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Abstract. Interoperability, as one of the key competition factors for modern 

enterprises, describes the ability to establish partnership activities in an 

environment of unstable market. In some terms, interoperability determines the 

future of enterprises; so, improving enterprises’ interoperability turns to be a 

research focus. “Sharing data among heterogeneous partners” is one of the most 

basic common interoperability problems, which requires a general methodology 

to serve. Model transformation, which plays a key role in model-driven 

engineering, provides a possible solution to data sharing problem. A general 

model transformation methodology, which could shield traditional model 

transformation practices’ weaknesses: low reusability, contains repetitive tasks, 

involves huge manual effort, etc., is an ideal solution to data sharing problem. 

This paper presents a general model transformation methodology “combining 

semantic check measurement and syntactic check measurement into refined 

model transformation processes” and the mechanism of using it to serve 

interoperability’s data sharing issue. 

Keywords:  interoperability; model-driven engineering; model transformation; 

semantic check; syntactic check 

1 Introduction 

Nowadays, the world is becoming smaller and smaller. With the advancements of 

science and technology, more and more collaborations among countries, companies 

and persons are appeared. Such collaborations appear and disappear within specific 

periods, with achieving or failing of their goals. Based on this fact, the ability of 

cooperating with different partners becomes crucial to modern systems and 

organizations. Furthermore, “interoperability” is proposed specially to describe such 

ability. There are several definitions for interoperability; one of the initial definitions 

of interoperability could be referred in [1]. Another two definitions are listed here: as 

defined in [2], “interoperability is the ability of a system or a product to work with 

other systems or products without special effort from the user”; a similar definition of 
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interoperability is stated in [3], interoperability is “a measure of the degree to which 

diverse systems, organizations, and/or individuals are able to work together to achieve 

a common goal. For computer systems, interoperability is typically defined in terms 

of syntactic interoperability and semantic interoperability”. Two key issues that stated 

in the two definitions are: “cooperate without special users’ effort” and “semantic and 

syntactic” aspects. Although in different domains and from different views of one 

domain, the definitions of interoperability might be slightly different, the essence 

reflected by these definitions is similar. Fig. 1 shows the interoperability issue and the 

data sharing problem of it.  

 

Fig. 1. An illustration of interoperability issue 

    Fig. 1 shows a collaboration situation between two companies. Modern companies 

use information systems to manage their business; in some aspects, the cooperation 

among companies depends on the merge of their information systems. Furthermore, 

merging information systems relies on the interactions of their applications. So, 

sharing data among these applications (both within one system and from different 

systems) is important for enterprise cooperation. However, generally the structures of 

data are designed for specific applications used by particular enterprises; it is difficult 

to share data among different applications. Model transformation provides a possible 

solution to data sharing issue. 

     “Enterprise Interoperability Framework (EIF)” [4] shows a possible way of 

combining formally enterprise interoperability and model-driven engineering 

(especially the model transformation part). However, traditional model transformation 

practices have their own weakness: low reusability, repetitive tasks, huge manual 

effort, etc. In order to apply model transformation to solve interoperability problems, 

a general model transformation methodology (shield these weaknesses) is required. 

This paper presents such a general model transformation methodology. 

This paper is divided into five sections. In the second section, the basic principles 

of model-driven engineering (MDE) and model transformation are presented. The 

third section describes the overview of the general methodology. The detail of 



syntactic and semantic checking measurements is illustrated in the fourth section. 

Finally, the conclusion is proposed in the fifth section. 

2 Basic Background Theories 

In this section, the basic background theories of this general model transformation 

methodology (GMTM) are presented. These theories are divided into two group：

theories owned by MDE domain and theories belonging specially to model 

transformation domain.  

2.1 Model-driven Engineering 

Model-driven engineering (MDE) [5], which initially referred as model-driven 

software development, is an important direction in the development of software 

process. It takes modeling and model transformation as the main means of software 

development methods. Comparing with other software development methods, the 

main features of model-driven development approach are paying more attention to 

construct the abstract description of different areas of knowledge: the domain models; 

then based on these models to characterize the software system. Through layers of 

automatic (semi-automatic) conversion of the models, the development from design to 

achieve the transition to the final completion of the entire system will complete. 

At this moment, the principles of “model driven engineering” are applied on many 

different domains (knowledge engineering, enterprise engineering, etc.); it is not 

restricted to software development any more.  

As an example to broader MDE’s vision, “model-driven architecture (MDA)” [6] 

was launched in 2001 by the Object Management Group (OMG). Fig. 2 shows the 

basic principles of MDA. 

 

Fig. 2. Simple illustration of MDA 

    In MDA, models could be divided into three groups: “CIM”, “PIM” and “PSM”. In 

each of the three groups, large number of models could be built to reflect the 

characteristics, which based on different point of views, of one system. Models in 

PIM layer should be generated by transforming the models from CIM layer; the 
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mechanism of building PSM layer’s models follows the same principle (generated by 

transforming models from PIM layer).   

    In MDE context, everything could be regarded as a model or could be modeled. In 

simple words, MDE uses models to describe the reality (concerns the modeling 

techniques) and uses model transformations to solve conversion problems. Modeling, 

as one key role of MDE, means the activities of building models; model 

transformation, as another key role of MDE, means the process of taking the source 

model to generate the target model.  

2.2 Model and Meta-model 

Model and meta-model are two basic concepts in MDE; Fig. 3 shows the relation 

between them.  

 

Fig. 3. Relation between model and meta-model 

    As defined in [7], model is “a simplification of the subject and its purpose is to 

answer some particular questions aimed towards the subject”. Models are built to 

represent the characteristics of real systems based on specific point views. Meta-

models are a specific kind of model; they make statements about what can be 

expressed in valid models. Meta-models could have several layers; meta-model 

defines building rules for models that conform to it.  

2.3 Model Transformation 

Model transformation plays a key role in MDE; it is the nexus among heterogeneous 

models. With the extensive usage of MDE theory, more and more theories, techniques 

and tools of model transformation have been created. Large amount of model 

transformation practices have been developed to serve some specific domain 

problems using these theories, techniques and tools; two examples are stated in [8] 

and [9].  

In general, according to [10], there are two main kinds of model transformation 

approaches. They are: model-to-code approaches and model-to-model approaches. 

For model-to-code approaches (PIM to PSM), there are two categories: “Visitor-based 

approaches” and “Template-based approaches”. For the model-to-model approaches, 

there are five categories:  

 Direct-dManipulation Approaches: offering an internal model representation plus 

some API to manipulate this model    

 Relational Approaches: grouping declarative approaches where the main concept is 

mathematical relations 

 Graph-Transformation-Based Approaches: e.g., VIATRA, ATOM and GreAT  

 Structure-Driven Approaches: an example is “OptimalJ” model transformation  



 Hybrid Approaches: combining different techniques from the previous categories 

The detail of these approaches (their applicable situations, working mechanism, 

etc.) could be consulted in [10].  

However, as mentioned above, traditional model transformation practices have 

internal weaknesses; these weaknesses limit the scope of model transformation usage. 

As the inner characteristics and requirement of modern enterprise interoperability 

(e.g. agility, transient, heterogeneity, complexity), traditional model transformation 

practices are not a good choice to serve it. So, a general model transformation 

methodology is required.    

3 Overview of the General Methodology 

This section presents the detail of GMTM. The main objective of GMTM is 

“overcoming the shortcomings of traditional model transformation practices and 

serving to enterprise interoperability”. “General” means the use of this methodology 

is widely, not limited to a specific domain. In order to be general, the process of 

defining model transformation mappings should be automatic. To achieve this goal, 

semantic and syntactic checking (S&S) measurements are combined into the 

traditional model transformation process.   

3.1 Theoretical Main Framework of the General Methodology 

GMTM is created on the basis of a theoretical main framework, which is based on 

[11], and shown in Fig. 4.  

 

Fig. 4. Theoretical main framework 

Fig. 4 illustrates the theoretical basis of GMTM. The significance of doing model 

transformation could be “sharing knowledge”, “exchanging information”, etc. The 

purpose of model transformation practice is: generate the target model based on the 

source model.  



    The necessary condition of doing model transformation between two models is: the 

source model and target model should have some potential common items (to be 

detected and found). For the reason “models are built based on the rules defined in 

their meta-models”, the potential common items could be traced on meta-model layer.  

The source MM shares part of its concepts with the target MM. As a consequence, 

the source model embeds a shared part and a specific part. The shared part provides 

the extracted knowledge, which may be used for the model transformation, while the 

specific part should be saved as capitalized knowledge in order not to be lost. Then, 

mapping rules (built based on the overlapping conceptual area between MMs) can be 

applied on the extracted knowledge. The transformed knowledge and an additional 

knowledge (to fill the lack of knowledge concerning the non-shared part of concepts 

into the target MM) may be finally used to create the shared part and the specific part 

of the target model.  

3.2 The Meta-meta-model within Main Framework 

According to [12], in order to apply semantic checking measurements in the process 

of defining model transformation mapping rules, some principles should be obeyed. 

In this GMTM, the mechanism of applying S&S in model transformation process is 

defined in a meta-meta-model (MMM), which is shown at the top of Fig. 4.  

There are several meta-modelling architectures, for example “MOF: Meta-Object 

Facility” [13].  These architectures define their own semantic and syntax. For GMTM 

these existing meta-modelling architectures are complex to use. So, based on the 

context of model transformation, we adapt the idea stated in MOF and generate this 

MMM. Fig. 5 shows the content of this MMM. 

 

Fig. 5. The class diagram of the meta-meta-model 



    For GMTM, this MMM works on the top abstract level of all the other models. As 

this MMM is defined as a common criterion, the meta-models (for both source 

models and target models) could be built or transformed to the versions that conform 

to it.   

As shown in Fig. 5, there are ten core elements in this meta-meta-model. As 

models may come from various domains or systems, a class named “Environment” is 

defined to stand for these domains. All the model instances are standed by the class 

“Model”, every model belongs to a specific “Environment”. “Model” is made of 

“Element”, which has two inheritances: “Node” and “Edge”. “Node” are linked by 

“Edge” based on their “roles”. “Element” has a group of “Property”, the “Property” 

could identify and explain the “Element”. “Property” has a data type: “Primitive 

Type” or “Enumeration”; to a certain extend, data type could differentiate “Property”.  

All these items (with the relationships among them), illustrated above, present the 

standard requirement on specific meta-models. Another two key items shown in Fig. 

5 are: “Semantic Relation” and “Syntactic Relation”. They exist on different kinds of 

items (e.g. between a pair of elements). Model transformation rules are generated 

based on these two relations.    

Generally, model transformation mappings are defined on the element level (node 

and edge); the mapping rules are usually generated by domain experts. However, 

applying model transformation practices to serve enterprise interoperability requires 

model transformation practices to be more flexible and easier (faster) to integration. 

So, semantic checking and syntactic checking that focused on element and property 

levels, are introduced to automatically define the mappings (replacing manual 

efforts). Also, in the MMM, the property and its dada type are highlighted; both of 

them are used to deduce semantic relation on element level. Furthermore, the inner 

attribute of element and property: their names, have also been used to define semantic 

and syntactic relations.      

3.3 Matching Mechanism 

In GMTM, model transformation is regarded as an iterative process: a target model 

(generated by one transformation iteration) could be the source model for the next 

iteration. In each iteration phase, transformation process is divided into three steps: 

matching on element level (coarse-grained matching), hybrid matching (fine-grained 

matching) and auxiliary matching (specific parts matching). All these three steps are 

supported by software tool; experts may only be involved in the validating process. 

Iterative Matching Mechanism According to the theoretical main framework, model 

transformation mappings are built on the potential shared parts between source model 

and target model. During the transformation process: the specific part of source model 

is saved as capitalized knowledge and the specific part of target model should be 

enriched with additional knowledge. So, a question may be put forward: how to deal 

with the capitalized knowledge and where the additional knowledge comes from? The 

“iterative matching mechanism” gives a possible answer to this question. 

Fig. 6 shows the general idea of this iterative matching mechanism. 



 

Fig. 6. Overview of iterative matching mechanism 

One complete model transformation process may involve several iterations; each of 

iterations is an independent model transformation instance. An intermediate model is 

both the target model of the former iteration and source model of the latter iteration. 

All the specific parts (unmatched items: properties and elements) from source models 

are saved into ontology as capitalized knowledge, and the specific parts of target 

models are enriched with additional knowledge (capitalized knowledge from former 

iterations) that extracted from the same ontology.  

Matching on Element Level Generally, model transformation mappings are defined 

on element level (nodes and edges); if two elements (come from source model and 

target model, respectively) stand for the same concept (shared concept between two 

models), a mapping should be built. As stated above, semantic and syntactic checking 

measurements are applied on a pair of elements to detect the relation between them.  

The mechanism of defining matches on element level is illustrated by an example 

shown in Fig. 7. 

 

Fig. 7. Example of making matching on element level 

    The two specific meta-models (marked as A and B) are supposed to be conformed 

to the MMM. Model A has “m” elements and model B has “n” elements; the 

mappings should be built within the “m*n” element’s pairs.  Table 1 shows this 



comparison matrix. This matrix is built automatically by software tool; based on 

different inputs (model instances), similar matrix would be generated automatically. 

Table 1. Element level selected matrix 

A                     B          e1            e2         ……           en 

         E1      Ele_SSV      Ele_SSV         ……      Ele_SSV 

         E2      Ele_SSV      Ele_SSV         ……      Ele_SSV 

       ……      Ele_SSV      Ele_SSV         ……      Ele_SSV 

         Em      Ele_SSV      Ele_SSV         ……      Ele_SSV 

Within each element’s pair, there exists an “Ele_SSV” value. “Ele_SSV” stands for 

“element’s semantic and syntactic value”; it is calculated based on the elements’ 

names and their properties. Formula (1) is defined to calculate “Ele_SSV” value.   

     Ele_SSV = name_weight*S_SSV + property_weight*(∑ Max(P_SSVi)
𝑥

𝑖=1
)/x    (1) 

In (1), “name_weight” and “property_weight” are two impact factors for the 

parameters elements’ names and elements’ properties, respectively. Both the values of 

“name_weight” and “property_weight” are between 0 and 1; the sum of them is 1. 

“S_SSV” stands for “string semantic and syntactic value; it is calculated based on the 

words (element’s name is a word). “P_SSV” stands for “semantic and syntactic value 

between a pair of properties”; another example which shown below, is used to 

calculate “P_SSV”. “x” stands for the number of properties of a specific element from 

source meta-model (e.g. element E1). 

The example shown below is used to generate the “Ele_SSV” value within the 

element’s pair of E1 and e1 (focuses on their properties’ group); table 2 is created for 

this example. This kind of tables is also built automatically (for different comparing 

elements’ pairs) by software tool. 

Table 2. Property level selected matrix 

E1                  e1          p1            p2         ……           py 

         P1       P_SSV       P_SSV         ……       P_SSV 

         P2       P_SSV       P_SSV         ……       P_SSV 

       ……       P_SSV       P_SSV         ……       P_SSV 

         Px       P_SSV       P_SSV         ……       P_SSV 

E1 has “x” properties and e1 has “y” properties; within each of the “x*y” pairs of 

properties, there exists a “P_SSV”. Formula (2) shows the calculating rule of 

“P_SSV”. 

 P_SSV = pn_weight*S_SSV + pt_weight*id_type   (2) 

    In (2), “pn_weight” and “pt_weight” are two impact factors for the parameters 

properties’ names and properties’ types, respectively. The sum of “pn_weight” and 

“pt_weight” is 1. “S_SSV” is the same as stated in (1); this time, it stands for the 

semantic and syntactic value between two properties’ names. “id_type” stands for 



“identify properties type”. If two properties have the same type, this value is 1; 

otherwise, this value is 0.  

With the help of table 2 (also needs the “S_SSV” between E1’s name and e1’s 

name), the “Ele_SSV” between element “E1” and “e1” could be calculated. In this 

way, table 1 could be fulfilled with calculated values. For each element (E1, E2…) of 

the source model A, it has a maximum “Ele_SSV” value with a specific target model 

element (e1, e2…); if this value exceeds a predefined threshold value (e.g. 0.5), a 

match is built between the two elements. Moreover, making matching between two 

elements requires building mappings among their properties; table 2 provides 

necessary and sufficient information to build mappings on property level. The rule of 

choosing property matching pairs is same of choosing element matching pairs (set 

another threshold value). In this way, both on element and property levels, the 

matches are: “one to one” and “many to one”. 

At this moment, the impact factors and selecting threshold values are assigned 

directly by experience.  

Hybrid Matching After first matching step, some of the elements (both belonging to 

source and target meta-models) are still unmatched; even the matched elements, some 

of their properties are still unmatched. The hybrid matching step focuses on these 

unmatched items.  

This matching step works on property level, all the matching pairs would be built 

among properties (come from both the unmatched and matched elements).  

All the unmatched properties from source model will be compared with all the 

properties from target model. A comparison matrix (similar to table 2) is created to 

help complete this step. The mechanism of building such matching pairs is also 

depending on semantic and syntactic checking measurements (based on properties’ 

names and types).  

In hybrid matching step, all the matching pairs are built on property’s level. This 

step breaks the constraint: property matching pairs only exists within matched 

element’s pairs; this constraint is the main granularity issue involved in model 

transformation process. However, it is also necessary to consider about the influence 

from element’s level when building mappings in hybrid matching step. The matching 

mechanism of this step shows in (3). 

                           HM_P_SSV = el_weight*S_SSV + pl_weight*P_SSV                               (3) 

In (3), “HM_P_SSV” stands for “hybrid matching property semantic and syntactic 

value”. “el_weight” and “pl_weight” are two impact factors for the parameters 

“element level” and “property level”, respectively. The sum of “el_weight” and 

“pl_weight” is 1. “S_SSV” is calculated between two elements’ names (for source 

property and target property, respectively). “P_SSV”, as stated in (2), calculates the 

syntactic and semantic relation between two properties based on their names and 

types.  

This step achieves “one to many” matching mechanism on element’s level, and on 

property level matching breaks the matched elements’ constraint: properties from one 

source element could be matched to properties that from several target elements.  



Auxiliary Matching After the first and second matching steps, all the shared parts 

(presented in the theoretical main framework) between source model and target model 

are regarded to be found. However, according to the iterative model transformation 

process mentioned at the beginning of this subsection, there are still some specific 

parts that should be stored as capitalized knowledge or enriched as additional 

knowledge. Auxiliary matching step focuses on the mechanism of storing and reusing 

these specific parts from both source and target models. 

All the unmatched items from source model, which regarded as specific parts, are 

stored in ontology (which is called “AMTM_O” within this project). AMTM_O 

designed with the same structure as MMM that shown as Fig. 5.  

The syntactic and semantic checking measurements that involved in these three 

matching steps will be explained in detail respectively in the following section.  

4 Syntactic and Semantic Checking Measurements 

GMTM requires defining automatically the model transformation mapping rules. So, 

semantic and syntactic checking measurements (executed by software tool) are 

involved. As shown in (4), the “S_SSV” stands for the semantic and syntactic value 

between two strings. 

 S_SSV = sem_weight*S_SeV + syn_weight*S_SyV (4) 

“Sem_weight” and “syn_weight” are two impact factors for the parameters 

semantic value and syntactic value; the sum of them is 1. The two following 

subsections illustrate the way to calculate “S_SeV” and “S_SyV”, respectively.   

4.1 Syntactic Checking Measurement 

Syntactic checking measurement is used to calculate the syntactic similarity between 

two words (elements’ and properties’ names in our case). There exists several 

syntactic checking methods; majority of them use classic similarity metrics to 

calculate the syntactic relations. Some of examples could be referred in [14]. 

The syntactic checking measurement in GMTM could be divided into two phases: 

1.  Pretreatment: focuses on finding if two words that in different forms (e.g. tense, 

morphology, gender) stand for the same word.  

2. “Levenshtein Distances” algorithm [15]: calculates the syntactic similarity between 

two words. 

    “Levenshtein distances” is equal to the number of operations needed to transform 

one string to another. There are three kinds of operations: insertions, deletions and 

substitutions. Formula (5) shows the calculation of syntactic relation between two 

words: word1 and word2 based on “Levenshtein distances”.  

 S_SyV = 1 – LD / Max (word1.length, word2.length) (5) 



In (5), “S_SyV” stands for the syntactic similarity value between “word1” and 

“word2”; “LD” stands for the “Levenshtein distances” between them. The value of 

“S_SyV” is between 0 and 1; the higher of this value means the higher syntactic 

similarity.  

4.2 Semantic Checking Measurement 

Contrast to syntactic checking measurement (rely just on comparing the two words); 

semantic checking measurement should rely upon a huge semantic thesaurus which 

contains large amount of words, their semantic meanings and semantic relations 

among them. A specific semantic thesaurus has been created for GMTM, and it is 

based on the basis of “WordNet” [16]. Fig. 8 shows the structure of this semantic 

thesaurus. 

 

Fig. 8. Structure of the semantic thesaurus  

Fig. 8 shows three kinds of elements stored in the semantic thesaurus.  

 Word base: normal English words (nouns, verbs and adjectives) are stored here. 

 Sense base: contains all the word senses; a word could have “one or several” 

senses. E.g., word “star”: it has six senses (four as a noun and two as a verb). 

 “Synset” base: synonym groups; the word senses are divided into different 

synonyms groups. Semantic relations are built among different synsets. 

Table 3 shows the content stored in this semantic thesaurus and the numbers of 

each kind of items.  

Table 3. Content in semantic thesaurus 

                     Items                           Number 

                    words                            147306 

               word senses                       206941 

                   synsets                       114038 



    There are five kinds of semantic relations defined among synsets: “synonym”, 

“hypernym”, “iterative hypernym”, “similar-to” and “antonym”. For each of the 

semantic relations, a specific value (between 0 and 1) is assigned to it. Table 4 shows 

these “value and semantic relation” pairs. 

Table 4. Relations and values pairs    

           Semantic relation                 S_SeV                Remark 

               synonym                    0.9    words from the same synset 

               hypernym                    0.8   two synsets have this relation 

               similar-to                    0.85    only between two adjectives  

                antonym                    0.2   words have opposite meanings  

         iterative hypernym  0.8
n
     inheritance hypernym relation 

In table 4, all the “S_SeV” values are assigned directly (by experience); these 

values should be assigned with more reasonable methods. 

With the huge content stored in the semantic thesaurus (shown in table 3 and table 

4), formula (1), (2), (3) and (4) can work for GMTM.                                                             

5 Conclusion 

In this paper, a general model transformation methodology (GMTM) is presented. 

This methodology aims at dealing with the data sharing problem of enterprise 

interoperability. As the inner requirement of interoperability: flexibility, faster 

exchange information, this general methodology should surmount the traditional 

model transformation practices’ weaknesses (limited to specific domains).  

Some points, which need to be improved in the future, are listed below: 

 The impact factors such as: “sem_weight” and “pn_weight” and threshold values: 

the better way of assigning them is by using some mathematic strategy (“choquet” 

integral?).  

 Semantic checking measurement: only formal English words are stored in the 

semantic thesaurus with semantic meanings; not for words (in specific cases).  

 The S_SeV values that defined in table 4: more test cases are needed to modify 

these values into reasonable scope. 

The usage of GMTM is not limited to the interoperability domain; GMTM allows 

MDE theories to serve other engineering domains too.  

 

Fig. 9. Position of GMTM usage 

Fig. 9 shows the general contribution of GMTM: converting rough data to 

information. With rules that defined in specific domains, such information could be 

transformed to knowledge which serves to domain specific problems.  



By combining semantic and syntactic checking measurements into model 

transformation process, an efficient general model transformation methodology is 

created. With the improvement on some of the details that involved in this GMTM, 

this methodology may serve to a large number of domains.     
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