
HAL Id: hal-01442250
https://inria.hal.science/hal-01442250

Submitted on 20 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modelling Users Feedback in Crowd-Based
Requirements Engineering: An Empirical Study

Nada Sherief, Walid Abdelmoez, Keith Phalp, Raian Ali

To cite this version:
Nada Sherief, Walid Abdelmoez, Keith Phalp, Raian Ali. Modelling Users Feedback in Crowd-Based
Requirements Engineering: An Empirical Study. 8th Practice of Enterprise Modelling (P0EM), Nov
2015, Valencia, Spain. pp.174-190, �10.1007/978-3-319-25897-3_12�. �hal-01442250�

https://inria.hal.science/hal-01442250
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Modelling Users Feedback in Crowd-Based
Requirements Engineering: An Empirical Study

Nada Sherief 1, Walid Abdelmoez2, Keith Phalp1, Raian Ali1

1Faculty of Science and Technology, Bournemouth University, UK
{nsherief, kphalp, rali}@bournemouth.ac.uk

2The Arab Academy for Science , Technology and Maritime Transport, Egypt

walid.abdelmoez@aast.edu

Abstract. Most enterprises operate within a complex and ever-changing
context. To ensure that requirements keep pace with changing context, users’
feedback is advocated to ensure that the requirements knowledge is refreshed
and reflects the degree to which the system meets its design objectives. The
traditional approach to users’ feedback, which is based on data mining and text
analysis, is often limited, partly due to the ad-hoc nature of users’ feedback and,
also, the methods used to acquire it. To maximize the expressiveness of users’
feedback and still be able to efficiently analyse it, we propose that feedback
acquisition should be designed with that goal in mind. This paper contributes to
that aim by presenting an empirical study that investigates users’ perspectives
on feedback constituents and how they could be structured. This will provide a
baseline for modelling and customizing feedback for enterprise systems in order
to maintain and evolve their requirements.

Keywords: Users’ Feedback; Feedback Analysis; User Involvement; Crowd-
Based Requirements Engineering; Enterprise Requirements Evaluation;

1 Introduction

Requirements management is still one of the most challenging fields in software
development [1], has the most impact on project success, and is a major issue for
decision makers in enterprises. Requirements are gathered from, yet must still
represent, a diverse group of users; they are intrinsically volatile in nature. These
issues are exacerbated by the problem that users still typically provide their feedback
on the fulfilment of their requirements in a natural language and in an ad-hoc manner,
which introduces a great deal of imprecision and ambiguity.

To cope with such a lack of precision, a range of semi-automated techniques have
been suggested to handle such user data (this includes techniques such as text mining
and/or human facilitator). These techniques may be used to gather, interpret,
aggregate, and revise what users say, partly to mitigate for such issues as bias and
subjectivity in their textual responses. More effective results can be reached if the
feedback is written in a structured format. Structured feedback text would, arguably,

allow approaches, such as text processing, to provide more accurate results within less
time and with fewer human interventions. If text is structured the requirements
extraction process can be more systematic, eliminating complexity and ambiguity
found in natural language, and requiring less effort.

Research has identified the need to involve users in requirements engineering, but
often focuses on a small number of selected users to give input and feedback in
requirements related activities and afterwards in user acceptance testing [2]. Recent
research has been focusing on the possibility of utilizing crowdsourcing in
requirements engineering [3], [4] to cater for the dynamic contexts and the diversity
of users. Moreover, in [5, 6] the collective users’ feedback was also encouraged for
shaping software adaptation as users are important to communicate certain
information that cannot be monitored and captured by automated means and also
cannot be fully specified by designers at design time, yet are necessary to plan and
support adaptation. Furthermore, authors in [7] stated that the crowd can enrich and
keep the precision of engineers’ knowledge about software evaluation via their
iterative feedback at runtime (i.e. while the software is in use). That is, users’
feedback can communicate their opinion on the role of the system in meeting their
requirements leading to better users’ acceptance of the software. Their acceptance of
the product is of a high importance for market success.

However, the literature is still limited in providing engineering approaches to
developing systematic feedback acquisition [8, 9]. Our research focuses on the
development of a modelling and elicitation framework of crowdsourced feedback at
runtime. This includes devising mechanisms to structure such feedback in a way that
makes it easy for users to express and engineers to interpret. This will allow the
system to prioritize different problems reported by users. Also, it will help in
evaluating the overall quality of the system and in taking evolution and maintenance
decisions.

In this paper we conduct a two phase empirical study. We follow a qualitative
method of two phases including two focus groups in the first phase and three forums’
analysis in the second. In the first, we build on the top of our initial findings on the
topic in [7] and provide more detailed results on the different aspects of the feedback
design and conduct of runtime feedback acquisition. In the second phase study, we
undergo a detailed analysis of users’ feedback on enterprise software applications by
analysing actual users’ feedback through examination of their posts and responses on
three online forums. We finally discuss how the results inform the process of
designing feedback acquisition and increase its efficiency.

2 Research Method

We followed a qualitative approach to explore and understand how users provide
feedback and their preferences on the acquisition process. The study had two phases.
In the first phase study we took an empirical approach by conducting a two sessions
focus group study, which is a popular technique of qualitative research in software
engineering [10]. The sessions lasted 2 hours and 52 minutes. Both sessions were
audio recorded and transcribed with consent from participants. Our goal was to collect

insights and experience from users who have actually given feedback before. Also,
both junior and senior software engineers were invited to understand how more high-
tech users give feedback and how they think a good feedback should be structured in
order to be easily understandable and analysed. The main areas we wanted to explore
were:

RQ1) How users would like feedback to look like, and the criteria that judge
whether the feedback is meaningful and useful?

RQ2) How users would like to be involved in the process of providing feedback,
and what encourages them to act as evaluators?

The focus groups were analysed using the thematic mapping approach [11]. The
results of the focus groups analysis shown in Fig. 1 gave us a good level of
understanding of users’ feedback aspects. The resulted thematic areas can be viewed
from two different perspectives. In the first perspective, participants gave several
insights regarding the structure of the feedback and what are the characteristics they
think make their feedback meaningful and useful. These ideas are covered in the
environmental and structure thematic areas. In the second perspective, participants
gave their perceptions regarding what they expect from a feedback acquisition
method. How it can support, motivate and value their feedback. These ideas are
covered in the engagement and involvement thematic areas.

Our research goal necessitates building a more concrete description for feedback
structures. So in order to get the elaborated view, we conducted another study which
involved the analysis of three actual online forums where people give feedback on
business software. The main areas we wanted to explore in the second phase study
(i.e. the three forums analysis) were:

RQ1) What are the main concepts that constitute the feedback structure?
RQ2) What are the designs of the identified feedback concepts?
To start with, we have taken both the environment and structure thematic areas

shown in Fig. 1 of the focus groups results as our initial template. This template was
edited and enhanced in the forums analysis process to come up with more details on
how feedback could be structured in a meaningful and useful manner. We have
analysed 200 feedback from 20 different sources found on Microsoft’s TechNet,
WordPress, and SAP forums. We targeted business software to avoid the noise
typically found in general purpose software, as normally users tend to give a more
serious and focused feedback, because of the social norms in such kind of forums.
Also, business users are best fitted from the motivation perspective, because it has a
direct value on their work and performance. We have chosen these three forums in
order to target different types of business users with diverse technical capabilities.

We studied actual users’ feedback through observation and analysis of their posts
and responses on forums. The main advantage of this method is the direct
examination of the experience of user’s difficulties in the task of expressing their
problems and opinions in using the software, the task flow and challenges. Moreover,
forums provide a considerable amount of feedback that we have analysed using
thematic analysis [11] with the intention to come up with the main concepts that
constitute a feedback, and the outlines of the identified concepts.

Using software in the data analysis process has been believed to increase
consistency and/or accuracy of qualitative research. In our research, NVivo 10 was
used in the data collection and analysis. Moreover, we used multi-coder arrangement

[12] to reduce subjectivity and bias. Two researchers performed the coding of the
same collection of sources, and analysis of forums. During the analysis new concepts
and structures emerged and caused new themes, concepts, categories or codes to be
added to the thematic map. After each team discussion, the members refined, merged
and/or reorganized the nodes. When a disagreement emerged a third researcher was
consulted. This helps validate that a theme is not just emerging from a single coder
subjective thinking.

3 Focus Groups Results

Following the recommendation of six stages of analysis [11], four thematic areas were
formed, and 15 themes were identified from the analysis, which are shown in Fig. 1.
The four thematic areas are: environment, structure, engagement and involvement.

Environment refers to the settings that support users so they feel confident in
providing meaningful evaluation feedback. This includes Specificity, Clarity and
feedback Method. In detail, participants would like to use a method they prefer to aid
them in easily providing feedback. Furthermore, to improve the clarity of feedback,
participants pointed out that it is preferable to add reasons and explanations in
feedback to help make their viewpoints more comprehensive. Also, providing
structure to the feedback will decrease misinterpretations and ease the analysis of
texts afterwards. Specificity can be goal-oriented, which means by specifying the
quality attribute in the feedback that concerns the user, such as usability, or
reliability. Also, specificity can be influenced by the feedback type the user would
like to provide, as more users tend to give feedback when they need help or when a
problem occurs.

Structure refers to the attributes of a feedback which are favourable to be seen by
the participants. This includes Specificity, Level of Detail, Measurement, and Timing.
In detail, they thought that feedback would be more useful and accurate if it was
related to a certain feature. It would be useful to be able to correlate feedback
according to the inter-relationships between the features, because some features may
affect the functionality of others. Moreover, it is important to provide the possibility
of varying details in the feedback to ensure a minimum level of meaningful and
useful information, and also to put into consideration other contextual aspects that
might affect the users while giving their feedback. Furthermore, participants also
suggested using simple measurements in a way to aid users in giving their feedback
through and re-using the experiences of others. For example, users can rate how
much others’ feedback was meaningful or useful, and accordingly statistics can
appear to users to show other useful feedback. Also, users can give feedback about
their experience with new changes in the software to aid engineers in measuring user
satisfaction. Finally, it is also important to consider the timing of giving the
feedback. Users thought that giving a feedback immediately (i.e. at runtime) is
important especially in reporting errors or problems, as it helps giving more accurate
feedback with detailed explanations, and therefore would affect the structure of the
feedback.

Fig. 1. Focus Groups Final Thematic Map

Engagement refers to the key merits the acquisition process provides to the
involved users that encourage them to take part as evaluators. This includes some
key characteristics of engaged users with the process, and also the qualities that are
important to the process. This includes Recognition, Value, Channel, and
Transparency. In details, participants mentioned that they would like to be recognized
through their reputation. Reputation may be considered as a component of identity as
defined by others. Reputation is a vital factor in any community where trust is
important. Also, users would take recommendations, and/or solutions into
consideration if they are given from reliable users. The reliability of users increases
the weight of their feedback. Moreover, users like to be valued in a way in the
participation. Participants mentioned that their feedback is valued by knowing that it

taken into consideration for further analysis and leads to software enhancements.
Also, the possibility to learn from others’ experiences provides great value to users as
it increases their awareness by knowing other possible features variations they were
no aware about before. Furthermore, Channel reflects the way users want to interact
through feedback. They would like the feedback acquisition process to be simple and
interactive. Also, after giving their feedback they would appreciate if they can chat
with the analyst to discuss their feedback. Finally, it would increase users’ trust if
they know the process in which their feedback will be handled and considered.
Transparency generally implies openness, which can be achieved in different ways.
The user can be notified through a message that the feedback will be taken into
consideration. Transparency may be achieved by giving the user an example of other
users whom their feedback was taken into consideration and their issue was resolved.

Involvement refers to a variety of aspects that motivate users to participate in the
process of feedback acquisition and can directly influence the decisions and activities
in using/evaluating the software. This includes Privacy, Rewards, Support, and
Response. In detail, privacy issues were raised by participants. Participants
differentiated between two aspects in privacy, the privacy of their identity, and the
privacy of the content they provide (i.e. their feedback). Moreover, participants were
particularly interested in the rewards mechanism for involvement whether through
implicit or explicit incentives. Implicit incentives are not based on anything tangible.
Social incentives are the most common form of implicit incentives. These incentives
allow the user to feel good as an active member of the community for example
through increasing their reputation. Explicit incentives refer to tangible rewards, for
examples financial. Furthermore, the level of support from the feedback system was
considered important. Many suggestions were raised about how a feedback
acquisition tool can help them. For example, the interaction styles “there can be
videos to explain to the users what they can do (in order to provide feedback)”. The
ease of use of the feedback acquisition tool is important. They also suggested that the
feedback tool can provide hints to the users about its capabilities. Moreover, if there
is an automated detection in some steps of providing the feedback, this would further
ease their job. For example if the tool can automatically detect the feature the user is
having trouble with. Finally, the feedback tool response on feedback was also
considered important. Two characteristics of system response were discussed, which
are the speed of response from the system and the language of response.

4 Forums Analysis Results

In this section we explain the forums analysis results represented in the final thematic
map shown in Fig. 2. The first thematic area that was founded from the analysis to
the forums is our novel classification of feedback types that users provide. We have
reached 8 distinct feedback types that users use on forums. In this section we will
provide definitions for each type of feedback.

Before we start defining the meaning of each feedback type, we would like to
classify feedback into two types: a simple feedback, and a complex feedback. A
simple feedback is a feedback that consists of a single feedback type that a user

provides in his post to express a certain meaning, while the complex feedback is a
structured feedback that consists of several feedback types that together form a new
meaning that can be inferred from its unique structure.

Below if the list of feedback types and subtypes (i.e. cases):
1. Confirmation or Negation: is a simple feedback type that the users use to agree

or disagree on problems or opinions of other users. When these feedback types
are unaccompanied with other types in a feedback, it can be inferred as voting for
a problem or a given solution.

2. Investigation is a simple feedback type used when a user is asking a question to
clarify something about another feedback posted by another user. A user may ask
about some issues in a problem statement, or unclear steps in a provided solution,
or clarify some contextual information that helps explain the problem more.

3. Elaboration is a simple feedback type where the user gives extra explanation on
a feedback he already posted. There are two cases for giving extra explanations
on a feedback:
a. Feedback Elaboration: is when a user needs to give more detailed

information that he forgot to provide in his main feedback this can be added
separately in the feedback where he elaborates. For Example, A user can
elaborate on a problem he provided by giving explanation on some trials that
he made trying to solve his problem or rephrasing the problem statement.

b. Investigation Elaboration: is when a user simply replies on an Investigation
by giving detailed explanations to answer the posted question(s).

4. Justification is a simple feedback type used when users need to provide reasons
to support their feedback. They may give reasons why they provided a solution/
suggestion, or it can be used with confirmations or negations to state reasons why
a user agrees or disagrees on a feedback opinion of another user.

5. Verification is a complex feedback type where a user gives his opinion on a
solution or suggestion he received on the problem that he posted. As a complex
type it means that it combines several other feedback types in its structure that are
mandatory in its definition. Specifically in order to verify whether a solution or a
suggestion was useful or not, this feedback has to reference a certain Mitigation
(i.e. Solution or Suggestion) in which the user will be giving his opinion to verify
whether it solved the issue or not by using Confirmation or Negation.

6. Problem feedback type refers to a certain feature or group of features in the
software that the user is having problem with, and a detailed explanation of the
problem. Problems may use other feedback types such as Investigations to ask
users some questions they need answers for. However, problems in general
cannot occur in the same Feedback post with Mitigations or Verifications. In
general users who post problems are not the same users who post the Mitigations,
and even if this case occurred will not be contained in the same problem post.
a. Topic definition is a simple feedback type that represents the first posted

problem in a feedback thread where the user is seeking help. Therefore it
does not reference any other feedback in the thread but can be referenced in
many other posts.

b. Addition is a complex feedback type where a user votes (i.e. agrees or
disagrees) on any posted problem, and adds another problem in his feedback,
which is not related to the main problem on which the discussion is held.

This means that a feedback thread may contain multiple problems along with
the replies. From the definition of this feedback type as a complex type, this
implies that it must contain other feedback types in its definition, which in
this case are Confirmation or Negations that must reference another problem.
Therefore, it cannot reference a feedback post that contains Mitigation,
because by definition we use this feedback to add a problem to a problem.

Fig. 2. Forums Analysis Final Thematic Map

7. Mitigation is a complex feedback type that represents a solution or a suggestion
that may help a user resolve the problem(s) he has. Since this type is intended to
resolve a problem, therefore it has to reference that problem in the solution or
suggestion for specificity. Also, for every Mitigation it is always expected that
the user who posted the problem will Verify that Mitigation. There are two types
of Mitigations:

a. Solution is a well-known procedure or steps that when followed can resolve
the problem or issue.

b. Suggestion is a recommendation that a user provides for another user as a
trial to resolve his problem. This suggestion may or may not solve the
problem. This needs Verification from the problem owner (i.e. the user who
posted the problem).

8. Correction is used when a user corrects the understanding of another user. There
are two cases for this feedback type.
a. Problem correction is a complex feedback type. It occurs when the user

corrects the problem of another user. In a problem definition a user must
refer to a feature(s) that he is having a problem with. Sometimes the user is
using a feature which is not intended for the type of task he is doing, simply
due to a lack of understanding of the job a feature should perform.
Consequently, other users can provide corrections to this misunderstanding.

b. Mitigation Correction is a complex feedback type. This type of feedback
may occur when a user is trying to correct a Mitigation that was provided for
a certain problem. Errors in Mitigations may occur due to the lack of
contextual information about the tasks the user is doing or environmental
information about the softwares or hardware used while applying Mitigation.

The second thematic area that we have reached from our forums analysis is the
Level of Detail. Level of Detail represents how much information the user provides in
their feedback to express their opinions or problems. The information users provide
have two major categories: Detail Types and Context. A single feedback can contain a
mix of contextual information and several kinds of details. By Detail Types we mean
how deep and specific the user is in expressing their feedback. By Context we mean
the information the user may provide about the settings of his use to the software or
while providing his feedback, which may affect the problems, mitigations, other
users’ responses. Therefore, this thematic area is considered a complementary area to
the feedback types explained in the section above, as it adds more clarity to the
feedback descriptions. Below is our novel description of the Detail Types:
1. Concise. By literal meaning it is used when users provide very short feedback

types with no explanations or details. From the analysis we noticed that it is used
mostly, when users tend to confirm or negate by just expressing their agreement
or disagreement on a feedback. Moreover, it was never used in problem
statements or mitigations, since by nature these specific feedback types need
explanation to be meaningful.

2. Explanation is the opposite of concise, as in this detail type the user is expected
to provide as much details in his feedback to make it meaningful for other users.
There is no restriction on the use of this detail category with any feedback type,
because it is always acceptable to give more details.

3. Exemplification is utilized when the users need to provide examples within this
text. In the forums’ threads that we have analysed examples are always given
within explanations especially problem explanations.

4. Trials is used closely with problem description where the problem owner who is
explaining the problem, shows that he made many attempts to resolve the
problem but have failed to reach a Solution. The user posts these trials as a kind

of extra explanation of the problem and how it occurs, and also to avoid getting
suggestions from other users with same trials that he already made.

5. Scenario is used to explain text in a list. A solution can be explained in steps.
These steps if verified by the problem owner can be used as a solution scenario to
solve similar problems to other users. Moreover, other users may list the
problems they have in the problems statement. Other may suggest mitigation to
other users in a form of a list of possible actions to try; sometimes it matters to be
in a certain order.

6. Feature Definition is used to define a user’s perception of the usage of a certain
feature. This description is sometimes used in problem statements, which helps
other users understand why the user is having a problem (i.e. sometimes users
have wrong understanding of the usages of a feature). Moreover, users who
provide Mitigation may use it a form to document how they use a feature with
certain types of tasks. Finally, it is mostly used when users provide Feedback
Type: Correction, specifically Problem Correction, where the user corrects the
misunderstanding of another user by providing the correct feature definitions to
features referenced in the problem statement.

7. Question is a simple detail category that is used with Investigations to indicate
the question(s) posted for clarification.
Contextual information can carry valuable information that can help make the

feedback more understandable or useful. There are five main categories of contextual
information that were captured in the forums analysis that map to [13].
1. Task: It captures what the user is doing. This is specifically important when the

user is describing a Problem feedback type, because it gives to the other users an
idea about the context in which the problem occurred, or describing the frequent
jobs that the user is involved in in his daily work which helps give an idea to
other users about the importance the feature the user is having problem with.

2. Spatio-Temporal: In this kind of context the user specifies information related
to place and time. From our forums analysis we have found an angle where such
information may play useful role. Cases are when users try to explain the timing
relationship between two tasks (i.e. two tasks happening together, or one feature
corrupts when a user does a certain action). Another Case is when users try to
specify some information about a problem in relation to where it occurs in
software for example in a certain interface, or when using a certain module.

3. Personal: In this kind of context users express their emotional judgments, stress,
or information about their expertise, which is repeated mainly with Negation
feedback.

4. Social: we mean context information related to a user’s role at work, and
information about co-workers.

5. Environmental: is related to a software or hardware specs, versions, and
architectures. Users can provide these kinds of information in a problem
statement to specify the software version they are using which may differ in the
feature with problem from older or newer ones. Therefore, this adds specificity
and usefulness to add such information. Moreover, users can add also
environmental context in Mitigations to specify that the suggestion or solution
works on a certain version, or works well with a certain hardware configuration.

The third thematic area concluded from the forums analysis, it was noted that
users use four different methods to provide feedback, which are: text, code snippets,
snapshots and links. It was notable that some methods were associated with a certain
feedback types. a) The text method is the most commonly used method in all
feedback, and even it is used with other methods such as links or snapshots. However,
it is important to note that most users use text written in natural language, which leads
to lots of misinterpretations. This motivates our goal in creating a new feedback
modelling language that utilizes the same methods the users are used to provide their
feedback with, but in a patterned way and with the aid of textual keywords.
Therefore, this thematic area is considered a complementary area to the feedback
types explained above. b) Code snippets are used to show fragments of code that have
problems, or fragments of code to illustrate mitigation, and same for Snapshots. c)
Finally, a further method used by users to express details in forums, is Links. Links
are very useful in providing Mitigations whether solutions or suggestions. Users use
them to provide all the information they need by referencing the page that contains
manuals or illustration the may help the problem owner. They can also, provide extra
notes or explanations in their feedback besides the Link.

Finally, we have concluded from our forums analysis this fourth thematic area
which is measurement. By measurement we mean measuring problem occurrence
frequency or voting for mitigations’ usefulness. This can simply be done through
confirmations and negations that reference Problems or Mitigation feedback Types.
By gathering such relationships between different users’ feedback, it will allow the
system to a) prioritize the problems according to its rate of occurrence; b) Also, when
the system arrives to a good Mitigation action, the feedback causing this Mitigation
could be reused in similar cases.

5 Threats to Validity

Although we have carefully followed the principles in conducting mixed methods
approach, our study would still have five main threats to validity: a) In the focus
groups study users were students, researchers, and engineers recruited from Egypt and
UK, which might produce a population bias; b) a common threat to validity in focus
groups study is whether all the participants perceived the questions as intended. We
have addressed this issue by providing scripts which went through iterative revisions
and modifications by two research members and we have undergone a mock-focus
group of 2 participants for questions refinements; c) while the analysis of forums was
effective in identifying and describing concepts that construct users’ feedback, it is
possible that it did not identify all the important aspects and factors that can affect and
influence their behaviour in this regard; d) The number of analysed feedback from the
three different forums (200 feedback) could be found medium considering that
numerous number of threads available online, we stopped analysis when we reached
the stage of saturation; e) We have targeted forums where business users provide
feedback, future research would further investigate general purpose forums (e.g.
products, social media) to discover aspects of feedback in a loosely controlled and
more open feedback acquisition environments than the one we studied.

6 Architecture for Structured Feedback Acquisition

In this section we explain how we utilize our findings to propose architecture for
structured feedback acquisition as presented in Fig. 3. A set of rules that define
feedback elements can be derived from the observations that we have reached from
the classifications defined in section 4. We propose architecture for structured
feedback acquisition that consists of three main components. First, to formalize the
definition of rules we propose developing an ontology that constructs the building
blocks of user feedback structure elements, their operation rules, and a set of reserved
keywords for each concept.

Second, to improve clarity and enable consistent automated semantic analysis of
the feedback, a feedback controlled natural language can be employed as an
acquisition method for users to provide their feedback. It will restrict the user by
general rules such as keeping sentences short and only use the reserved keywords to
define textual blocks. This will be achieved by employing an already existing
controlled natural language that will act as our text writing foundation that users will
use to write their feedback more precisely.

Third, a workflow integration layer orchestrates the workflow between both
controlled natural language engine and the ontology reasoner. This layer takes user
feedback written in Controlled English, and sends it to the controlled natural language
engine that will interpret the text and validate it against the language construction
rules. Validated feedback sentences will return to this layer that will extract the
feedback elements (that were presented in our findings) using the set of reserved
words in the ontology. These elements will be validated against the ontology rules.
Finally, this layer will be responsible for storing the validated feedback elements in a
knowledge base. This knowledge base will allow engineers to have concrete and
formal instances of the feedback extracted by more systematic means, which is more
efficient and less error-prone. This can help in evaluating the overall quality of the
system, which will help in taking evolution and maintenance decisions.

In our research we suggest employing goal models to represent the stakeholders’
goals. We relate it to the feature model to represent both the functional and non-
functional requirements of the system. By relating the structured feedback to the
feature model, engineers can propagate through the interconnections between them to
determine different levels of evaluation information. For example, by looking on the
feedback and feature model they can identify most problematic features in the
software according to some simple metrics like the no of negative feedback
referencing that feature. Or they can look at it from a higher level to see which goals
are violated keeping enterprise stakeholders unsatisfied. Stakeholders can be
identified and their input can then be used to shape the maintenance and evolution
decisions; this ensures their support and improves the quality of the models produced
for enterprises. This results in participants having an improved understanding of the
problem solving process, and even of their own enterprise.

Fig. 3. An Architecture for Structured Feedback Modelling

We will take an example of an actual user feedback on a Problem Extension
explained in section 4. The feedback example is from Microsoft’s TechNet forum
https://goo.gl/CMBDJe: “[Confirmation on existing Problem] Our office has been
struggling with a related problem that maybe you can solve. [Explanation of the new
Extended (related) Problem] Basically, the same person is repeatedly given a different
reviewer name as they work in a document (presumably every time the document is
auto saved). For example, if I work for an hour adding edits or comments on a
document by the time I'm ready to share it will look like five different people made
changes. [Confirmation on Mitigation that solved part of the problem] The Inspect
Document fix works great to remove all the extra reviewer names, but it changes them
all to 'Author'. Do you know how to then either a) change 'Author' to the reviewer's
actual name or b) stop Office from assigning multiple names to the same
reviewer? Also, we've tried checking 'Always use these values regardless of sign in'
under General to no avail. Thanks - your fix is the closest we've come to a solution
and it's greatly appreciated.”

In this example we show how user should write the feedback in a structured format
that conforms to the feedback elements and reserved keywords defined by the
ontology, the controlled natural language syntax, and the notation that we suggest that
will be defined in the intermediate layer.

In this example, the feedback type is problem extension. In order to able to
correctly classify this feedback as a problem extension, the user should follow some
unique rules that uniquely identifies that type, such as: this feedback should confirm
on a previously stated problem in the thread; it should also confirm on a previously
stated mitigation in the feedback thread; but also adds a new problem in the feedback
content; it should also explain trial that the user has undergone to solve the issue; and
provide some environmental context which serves in favour of understanding how the
mitigation was applied.

To show the benefits of using a structured format for systematically analysing
feedback, we can take the first sentence in the example: “Our office has been
struggling with a related problem that maybe you can solve.” It can be logically
inferred that the user who wrote this feedback agrees on a previously stated problem.

However, to reach this conclusion it requires a human interpreter to read, understand
and provide such conclusion. But when written: “I agree on [@problem refer to a
previously stated problem]”. First, the word “I agree” can be defined as a reserved
keyword that indicates that this is a confirmation sentence. Moreover, it accurately
refers to a previously stated problem in the thread, which will be validated by the
workflow integration layer that handles the communication with the ontology.
Therefore, writing the feedback sentence with the new notation removes redundancy,
subjectivity, and also provides decisive definitions for the sentences’ meanings, and
thus can eliminate or remove human interventions.

The next step is the each sentence (i.e. instances content) is validated using the
controlled natural language engine. The workflow layer will be responsible for
retrieving the sentences that will be sent for validation, and showing the results for the
user. In case that the user did not write proper controlled English, this layer will
suggest how he can improve his feedback.

6 Related Work

There are several paradigms where the role of users is central such as User centred
design [14], User Experience [15], Agile methodology [16], Usability Testing [17].
These techniques can aid the design of enterprise software systems, but they are
expensive and time consuming when used for highly variable software designed to be
used by a large number of users in contexts that are hardly predictable at design time.
Furthermore, our work is similar to End-user Computing [18] in the motivation of
involving users and enabling them to change in the system itself to meet their
requirements and needs. However, we rely on users to provide feedback in order to
decide on maintenance and evolution decisions rather than taking actions. .

Recent research has been directed towards involving users in evaluating and
modelling evolving requirements for large enterprise softwares. Authors in [19], main
contribution is a theoretical understanding of user involvement as a key success factor
in implementing and maintaining business intelligence solutions. Moreover, in [20],
authors suggest users involvement in developing Business Process Management
projects. Their modelling approach involves using User Requirements notation that
integrates goals and usage scenarios, from which requirements can evolve.
Additionally, in [21] the authors present how strategy maps can be augmented by
consumer values to include goals reflecting consumer values, which can be used as
requirements for new solutions. All the above work supports the importance of users
in driving the enterprise business process as a lifelong activity. However, their work
operates on the management of requirements at a rather strategic level to ensure goal
satisfaction, and business strategy implementation. In contrast, our work aims to
provide engineering approach with concrete constructs to model and acquire feedback
and enable their role to take place.

Various works has been done on how to extract requirements from users’ feedback.
Authors in [22], extract the main topics mentioned in the feedback, along with some
sentences demonstrative to those topics using sentiment analysis. Also in [23], have
defined a simple domain ontology consisting of generic broad types of feedback and

associations. They cluster feedback messages according to the entities they refer to,
use natural language parsing and heuristic filtering that can match the detected
keywords to domain ontology. Moreover, in [24], the research aims on providing an
elicitation approach that can offer new opportunities for users to support them in
documenting their needs using a mobile tool. In contrast, and instead of analysing
given feedback, e.g. through forums and social networks, our work contributes to
forward engineer the acquisition process itself making the analysis more efficient.

When engineering feedback, we need to use a language understood by users and at
the same time traceable to the requirements model and knowledge. Goal Model [25],
Feature Model [26] and Business Processes [27] seem to be potential models which
link the space of the business to the space of users and their understanding of the
system.

7 Conclusion and Future Work

This paper has presented a two phase empirical study. The first phase focus group
study focused on the different aspects of the activity of interacting with users and
acquiring their feedback, which gave a broad perspective for open research
challenges. While the second forums analysis study examined actual users’ feedback
to reach a classification of feedback structures and their elements. The findings can be
employed to develop a collaborative architecture that utilizes structured feedback for
extracting requirements in a systemized way where the risks resulting from human
interventions are minimized. Therefore, our results serve as a foundation step for a
holistic approach for the structuring and use of users’ feedback for crowdsourced
software evaluation. Furthermore, from the feedback classification reached from the
empirical study, we can derive new templates that combine multiple feedback and
feedback types to form new cases that can inform the engineers by giving them a
detailed view of the software’s evaluation status from the users’ point of view.

Acknowledgments. The research is supported by a European FP7 Marie Curie CIG
grant (the SOCIAD project) and Bournemouth University through the Graduate
School PGR Development fund.

References

1. Jarke, M., Loucopoulos, P., Lyytinen, K., Mylopoulos, J., & Robinson, W.: The brave new

world of design requirements. Information Systems, vol. 36(7), pp. 992-1008, (2011).
2. Cleland-Huang, J., M. Jarke, L. Liu, and K. Lyytinen.: Requirements Management–Novel

Perspectives and Challenges. Dagstuhl Reports 2, vol. 10, pp. 117-152, (2013).
3. Hosseini, M., Phalp, K., Taylor, J., and Ali, R.: Towards crowdsourcing for requirements

engineering. In: REFSQ'14. Germany (2014).
4. Snijders, R., Dalpiaz, F., Hosseini, M., Shahri, A., and Ali, R.: Crowd-Centric

Requirements Engineering. In: UCC'14, pp. 614-615. IEEE, London (2014).
5. Ali, R., Solis, C., Omoronyia, I., Salehie, M., and Nuseibeh, B.: Social adaptation: when

software gives users a voice. In: ENASE’12. Poland (2012).

6. Ali, R., Solis, C., Salehie, M., Omoronyia, I., Nuseibeh, B., and Maalej, W.: Social
sensing: when users become monitors. In: ESEC/FSE’11, p. 476-479. Hungary (2001).

7. Sherief, N., Jiang, N., Hosseini, M., Phalp, K., and Ali, R.: Crowdsourcing software
evaluation. In: EASE'14, pp. 19. ACM, London (2014).

8. Almaliki, M., Ncube, C., and Ali, R.: The design of adaptive acquisition of users
feedback: An empirical study. In: RCIS'14. IEEE, Morocco (2014).

9. Almaliki, M., Ncube, C. and Ali, R.: Adaptive software-based Feedback Acquisition: A
Persona-based design. In RCIS'15. IEEE, Greece (2015).

10. Kontio, J., Lehtola, L., and Bragge, J.: Using the focus group method in software
engineering: obtaining practitioner and user experiences. In: ISESE '04. IEEE, USA
(2004).

11. Braun, V. and Clarke, V.: Using thematic analysis in psychology. Qualitative research in
psychology, vol. 3(2), pp. 77-101. (2006).

12. Crawford, H. K., Leybourne, M. L., and Arnott, A.: How we Ensured Rigor from a Multi-
site, Multi-discipline, Multi-researcher Study. In: Forum Qualitative
Sozialforschung/Forum: Qualitative Social Research, vol. 1, no. 1. (2000).

13. Krogstie, J., Lyytinen, K., Opdahl, A. L., Pernici, B., Siau, K., and Smolander, K.:
Research areas and challenges for mobile information systems. In: International Journal of
Mobile Communications, vol. 2(3), pp. 220-234. (2004).

14. Vredenburg, K., Mao, J. Y., Smith, P. W., and Carey, T.: A survey of user-centered design
practice. In: CHI'02, pp. 471-478. ACM, Minneapolis, Minnesota, USA (2002).

15. Law, E. L. C., and Van Schaik, P.: Modelling user experience - An agenda for research
and practice. In: Interacting with computers, vol. 22(5), pp. 313-322. (2010).

16. Dybå, T. and Dingsøyr, T.: Empirical studies of agile software development: A systematic
review.In: Information and Software Technology, vol. 50(9–10), pp. 833-859. (2008).

17. Adikari, S. and McDonald, C.: User and Usability Modeling for HCI/HMI: A Research
Design. In: ICIA'06, pp. 151-154. IEEE, (2006).

18. Doll, W.J. and Torkzadeh, G.: The measurement of end-user computing satisfaction. In:
MIS quarterly, pp. 259-274. (1988)

19. Yeoh, W. and Koronios, A.: Critical success factors for business intelligence systems. In:
Journal of computer information systems, vol. 50(3), pp. 23-32. (2010).

20. Pourshahid, A., Amyot, D., Peyton, L., Ghanavati, S., Chen, P., Weiss, M., and Forster, A.
J.: Business process management with the user requirements notation. In: Electronic
Commerce Research, vol. 9(4), pp. 269-316. (2009).

21. Svee, E.-O., Giannoulis, C. and Zdravkovic, J.: Modeling business strategy: A consumer
value perspective. In: The Practice of Enterprise Modeling, pp. 67-81. Springer, (2011).

22. Galvis Carreño, L. V., and Winbladh, K.: Analysis of user comments: an approach for
software requirements evolution. In: ICSE'13, pp. 582-591. IEEE Press, CA, USA (2013).

23. Schneider, K.: Focusing spontaneous feedback to support system evolution. In: RE'11.
IEEE, Italy (2011).

24. Seyff, N., Graf, F., and Maiden, N.: Using Mobile RE Tools to Give End-Users Their Own
Voice. In: RE'10, pp. 37-46. IEEE Computer Society, Sydney, Australia (2010).

25. Yu, E.S.: Social Modeling and i*. In: Conceptual Modeling: Foundations and
Applications, pp. 99-121. Springer Berlin Heidelberg, (2009).

26. Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M.: FORM: A feature-; oriented
reuse method with domain-; specific reference architectures. In: Annals of Software
Engineering, vol. 5(1), pp. 143-168. (1998).

27. OMG, B.P.M.N., Version 1.0. OMG Final Adopted Specification, Object Management
Group. (2006).

