
m k2 then, for some k1 ∈ J (L),

k0 C
C0
m k1, k1 C

C1
m k2, and k1 ≤

∨
C0 ∨ k0. (π-SymPC)

• If k0 C
C
m k1, then k1 ≤

∨
C ∨ k0 (π-Sym)

follow from the above properties. On atomistic pluperfect lattices the last con-
dition is equivalent to (6).



Lemma 3. If L is a pluperfect lattice with L |= (Unjp) and whose OD-graph
satisfies (π-StrongSymPC) and (π-RMod), then (π-SymPC) holds as well.

Proof. Let k1 Cm C0 t C1 t {k2} with k2 ∈ J (L) and non-join-prime, and use
(π-StrongSymPC) to find k1 such that either (i) k0 Cm {k1} t C1 t {k2} and
k1 ≤ k0 ∨

∨
C1 ∨ k2, or (ii) k0 Cm C0 t {k1} and k1 ≤ k0 ∨

∨
C0. Let us argue,

by contradiction, that (i) cannot arise. By (Unjp), k1 is join-prime, whence the
relation k1 ≤ k0∨

∨
C1 yields k1 ≤ k0. This, however, contradicts (π-RMod). ut

We close this section by proving Theorem 8. To this end, we need a general-
ization of Lemma 1. As the refinement relation is an extension to subsets of the
order relation, the relation CCm, defined next, can be considered as an extension
to subsets of the minimal join-covering relation.

Definition 2. Let L be a pluperfect lattice and let X,Y ⊆ J (L) be antichains.
Put XCCmY if X � {

∨
Y } and y ∈ Cxy

for some xy ∈ X, for each y ∈ Y and
whenever {Cx | x ∈ X} is a family of coverings of the form xCm Cx � Y .

Lemma 4. Let L be a pluperfect lattice and let j Cm C0 t C1. Suppose that∨
X ≤

∨
C0 and j ≤

∨
X ∨

∨
C1. Then there exists a minimal join-cover of the

form j Cm D0 t C1 with D0 � X and D0CCmC0.

While the proof that a pluperfect lattice whose OD-graphs satisfies those
properties essentially mimics the proof of Theorem 6, we prove instead the con-
verse direction through a series of Lemmas.

Lemma 5. If (VarRL1) holds on a pluperfect lattice, then its OD-graph satisfies
(π-VarRL1).

Proof. Suppose C = {k1} t {k2} tD with k0 Cm C and k1, k2 ≤ k0. Let x := k0,
y := k1 ∨

∨
D, z := k2 ∨

∨
D. Then k1 ≤ x ∧ y, k2 ≤ x ∧ z and

∨
D ≤ y ∧ z,

whence the left-hand side of (VarRL1) evaluates to k0, which is therefore below
the right-hand side of this inclusion. It follows that either k0 ≤ y, or k0 ≤ z, in
both cases contradicting the fact that C is a minimal join-cover. ut

The inclusion

x ∧ (y ∨ d`(z)) ≤ (x ∧ (y ∨ dρ(z))) ∨ (x ∧ (y ∨ (d`(z) ∧ (y ∨ x))) , (Sym)

is derivable from (Unjp), (SymPC) and (RMod). It can also be shown that
(RMod) is a consequence of (Sym).

Lemma 6. If (Sym) holds in a pluperfect lattice, then its OD-graph satisfies
(π-Sym).

Proof. Suppose that the inclusion holds and let k0 CCm k1. Since k1 is non-join-
prime, there exists a minimal join-cover k1 Cm D which we can partition into
two non empty subsets D1 and D2. Let now x := k0, y :=

∨
C, z0 := k1,

z1 =
∨
D1, z2 =

∨
D2. Then, the left-hand side of the inclusion evaluates to k0,



which therefore is below the right-hand side. Considering that x is k0 and that
the unique minimal join-cover of k0 whose elements are all below k0 is {k0}, it
follows that either k0 ≤ y ∨ dρ(z) or k0 ≤ y ∨ (d`(z) ∧ (y ∨ x)).

Argue that dρ(z) < d`(z), since k1 is join-irreducible, whence by Lemma 1,
{y, dρ(z)} is not a cover of k0, excluding the first case. Therefore {y, d`(z)∧ (y∨
x)} is a cover of k0, whence, by Lemma 1, k1 = d`(z) ∧ (y ∨ x), showing that
k1 ≤ y ∨ x =

∨
C ∨ k0 and proving the statement. ut

Lemma 7. If L is a pluperfect lattice such that L |= [[AxRel]], then (π-RMod)
holds in its OD-graph.

Proof. Let k0 CCm k1 and put C = C0 t C1 with C0 � {k0} and c 6≤ k0 for each
element c ∈ C1. As (Sym) whence (π-Sym) hold, we have k1 ≤

∨
C1∨

∨
C0∨k0.

We consider next equation (RMod). Put x := k0, y :=
∨
C0, z0 :=

∨
C1∨k1,

z1 :=
∨
C1∨

∨
C0, z2 := k0. From k1 ≤

∨
C1∨

∨
C0∨k0, we get z0∧(z1∨z2) = z0.

Whence, the left-hand side of (RMod) evaluates to k0 so k0 is below the right-
hand side of (RMod). Considering that {k0} is the unique minimal join-cover of
k0 whose elements are all below k0, it follows that either k0 ≤ z0 ∧ (z1 ∨ z2) or
k0 ≤ y ∨ (z0 ∧ z1) ∨ (z0 ∧ z2).

As k0 6≤
∨
C1 ∨ k1 = z0, it follows that k0 ≤ y ∨ (z0 ∧ z1) ∨ (z0 ∧ z2). We

can use then Lemma 4 to deduce that k0 has a minimal join-cover of the form
k0 Cm C0 tD, with D � {z0 ∧ z1, z0 ∧ z2} � {z1, z2}. If all the elements of D
are below z1 =

∨
C0 ∨

∨
C1, then

k0 ≤
∨
C0 ∨

∨
D ≤

∨
C0 ∨

∨
C1 ,

contradicting the minimality of k0 Cm C0 t C1 t {k1}. Therefore, at least one
element of D is below z2 = k0. If C0 6= ∅, then in the minimal join-cover C0 tD
there are at least two elements that are below k0. This however contradicts
(π-VarRL1), whence (VarRL1). We have, therefore, C0 = ∅. ut

Lemma 8. If L is a pluperfect lattice with L |= [[AxRel]], then (π-StrongSymPC)
holds in is OD-graph.

Proof. By Lemmas 5 and 7, (π-RMod) and (π-VarRL1) hold in the OD-graph.
Let x := k0, y :=

∨
C0, z :=

∨
C1. Then the left-hand side of (SymPC)

evaluates to k0 which is therefore below the right-hand side. Thus, by Lemma 4,
there is a minimal join-cover of the form k0CmD0 tD1 with either (i) D0CCmC0,
D0 � {y ∧ (x ∨ z)}, and D1 = C1, or (ii) D0 = C0, D1CCmC1, and D1 �
{z ∧ (x ∨ y)}.

W.l.o.g. we can suppose that (i) holds. From D0 � {y∧ (x∨z)} � {x∨z} =
{k0 ∨

∨
C1}, we can argue as follows. We notice first that if an element of D0

is join-prime, then it is either below k0 or below some c ∈ C1; since D0 t C1 is
an antichain, this element is below k0. Therefore, if all the elements of D0 are
join-prime, then, by (π-VarRL1), D0 = {k′}. Otherwise, there exists a non-join-
prime element k′ in D0 and, by (Unjp), this is the only non-join-prime in D0.
Write D0 = {k′} tE, then every element of E is join-prime and, as seen before,



we need to have E � {k0}. Then (π-RMod) enforces E0 = ∅ and D0 = {k′}. In
both cases, the relation {k′} = D0CCmC0 yields k′ Cm C0. ut

Finally, in order to understand the structure of finite lattices in the variety
of axiomatized by [[AxRel]], let Jp(L) denote the set of join-prime elements of
L and consider the following property:

• If k0 Cm C and C ⊆ Jp(L), then c0 ≤ k0 for some c0 ∈ C (π-JP)

The next Lemma ensures the existence of a non-join-prime element in a cover in
finite atomistic lattices, as stated in Theorem 7.

Lemma 9. If a finite lattice L satisfies [[AxRel]], then (π-JP) holds in its OD-
graph. In particular, if L is atomistic, then k0CmC implies that k1 ∈ C for some
non-join-prime k1.

It can be shown that the finiteness assumption in Lemma 9 is necessary.

7 Conclusions and further directions

Some undecidable problems. Our main result, Theorem 7, characterizes the
OD-graphs of finite atomistic lattices satisfying [[AxRel]] as structures similar
to frames for the commutator logic [S5]n, the multimodal logic with n distinct
pairwise commuting S5 modal operators, see [10]. We exemplify next how to
take advantage of such similarity and of the existing theory on combination of
modal logics, to deduce undecidability results. As this is not the main goal of
the paper, we delay a full exposition of these ideas to an upcoming set of notes.

An [S5]n frame is a structure F = (F,R1, . . . , Rn) where each Ri is an equiva-
lence relation on F and, moreover, the confluence property holds: if i 6= j, xRiy
and xRjz, then yRjw and zRiw for some w ∈ F . A particular class of [S5]n

frames are the universal S5n-products, those of the form U = (F,R1, . . . , Rn)
with F = X1× . . .×Xn and (x1, . . . , xn)Ri(y1, . . . , yn) if and only if xj = yj for
each j 6= i.

For a frame F = (W,R1, . . . , Rn) and X ⊆ {1, . . . , n}, let us say that Y ⊆
W is X-closed if w0 ∈ Y , whenever there is a path w0Ri0w1 . . . wk−1Rikwk
with {i0, . . . , ik} ⊆ X and wk ∈ Y . Then X-closed subsets are closed under
intersections, so subsets of {1, . . . , n} give rise to closure operators 〈X〉 and to
an action as defined in Section 3. Let L(F) = P ({1, . . . , n})nj P (W ) and notice
that L(F) is atomistic. A frame F is initial if there is f0 ∈ F such every other
f ∈ F is reachable from f0; it is full if, for each i = 1, . . . , n, Ri is not included
in the identity. If F is initial and full, then L(F) is subdirectly irreducible. A
p-morphism is defined as usual in modal logic. The key observation leading to
undecidability is the following statement.

Theorem 9. There is a surjective p-morphism from a universal S5n-product
frame U to a full initial frame F if and only if L(F) embeds in a relational lattice.



Proof (Sketch). The construction L is extended to a contravariant functor, so if
ψ : U −−→ F is a p-morpshim, then we have an embedding L(ψ) of L(F) into L(U).
We can assume that all the components X1, . . . , Xn of U are equal, so Xi = X
for each i = 1, . . . , n; if this is the case, then L(U) is isomorphic to the relational
lattice R({1, . . . , n}, X).

The converse direction is subtler. Let χ : L(F) −−→ R(A,D) be a lattice
embedding; since L(F) is subdirectly-irreducible, we can suppose that χ preserves
bounds; its left adjoint µ : R(A,D) −−→ L(F) is then surjective. Since both L(F)
and R(D,A) are generated (under possibly infinite joins) by their atoms, each
atom x ∈ L(F) has a preimage y ∈ R(D,A) which is an atom. Consider now S0 =
{f ∈ DA | µ(f) is a non-join-prime atom} and make it into a P ({1, . . . , n})-
valued ultrametric space by letting δS0

(f, g) = µ(δ(f, g)) ⊆ {1, . . . , n}—we use
here the fact that µ sends join-prime elements to join-prime elements. S0 is
shown to be a pairwise complete ultrametric space over {1, . . . , n}. We prove
that pairwise complete ultrametric spaces over a finite set B are in bijection
with universal S5n-product frames, with n = cardB. Then the restriction of µ
to S0 is a surjective p-morphism from S0 to (a frame isomorphic to) F. ut

In view of the following statement, which relies on [8] and can be inferred from
[7]: “for n ≥ 3, it is undecidable whether, given a finite full initial frame F, there
is a surjective p-morphism from a universal S5n-product U to F” , we deduce the
following undecidability results, which partially answer Problem 4.10 in [12].

Corollary 3. It is undecidable whether a finite subdirectly irreducible atomistic
lattice embeds into a relational lattice. Consequently, the quasiequational theory
of relational lattices in the pure lattice signature is also undecidable.

Comparison with Litak et al. [12]. We have presented our first contribution
to the study of the equational theory of relational lattices. In [12] two equations
in the larger signature with the header constant are presented as a base for the
equational theory of relational lattices. As mentioned there, the four equations
of [[AxRel]] are derivable from these two equations. Therefore, we can also think
of the present work as a contribution towards assessing or disproving complete-
ness of these two axiomatizations. Yet, we wish to mention here and emphasize
some of our original motivations. Lattice theoretic equations are quite difficult
to grasp, in particular if considered on the purely syntactic side, as done for
example in [12]. Duality theory attaches a meaning to equations via the com-
binatorial properties of the dual spaces. This process is nowadays customary in
modal and intuitionistic logic and gives rise to a well defined area of research,
correspondence theory. Our aim was to attach meaning to the equations of rela-
tional lattices. The answer we provide is, at the present state of research, via the
relevant combinatorial properties, symmetry and pairwise completeness. From
this perspective, the results presented in Section 6 undoubtedly need further
understanding. In particular it is worth trying to modularize them, so as to dis-
cover equations exactly corresponding to symmetry or, respectively, to pairwise
completeness; alternatively, argue that these equations do not exist. Finally, the



present work opens new directions and challenges for the duality theory devel-
oped in [16]—of which, we hope we have illustrated the fruitfulness—including
a better understanding of how to generalize it to the infinite case, new mecha-
nisms by which to devise correspondence results, natural conjectures concerning
equations having correspondents in finite lattices.
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