
HAL Id: hal-01442261
https://inria.hal.science/hal-01442261

Submitted on 20 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Agile Modelling Method Engineering: Lessons Learned
in the ComVantage Research Project

Robert Andrei Buchmann, Dimitris Karagiannis

To cite this version:
Robert Andrei Buchmann, Dimitris Karagiannis. Agile Modelling Method Engineering: Lessons
Learned in the ComVantage Research Project. 8th Practice of Enterprise Modelling (P0EM), Nov
2015, Valencia, Spain. pp.356-373, �10.1007/978-3-319-25897-3_23�. �hal-01442261�

https://inria.hal.science/hal-01442261
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Agile Modelling Method Engineering:
Lessons Learned in the ComVantage Research Project

Robert Andrei Buchmann1, Dimitris Karagiannis2

1Faculty of Economic Sciences and Business Administration, Babes-Bolyai University,
Romania

robert.buchmann@econ.ubbcluj.ro
2Faculty of Computer Science, University of Vienna, Austria

dk@dke.univie.ac.at

Abstract. The paper reports on experiences accumulated during a EU research
project where challenges pertaining to requirements-driven metamodelling agil-
ity have been analysed. Traditionally, modelling languages are perceived as
stable artefacts – that is, if they address a sufficiently large community with
fixed modelling requirements on a fixed layer of abstraction. However, the en-
terprise modelling community must also consider the case where evolving re-
quirements emerge in a narrow domain, or even in a single enterprise, therefore
reusability across domains will be sacrificed to the benefit of on-demand adap-
tation, specialization or integration. Under such conditions, an agile metamodel-
ling approach was applied in the ComVantage project and this, in turn, raised
specific requirements for conceptual and technological enablers, allowing us to
derive conclusions that are generalized here beyond the project scope. The pa-
per's concluding SWOT analysis highlights the need to stimulate the emergence
of an agile metamodelling paradigm based on community-driven enablers.

Keywords: Agile modelling method engineering, enterprise modelling, meta-
modelling, modelling requirements

1 Introduction

Diagrammatic conceptual modelling has been concerned with standardization even
from its earliest days, when the first draft of "process chart" symbols [1] was present-
ed to the American Society of Mechanical Engineers (ASME), with a subtitle suggest-
ing optimality: "Process Charts – First Steps in Finding the One Best Way to Do
Work". According to the authors, the process charts were "a device for visualizing a
process as means for improving it" and, for this purpose, an initial set of quite arbi-
trarily chosen symbols was proposed. The set of symbols was further developed by
ASME in a new set of flowcharting symbols whose key quality was that they could be
drawn by engineers using crayon and "template rulers". Later, Von Neumann adopted
these to describe the first programs in a control flow visualization style. Many years
later, standards like UML and BPMN still inherit the rhombus shape for decision
concepts (and other such "legacy symbols") as part of standardized notations. Howev-

er, computer-aided diagrammatic modelling can now benefit from enriching notation
with a variety of features, such as: interactivity (symbols acting as hyperlinks), dy-
namics (symbols changing based on some machine-readable properties or semantics),
visual semantics (information communicated through ornamental aspects, or even
animation). None of these had been possible in the days of crayon and template rulers,
and the variety of available options in this respect is nowadays subject to modelling
requirements, together with other customization needs of the targeted users (model-
lers) pertaining to (i) model-driven functionality, (ii) semantic coverage of models or
(iii) the depth of domain-specificity.

As software engineering recognized the unstable nature of requirements and the
competitive value of flexible response to evolving requirements, the Agile Manifesto
[2] and community emerged to challenge the traditional rigid ways of building soft-
ware. Similar challenges can be met with respect to modelling requirements in the
practice of modelling method engineering, particularly in its application for enterprise
modelling. Consequently, an Agile Modelling Method Engineering (AMME) ap-
proach and its enablers must be consolidated from experience reports such as the one
to be provided in the work at hand.

The goal of this paper is to share metamodelling experiences from our research on
modelling virtual enterprises in the ComVantage research project [3], consequently
highlighting characteristics of AMME as a key methodological necessity. In order to
establish the motivation, we will introduce the improvised term "ComVantage enter-
prise" and compile its characteristics and challenges that must be tackled with an
AMME approach. A modelling method and prototype was developed for the men-
tioned project within the environment provided by the Open Model Initiative Labora-
tory [4], and the paper reflects back on this development experience.

The remainder of the paper is structured as follows: Section 2 provides a brief pro-
ject overview and, as a generalized motivation, compiles the enterprise characteristics
that require an AMME approach. Section 3 provides an overview on the emerging
AMME approach and its key enablers. Section 4 reports on experiences with AMME
in relation to examples extracted from the ComVantage modelling method. Section 5
positions the paper in the context of related works. The final section generalizes con-
clusions beyond the project scope.

2 Motivational Characteristics of a "ComVantage Enterprise"

In this section we will compile characteristics for a "ComVantage enterprise" from the
project experience, as well as by instantiating features identified in research roadmaps
provided by European research clusters where the project took part - e.g., FInES [5].

The ComVantage research project aimed to support collaborative business pro-
cesses in virtual enterprises with adaptive mobile technology driven by models de-
signed with the domain-specific "ComVantage modelling method". The modelling
method had to be developed iteratively, as requirements evolved and the development
of run-time systems also imposed an incremental iterative approach. Details on differ-
ent snapshots of the evolving modelling method are available in deliverables [3] (de-

liverables D311, D312) and previous publications [6-7]. In this paper we will only
provide insight for a few modelling elements in order to derive key characteristics for
AMME. In the following, we highlight the enterprise characteristics that must be
tackled by the AMME approach:

A. Modelling is employed as knowledge representation. Historically, model-driven
software engineering employed models in different ways, as highlighted by Table 1.
The "modelling is programming" paradigm [8] uses models for generation of execut-
able code. This vision was later complemented by a "modelling is configuration"
approach, having run-time systems parameterized with model information and models
acting as "control panels" to influence run-time behaviour – e.g., in the context of
process-aware information systems [9], with the help of XML model serializations
such as BPEL [10]). As enterprise modelling expanded beyond the goals of business
process management in order to build a holistic representation of the enterprise, dia-
grammatic models became means of capturing the knowledge of stakeholders on dif-
ferent enterprise aspects (e.g. processes, goals, capabilities).
Relevance to AMME: AMME is called to ensure that the necessary semantics is
captured, in relation to modelling needs that may evolve as users become accustomed
to modelling. On the side of stakeholders, inexperienced modellers will gradually
raise requirements for deeper specialization of modelling concepts (deepening do-
main-specificity), while the modelling method engineer can be confronted with grad-
ual understanding of the application domain.

Table 1. The different stages of model-driven software engineering

How models are employed Relation to run-time
Systems

Pre-condition

Modelling is
Programming

Run-time code is generated from
model

All information necessary in the
final code is available, explicitly or
implicitly, in models

Modelling is
Configuration

Run-time system is parameterized
and its execution driven by model

information

Model information can be serialized
in some interoperable format, typi-
cally XML

Modelling is
Knowledge representation

Run-time system functionality is
influenced by properties, concepts
and reasoning based on the seman-

tics captured in models

Model information can be converted
to some machine-readable
knowledge base (that supports
querying and reasoning)

B. Semantics-awareness is required for run-time enterprise systems. The func-
tionality of enterprise systems can be, at execution time, sensitive to machine-
readable semantics captured in various forms. Typically such semantic representa-
tions are nowadays available in a new type of semantic networks (the Linked Enter-
prise Data paradigm [11]), possibly enriched by ontologies and rules to enable reason-
ing over the Web of Data. Alternatively, information systems may also be sensitive to
the semantics captured in diagrammatic form by enterprise models (with the model-
ling language alphabet acting as a "terminological box") – that is, if relevant granular-
ity is ensured, and a machine-readable model repository is provided.

Relevance to AMME: AMME is called to ensure that changes in requirements for
the run-time enterprise system propagate accordingly to modelling requirements so
that the necessary properties are assimilated in the modelling language (to become
accessible at run-time).

C. Scenario-driven requirements for run-time systems means that run-time re-
quirements should be built around work processes and work capabilities rather than
around disparate use cases. While traditional requirements elicitation practices used to
advocate atomization of user stories, the increasing experience of stakeholders with
business process management may be leveraged in order to capture requirements in
control flow representations mapped on resource/capability requirements. Agile soft-
ware engineering already recognized this by aggregating requirements in narrative
units such as stories and epics.
Relevance to AMME: As [12] emphasizes, requirements elicitation does not produce
requirements per se, but requirements representations, whose descriptions may in-
volve domain-specific concepts and properties relative to the business context.
AMME is called to provide agile modelling means for collecting enterprise system
requirements that include domain-specific aspects, thus bridging the gap between
stakeholders and system developers [7].

D. Complexity management challenges. Although modelling typically means ab-
straction and simplification, in enterprise modelling even the model is too complex to
be comprehensive in a single diagrammatic representation. Enterprise models are
partitioned in different facets/layers across different abstraction layers or viewpoints
(see Archimate [13], Zachman [14]). Since diagrammatic enterprise models are sub-
jected to human interpretation, an inherent decomposition requirement must ensure
model understandability and should be satisfied both on the meta level (e.g., by parti-
tioning a metamodel in multiple model types) and on the model level (e.g., decompos-
ing a business process model in subprocesses).
Relevance to AMME: AMME is called to identify building blocks of manageable
granularity for both modellers (to help with model comprehension) and metamodel-
lers (to help defining backlog units). Such building blocks will make it possible to
isolate evolving modelling requirements so that an agile response to changes does not
affect the entire method and change propagations become traceable.

E. Domain-specific modelling requirements. Enterprise models can be specialized
and contextual, and it is plausible to have an enterprise modelling method adopted in
a narrow community, or even for a single case/project, where the enterprise is inter-
ested in employing models for internal purposes (e.g., as input for a custom model-
aware run-time system), with no desire for sharing and reusing them in the external
environment.
Relevance to AMME: In domain-specific modelling, the level of concept specializa-
tion is not necessarily fixed, as new properties and subtyping may be gradually re-
quired to achieve new capabilities and the proverbial "competitive advantage" of agile

development. AMME is called to ensure that such evolving specialization is assimi-
lated in the method in a timely manner.

3 The AMME Framework

3.1 Framework Overview

Without going point by point through the Agile Manifesto [2], we highlight the key
characteristics of Agile development as compiled by [15]:

• Iterative: repeat activities and potentially revisit same work products;
• Incremental: each successive version is usable and builds upon previous versions;
• Version control: enable for other agile practices;
• Team control: small group of people assigned to the same project building block

with shared accountability.

In order to achieve agility in Modelling Method Engineering, such principles must be
grafted on the fundamentals of modelling method design, considering the building
blocks defined in [16], described as follows:

(1) The modelling language describes the set of modelling constructs (their nota-
tion, grammar and semantics. To achieve manageable granularity and model compre-
hensibility, the modelling language can be partitioned in model types addressing dif-
ferent facets or abstraction layers of the system under study. The partitioning can be
perceived as a usability feature (a top-down decomposition approach to avoid visual
cluttering) or a consequence of hybridization (a bottom-up strategy employed to inter-
connect modelling language fragments).

(2) The modelling procedure defines the steps that must be taken by modellers to-
wards some goal (in the simplest case, it advises on the precedence in creating differ-
ent types of models).

(3) The mechanisms and algorithms cover functionality that process model infor-
mation for various purposes (visualization, transformation, evaluation etc.).

Agility relies on iterative incremental cycles integrated in a high level framework
such as the one depicted in Fig. 1.

In the centre, the modelling method evolves in a Produce-Use metamodelling cycle
(by analogy with the Code-Test cycle): (i) in the top phase, the modelling language is
derived from so called "Models of Concepts" that capture the domain knowledge and
structure it in modelling constructs (the language alphabet); (ii) in the lower phase,
each iteration of the modelling method is implemented in a modelling tool that allows
the creation and evaluation of enterprise models ("Models that Use Concepts") by
instantiating the concepts designed in the previous phase/ For this cycle, the Applica-
tion Environment raises modelling requirements and provides domain knowledge,
while in the backend a Knowledge and Resource Repository accumulates reusable
resources and lessons learned. In our case the Knowledge and Resource Repository is
accumulated through the Open Model Initiative Laboratory, a physical and virtual

research environment that also hosts an implementation of the ComVantage model-
ling prototype [4] (which still evolves in follow-up projects).

Fig. 1. The AMME Framework (adapted from [17])

3.2 Conceptual Enablers

During the Produce phase of the cycle depicted in Fig. 1, a knowledge acquisition
effort will produce a "Model of Concepts" to describe the enterprise ontologically. A
practical requirement for decomposition naturally emerges in order to ensure model
comprehensibility and a usable separation of concerns. The solutions that fulfil the
decomposition requirement are also the basis of establishing a manageable backlog
granularity during AMME, beyond the building blocks suggested in Section 3.1. A
generic classification scheme for different kinds of units (content containers) is pro-
vided in Fig. 2.

On the top layer: Asemantic containers provide a grouping of modelling con-
structs without assigning explicit machine-readable semantics to this grouping, unlike
the semantic containers which have to their content a richer relation than the generic
mereological one ("part-of"/"contains"). Depending on how containers are perceived,
we may have visual containers (visual partitions sectioning the modelling canvas
according to some criteria, e.g. business process swimlanes) or functional containers
(an entire model). With respect to how the contents of a container are related to the
exterior of that container, we may have related content (through machine-readable
relations) or isolated content.

On the lower layer, the container types are further subsumed to more specialized
building blocks: for example swimlanes/pools in business process models are typical-
ly unspecified visual containers (their meaning can be left to human interpretation).
However, depending on the freedom of interpretation to be allowed, the relation of a
swimlane to its contents may also be prescribed at metamodel level, by imposing
semantics on this containment (e.g., a machine-readable link to an organisational
unit). A more complex type of container is the model type, used when the enterprise

modelling language has the alphabet split into problem-specific subsets. These are
semantic containers in the sense that they have a clear meta-level specification of
what concepts are allowed in each type of model, as well as constrained relations
(links) to other models. If such a specification does not exist, we are talking about
unprescribed canvas (e.g. Powerpoint-style free sketches). Each concept in a model
type becomes a semantic unit, and its properties must be traced to detect propagation
of changing requirements, as will be shown in Section 4. Further (implementation-
specific) specialization is suggested in Fig. 2, however it will not be detailed here
since it depends on the intended depth of domain-specificity on a case by case basis.

Fig. 2. A taxonomy of modelling units to tackle the decomposition requirement

3.3 Technological Enablers

Rapid prototyping is a key necessity for producing iterative prototypes that meet
gradually refined requirements, even "throwaway prototypes" aimed to (i) familiarize
inexperienced modellers with what they can expect from the final implementation and
to (ii) stimulate their ability to formulate modelling requirements. The practice of
metamodelling has answered such necessities and nowadays we see an increasing
popularity of platforms that provide built-in functionality for productive development
of modelling tools according to some existing conceptualisation (e.g., ADOxx [18],
MetaEdit+ [19]). Each available metamodelling platforms relies on a meta2model
providing primitive built-in constructs (e.g., concept, connector) to create "Models of
Concepts". As a complement to the available metamodelling platforms, specifically
aimed to support rapid cross-platform prototyping, we have proposed in [20] an addi-
tional abstraction layer where a modelling method can be described in a declarative
language (MM-DSL, Fig. 3) built on a common subset of primitives of the popular

meta2models. A draft of the language grammar is openly available at [21]. Rapid pro-
totyping is enabled by compilers that translate MM-DSL code to a platform-specific
format for the metamodelling platform of choice in order to produce modelling proto-
types in a highly automated way (a proof-of-concept compiler is currently available
only for ADOxx deployment, with additional compilers expected to emerge from the
OMILab community).

Fig. 3. The blocks of modelling method definition with MM-DSL (details on code snippets and

grammar available in [20-21])

4 AMME: The ComVantage Case

Enterprise modelling methods typically show a recurring frame of fac-
ets/layers/viewpoints and this was also adopted in the ComVantage modelling meth-
od, as its metamodel is split in various enterprise facets – the business model, busi-
ness processes, app and data requirements (due to the project's technological specifici-
ty), models of domain-specific resources. Semantic relations are present in the form
of hyperlinks that allow navigability across models and at the same time characterize
the semantics of how the different facets (typically covered by different model types)
are related one to another. We will not discuss here the entire metamodel layering
(details available in public deliverables [3, D312]), only some fragments that illustrate
the modelling requirements evolution and its propagation in the method building
blocks.

Since decomposition is a key enabler for agility, the modelling method building
blocks must be mapped on backlog tasks and sprint responsibilities. Metamodellers

Defining method name Defining enumeration type

Defining style Defining class notation

Defining relation notation

Defining class

Assigning notation

Defining model type

Assigning enumeration

Defining relation

Error messages

MML
files

Defined
concepts

are typically confronted with requirements that propagate across these building
blocks, with typical situations being reflected in Fig. 4 according to the following
numbering (concrete project-based examples follow in the subsequent subsection):

 Fig. 4. Propagation of modelling requirements across method building blocks

1. Requirements for (semantics-aware) run-time systems will propagate in require-
ments for semantics available in models;

2. Requirements on mechanisms and algorithms typically propagate in requirements
for new properties or concepts in the language (to provide additional input to func-
tionality);

3. Requirements on notation change quite often, as most users perceive modelling
primarily on a visual level. Change requests on notation level typically propagate
in the other building blocks, e.g.: (i) dynamic or interactive notations will depend
on the presence of some property in the concept semantics; (ii) excessive visual
cluttering will be solved by splitting a model type in multiple model types, also
raising new integration needs (hyperlinks between models);

4. Requirements on a model type typically propagate in other related model types, as
concepts are transferred among model types to reduce the linking effort, or new
concepts are introduced;

5. The modelling procedure typically takes the form of modelling guidelines, there-
fore usually there are no direct requirements on the modelling procedure. However,
users may impose requirements in the form of constraints, which are quite volatile

in nature (e.g., "I don't want to have more than 5 model types"). More importantly,
such constraints refer to usability and the automation of some procedure steps (e.g.,
"I don't want to create models of type X. Instead, they should be generated auto-
matically") and this typically propagates towards additional functionality;

6. Any changes in the modelling language and functionality propagate in the model-
ling procedure guidelines.

A core concept of the method is the App requirement concept aiming to capture, at
business process level, what kinds of mobile apps are required to support specific
business activities. As an app-centred run-time architecture was being developed in
the project, the modelling requirements on how the "required apps" should be de-
scribed evolved. Table 2 illustrates this evolution along 5 phases, while the subse-
quent figures reflect how the concept evolved on a diagrammatic level.

Table 2. Evolving "required App" concept in relation to modelling requirements

 Modelling Requirement Solution Propagations to backlog
items

Phase1 The business process activities
should indicate when an activity
must be supported by a mobile
app.

The concept of business process
Activity gets some editable proper-
ties where the modeller (e.g, app
requirements elicitator) captures
descriptions of the app capabilities
required to support that activity.

The concept of Activity in the
business process model type is
extended with new properties. The
modelling procedure guidelines
must indicate how the app require-
ments are expressed (see a mockup
in Fig. 5)

Phase2 The mobile app requirement
should be symbolised by its own
concept with domain-specific
properties to describe the re-
quired app.

All semantics pertaining to the app
requirements are isolated in a new
app concept. Apps are visually
connected to activities to indicate
where a mobile app is required.
Each app symbol is further de-
scribed by its own property sheet
capturing various non-functional
requirements (e.g., device type,
operating system).

The concept of Activity loses some
properties. The App concept is
added to the language alphabet (i.e.,
to the business process model type),
with new editable properties. The
modelling procedure guidelines
must reflect the new way of con-
necting app requirements to activi-
ties.

Phase3 To avoid visual cluttering, the
mobile app symbols should be
linked outside the business
process modelling canvas and
collected in a pool of reusable
app requirements.

A new model type is created to
collect the app symbols in a single
catalogue of "required apps". The
notation in the business process
activity provides a hyperlink to
easily navigate to the app descrip-
tion linked to each activity. This is
visible in Fig. 6 as an app icon in
the top left corner of the app-
supported activities.

The business process model type is
split, so that a new model type will
include only the app symbols. The
connector between activities and
apps is replaced by a hyperlink
between the two model types (on
the Activity notation). The model-
ling procedure guidelines must be
updated with the new way of
linking app requirements, as well as
with the prerequisite of having an
app element available before a
hyperlink is created for it.

Phase4 Each required mobile app
should be further described by
its features in the form of
abstract user interaction ele-
ments of different types (e.g.,
buttons, labels etc.). This re-
quirement aims to provide a
basis for early mockup designs
for the required app, thus mak-
ing the elicitation of app re-
quirements "bleed into" the app
design phase.

A new model type is added to
describe an abstract user interface
(similar to the "abstract UI" con-
cept in the Cameleon framework
[22]). This expresses the key app
features that must be available for
user interaction in each required
app.

The metamodel is extended with a
new model type, describing an app
user interface in terms of some
abstract types of UI controls (a
taxonomy of such controls must be
devised). A hyperlink is enabled
between app symbols and such UI
models. The modelling procedure
guidelines must include explana-
tions on the proposed taxonomy of
UI controls and how the new type of
model should be linked.

Phase5 An external app orchestration
system will automatically
deploy and execute mobile apps
that are chained according to the
workflow dictated by the busi-
ness process model. The orches-
tration engine should be model-
aware in the sense that the
precedence of app chaining must
be dictated by the precedence of
the apps modelled for the
business process (details in
[23]).

(a) A new model type depicts the
app precedence;
(b) Functionality for automated
derivation of the app precedence
from existing business process
models;
(c) Functionality for exporting the
resulted diagrams in a serialization
format that can be queried by the
app orchestration engine responsi-
ble with app deployment (RDF [24]
was the format of choice).

The metamodel is extended with a
new model type (the "orchestra-
tion", describing the precedence of
app usage for a business process. A
mechanism is needed to derive such
models from business process
models, in order to ensure their
consistency. Another mechanism is
created to serialize the contents of
models in some query-able format,
to facilitate the extraction of seman-
tics from the model information).
Modelling procedure guidelines
must be updated to (a) instruct the
user in using these mechanisms; (b)
instruct the run-time system devel-
oper on the RDF vocabulary that
must be used to build model que-
ries.

Fig. 5 shows how the app requirement description evolved between Phases 1 and 2,
from an editable property of a process activity to a modelling symbol with its own
domain-specific editable properties (the blue boxes are mock-ups of the property
sheets).

Fig. 5. Descriptive property evolves into modelling concept (Phase 1-2 requirements)

Fig. 6 shows the additional model types that emerged from Phases 3 and 4 (the pool
of required apps isolated from the business process model, and the abstract UI model
for each app), as well as the types of links that can be created between models (see the

legend). Fig. 7 shows the orchestration model type emerging in Phase 5 as a necessity
for exposing the app usage precedence to the run-time system (run-time orchestrated
apps [23]). The sample model in Fig. 7 is generated automatically via a graph rewrit-
ing rule set applied on the business process model example in Fig. 6 (details on the
transformation are out of this paper's scope, being available in [7]).

Fig. 6. Modelling concept evolves into linked model type (Phase 3-4 requirements)

Fig. 7. Linked model types enriched with functionality (Phase 5 requirements)

5 Related Works

To the best of our knowledge, the framework of Agile Modelling Method Engineering
was initially outlined on a generic level in some of our previous work - the published
keynote [17] and the works of the NEMO (Next Generation Enterprise Modelling)
Summer School [25], with some characteristics being suggested (in the context of fast
prototyping) in [20]. This paper is distinguished from the mentioned works by (a)
reporting on experiences from an application case of the generic AMME framework,
with respect to challenges identified in the ComVantage research project (the case
discussed in Section 4); (b) refining the characteristics of a "Next Generation Enter-
prise" by anchoring them in characteristics of enterprises involved in the discussed
project (Section 2); and (c) providing details on the conceptual and technological
enablers (Sections 3.2 and 3.3).

However, the AMME framework builds on agility challenges identified in other re-
lated works, since it emerged from a multi-disciplinary convergence of concerns pre-
viously discussed in the fields of Metamodelling and Enterprise Modelling:

Agility challenges, as well as model complexity challenges, have been discussed in
the field of Metamodelling with respect to improving productivity for multi-
perspective modelling [26], domain-specific multi-level modelling [27], as well as in
a metamodelling interpretation on Language-oriented Programming [28]. Metamodel-
ling itself, as a discipline, emerged from the need to enable flexibility in modelling
language design through a multi-layered abstraction architecture (e.g., the
"powertype" approach [29], the MetaEdit+ approach [30]). This, however, has not
been complemented yet by a fully-fledged methodological agile approach that mirrors
the agility principles and challenges from software development. Project-based expe-
riences are necessary to bring forth the kind of reflections that fuelled the agile
movement in software engineering, since the Agile Manifesto mainly evolved from
pragmatic needs of practitioners who questioned the obstacles and pitfalls of rigid
management approaches (e.g., the waterfall approach).

The discipline of Enterprise Modelling recognizes a need for semantic as well as
notational diversity, since a multitude of enterprise architectures and frameworks have
been established and are widely adopted (e.g., EKD [31], ArchiMate [13], Zachman
[14], more recently capability-driven approaches [32]). However, the paradigm of
Enterprise Modelling traditionally obscures the notion of evolving modelling re-
quirements which is central to AMME, as it requires dedicated management strate-
gies. This is perhaps due to ambitions for standardization, which is in line with the
original goal of ASME process charts on enabling "the best way to do work". The
work at hand aims to stimulate the assimilation of "unstable" domain-specificity (or
even case-specificity) that must extend high-level enterprise architecture models in
response to changing requirements.

6 Concluding SWOT Analysis

Just like the Agile Manifesto for software development, the notion of AMME is con-
solidated not only from theoretical analysis, but also from reflecting back on obstacles
and experiences with metamodelling projects. Experiences with the ComVantage
research project show a practical AMME instantiation and have been synthesized in
the work at hand. Consequently, AMME is hereby analysed qualitatively as a founda-
tional notion with an early-stage maturity level on which future work is called to fur-
ther establish enablers. By paralleling the principles of Agile software development,
methodological or technological enablers are expected to emerge from community-
driven efforts and shared experiences: management support tools, rapid prototyping
enablers, validation methodologies, reports on agile best practices or agility pitfalls.
Since we are not dealing yet with a wide adoption of AMME, it is too early to assess
comparative experience reports. A SWOT analysis is hereby provided to evaluate the
success of AMME for the instance experience:

Strengths: AMME was a necessity for enabling the evolution of Enterprise Model-
ling requirements and for dealing with their multi-faceted nature, as multiple types of
stakeholders have been involved, from design-time decision makers (aiming for mod-
el analysis) to run-time system users (relying on machine-readable model semantics).
Conceptual and technological enablers supported the agile approach and brought for-
ward the need for a mature agile approach to metamodeling.

Weaknesses: The experience with applying AMME is still limited to OMILab pro-
jects. Its application to ComVantage emerged as a necessity driven by unstable re-
quirements. The main identified pitfalls are (a) that synchronicity with the develop-
ment of the run-time systems relying on model information is difficult to maintain if
not planned from the very beginning; and (b) an evaluation methodology for user
acceptance involves a training phase that can create bottlenecks, as stakeholders are
called to frequently re-learn the modelling language. In addition, aspects pertaining to
the management of human resources in agile teams have not been tackled in this pa-
per. Future works must consider strategies to tackle such challenges.

Opportunities: The evolution of the Agile software development practices and
tool support was fundamentally community-driven. Future work may be layered on
the conceptual foundation established by the work at hand in order to enrich AMME
as a community-driven framework, to raise its maturity level, to enrich tool support
and to enable longitudinal studies for further refinement.

Threats: Standards typically defuse the problems raised in the work at hand by
bringing all potential users on the same level of abstraction and encouraging universal
adoption for the benefit of reusability across domains. Therefore, the generalized
relevance of the work at hand depends on the desired trade-off between reusability
and domain specialization, as well as on the uptake of semantics-aware information
systems whose evolving requirements are an inherent cause for propagating model-
ling requirements.

Acknowledgment

The research leading to these results was funded by the European Community's
Seventh Framework Programme under grant agreement no. FP7-284928
ComVantage.

7 References

1. Gilbreth, F. B., Gilbreth, L. M.: Process Charts. American Society of Mechanical Engi-
neers (1921)

2. Manifesto for Agile Software Development, http://agilemanifesto.org/
3. ComVantage Consortium, ComVantage public deliverables,

http://www.comvantage.eu/results-publications/public-deriverables/
4. Open Model Initiative Laboratory, ComVantage modelling prototype and resources,

http://www.omilab.org/web/comvantage/home
5. Future Internet Enterprise Systems cluster, The FInES Research Roadmap 2025,

http://cordis.europa.eu/fp7/ict/enet/documents/fines-research-roadmap-v30_en.pdf.
6. Buchmann, R.: Conceptual modeling for mobile maintenance: the ComVantage case. In:

Sprague Jr., R. H. (ed.): Proceedings of HICSS 47, pp. 3390-3399, IEEE (2014)
7. Buchmann, R., Karagiannis, D.: Modelling Mobile App Requirements for Semantic Trace-

ability, J. Requirements Eng, DOI 10.1007/s00766-015-0235-1, in press (2015).
8. Aquino, N., Vanderdonckt, J., Panach, J. I., Pastor, O.: Conceptual modelling of interac-

tion. In: Embley, D., Thalheim, B. (eds.): Handbook of conceptual modeling: theory, prac-
tice and research challenges. pp.335-355, Springer (2011)

9. van der Aalst, W.M.P.: Process-aware informations systems: lessons to be learned from
process mining. In: Jensen, K., van der Aalst, W.M.P.(eds.): Transactions on Petri Nets
and Other Models of Concurrency II, LNCS 5460, pp.1-26, Springer (2009)

10. OASIS, BPEL - the official website, https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel.

11. Wood, D. (ed.): Linking Enterprise Data, Springer (2010)
12. Kaindl, H., Svetinovic, D.: On confusion between requirements and their representations.

Requirements Eng 15: 307-311 (2010)
13. The Open Group, ArchiMate® 2.1 Specification, http://www.opengroup.org/archimate/
14. Zachman, J.A.: A framework for information systems architecture. IBM systems journal

26 (3): 276-292 (1987)
15. Agile Alliance, http://guide.agilealliance.org/subway.html
16. Karagiannis, D., Kühn, H.: Metamodeling Platforms, In: Bauknecht, K., Min Tjoa, A.,

Quirchmayr, G. (eds.), Proceedings of EC-Web 2002 – Dexa 2002, LNCS 2455, p. 182,
Springer (2002)

17. Karagiannis, D.: Agile Modelling Method Engineering. In:Proceedings of the 19th Panhel-
lenic Conference on Informatics, ACM (2015)

18. BOC-Group, ADOxx tool page, http://www.adoxx.org/live/
19. MetaCase, MetaEdit+ tool page, http://www.metacase.com/products.html
20. Visic, N., Fill, H.-G., Buchmann, R., Karagiannis, D.: A domain-specific language for

modelling method definition: from requirements to grammar. In: Rolland, C., Anagnos-
topoulos, D., Loucopoulos, P., Gonzalez-Perez, C. (eds.), Proceedings of RCIS 2015, pp.
286-297, IEEE (2015)

21. The MM-DSL grammar specification,
http://www.omilab.org/c/document_library/get_file?uuid=eb040aac-ea0d-4df7-a0a9-
80b73f00c5f8&groupId=10122

22. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J., A
unifying reference framework for multi-target user interfaces. Interacting with Computer
15(3): 289–308 (2003)

23. Ziegler, J., Graube M., Pfeffer J. and Urbas L.: Beyond app-chaining - mobile app orches-
tration for efficient model driven software generation, In: Proceedings of EFTA 2012, pp.
1-8, IEEE (2012)

24. W3C, RDF 1.1 Concepts and Abstract Syntax, http://www.w3.org/TR/rdf11-concepts/
25. Open Model Initiative Laboratory, NEMO 2015 Summer School materials,

http://www.omilab.org/web/guest/camp2015/topics-and-program
26. Frank, U.: Multi-Perspective Enterprise Modeling: Conceptual Framework and Modeling

Languages. In: Sprague, R.H. Jr. (ed.): Proceedings of HICSS 2002, pp. 72-82, IEEE
(2002)

27. Frank, U.: Multilevel Modeling: Toward a New Paradigm of Conceptual Modeling and In-
formation Systems Design. Business & Information Systems Engineering 6(6): 319-337
(2014)

28. Clark, T., Sammut, P., Willans, J.: Applied metamodelling: a foundation for language
driven development, http://eprints.mdx.ac.uk/6060/.

29. Gonzalez-Perez, C., Henderson-Sellers, B., Metamodelling for software engineering,
Wiley (2008)

30. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ a Fully Configurable Multi-user and Multi-
tool CASE and CAME Environment, In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B.,
Rolland, C., Solvberg, A (eds.), Seminal Contributions to Information Systems Engineer-
ing, pp. 109-129, Springer (2013)

31. Loucopoulos, P., Kavakli, V.: Enterprise Knowledge Management and Conceptual Model-
ling. In: Goos, G., Hartmanis, J., van Leeuwen, J., Chen, P., Akoka, J., Kangassalu, H.,
Thalheim, B. (eds.): Conceptual Modeling: Current Issues and Future Directions, LNCS
1565, 1999, pp 123-143, Springer (1999)

32. Zdravkovic, J., Stirna, J., Kuhr, J. C., Koc., H.: Requirements Engineering for Capability
Driven Development. In: Proceedings of POEM 2014, LNBIP 197, pp. 193-207, Springer
(2014)

	1 Introduction
	2 Motivational Characteristics of a "ComVantage Enterprise"
	3 The AMME Framework
	3.1 Framework Overview
	3.2 Conceptual Enablers
	3.3 Technological Enablers

	4 AMME: The ComVantage Case
	5 Related Works
	6 Concluding SWOT Analysis
	Acknowledgment
	7 References

