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Abstract. Architecting a System of Systems (SoS) is a complex task.
Capabilities of heterogeneous and interactive sub-systems are composed to
fulfil a mission, while preserving, as possible, the autonomy, independence,
geographic distribution... of sub-systems and to face up efficiently while
remaining as resilient as possible to disturbances and emergent phenomenon.
The “-ilities” are relevant non-functional abilities (e.g. robustness, resilience,
flexibility, adaptability, survivability, interoperability...) for guiding SoS
architects and managers to choose and interface sub-systems. The goal is to
become able to increase or decrease the value of these “—ilities” thanks to their
interest for the SoS mission. The here presented work aims to support resilient
SoS design and, in particular, their architecting by proposing a formalised
model of property allowing to define and describe an “~ility” and a behavioural
modelling approach to evaluate it.

Keywords: System of Systems, “—ilities”, Non-functional Properties,
Resilience, SoS behavioural modelling, Dependencies, Formalisation

1 Introduction

A System of Systems (SoS) is composed of (in most cases, existing) heterogeneous
sub systems chosen for their capabilities, assembled and interfaced to interact during a
time-frame and to provide capabilities to achieve a mission that each sub system
cannot fulfil alone [1]. First, some characteristics of sub systems must be preserved:
operational and managerial independence, evolutionary development, geographic
distribution, and connectivity. Second, requested interactions induce emergent
phenomenon (new properties and behaviours with more or less predictable and
unwanted effects) at the SoS level that can favour or affect the achievement of its
objectives and mission. Third, it is now recognized, for SoS, the relevance of specific
properties called “-ilities”. An “-ility” ' is an “ability to respond to changes, both

U An “—ility” (plural “-ilities”) [5] is “a developmental, operational, and support requirements a
program must address (e.g. availability, maintainability, vulnerability, reliability,
supportability” which are generally non-functional requirements.
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foreseeable and unforeseeable” focusing on “how the SoS should be and not what it
should do” [2]. For a SoS, “-ilities” differ from authors, but essentials ones remain:
robustness, resilience, flexibility, adaptability, survivability, interoperability,
sustainability, reliability, availability, maintainability and safety; each “-ility” can be
strongly dependant or influenced by various causes considering SoS context,
evolution period of its life cycle and emerging phenomenon. So, architecting a SoS
implies to study these “-ilities” and how to increase or decrease their values thanks to
their interest for the SoS purpose. Particularly, SoS has to face up, efficiently and
accordingly to its mission, to various dynamic contexts in which disturbances can
occur due to disruptive actions (from SoS environment or internal sub-systems
failures [2]) or to new and enabled technological evolutions i.e., it has to maximise its
resilience. The here presented work aims to help and support resilient SoS design,
particularly architecting step of the design. Section 2 introduces two approaches for
resilient SoS architecting that can be combined with a behavioural modelling
approach named OMAG, briefly introduced. In section 3, retained SoS “—ilities” and
their interdependence are discussed and formalised. Section 4 illustrates the proposed
contributions before concluding.

2 Resilient SoS Architecting

Architecting a resilient SoS means to consider various interdependent “-ilities” and
new design approaches. [4] insists on “designing for resilience is about creating a
system that can bounce back from something no one ever thought would happen”.
Existing approaches are strongly based on system paradigm and follows Systems
Engineering principles [24]. In the next we discuss about requested “—ilities” and two
approaches.
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Fig. 1: Overview of “-ilities” dependencies [7]

Various “~ilities” definitions can be found [6] [7] [8]. The concept of “~ility” can be
used to characterize both SoS and each of its sub-systems. As illustrated in Fig. 1, it is
admitted that an “—ility” dynamically vary and is dependant or influenced all along
SoS life cycle depending on 1) its characteristics (properties, behaviours and “—
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ilities”), 2) the characteristics (properties, behaviours, and —ilities) of its sub-systems,
and 3) emergent properties and behaviours from sub-systems’ interactions.

For instance DoD [6] presents resilience as dependant from robustness, flexibility
and protection “—ilities”. Following the same dependence principles, robustness
depends from reliability, availability, survivability and maintainability. In the same
way, the DSTA framework [2] considers two levels of SoS “ilities”: Key SoS “—
ilities” (robustness and evolvability) and Key Enabling “ilities” (flexibility
(operational and design) and interoperability) that have been enriched in Fig. 2 by
decomposing interoperability definition.
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Fig. 2: Key SoS "—ilities” and Enabling “—ilities” (inspired from DSTA Framework [2])

In both cases, whatever the definition for “-ility” and its interdependence with other
abilities of the SoS, an “—ility” remains difficult to conceptualize from a unified
manner (that can be even not expected), to handle and to use in confidence in
architecting process [10] [11] [12].

Concerning SoS architecting approaches, first SAI (SoS Architecting with Ilities)
[8] focuses on value sustainment of both functional and non-functional requirements.
Fig. 3 shows the essential steps of SAI, especially the steps 4 (Generate initial
architecture alternatives) and 6 (Evaluate potential alternatives) in which a
behavioural model of the SoS architecture is built and executed for evaluating the
chosen “-ilities” defined in step 3. Second, DSTA framework [2] is a methodological
framework for supporting SoS architecting and a reference framework for choosing
the most relevant “—ilities” allowing practitioners and manager to drive and manage
efficiently SoS architecting. In both approaches, the SoS architecting phase (i.e.,
defining strategy, requested operations and scenarios, and specifying architectural
alternatives according to a more or less high level of abstraction) is apart from SoS
designing phase (for instance, choice and interfacing of sub-systems, validating
scenarios). In design phase, several solutions are proposed in [10] to improve various
“—ilities” to gain resilience e.g. employing redundancy, reducing complexity or
improving reparability. Alternatives solutions must be modelled and compared thanks
to an expected value (quantitative or qualitative) level for each “-ility”.
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Fig. 3: SAI principles approach [8]

To this purpose, the behavioural modelling method OMAG can support both SAI
steps and DSTA framework to describe simply and to link the behaviours of a SoS
and of its sub-systems. This approach is enriched by the formalisation of a set of “—
ilities” by properties allowing their checking or evaluation.

3 SoS Behavioural Modelling: OMAG Method

OMAG (Operating Modes Analysis Guide) [13] is a behavioural and functional
modelling and analysis method allowing:

- System architect to select the Operating Modes [14] that characterize a system all
along its life cycle.

- To determine gradually the expected Properties (functional and non-functional
i.e. “ilities”) and Parameters of the system when evolving into a mode.

- To determine gradually and to model various Operational Scenarios. It is
question of a functional model describing the dynamic of a system (what are the
expected functions or activities and how they are chained and synchronised?) in a
given operating mode. Various modelling languages can be used e.g. BPMN, eFFBD,
or use case diagram. In OMAG approach, each operational scenario describes a part
of the whole expected functional architecture of the system.

OMAG is based on a graphical grid shown in Appendix, detailed and illustrated in
[13]. Briefly, the OMAG principles are summarized in Fig. 4. Considering a system,
OMAG requires defining first systems’ attributes and to gather them into a
ParametersAndPropertiesSet. An attribute is modelled as a Parameter, a valued and
typed data describing time (temporal aspect e.g. maximum delays for reaction), shape
(structure e.g. geometric constraints) or space (situation e.g. non-functional
expectation) characteristics of any element from the system or its environment.
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Fig. 4: OMAG main elements meta model (simplified view)

The ParametersAndPropertiesSet is set up and grows up gradually all along the
architecting process. The set of generic Operating Modes and Transitions is then
formalised by the grid and the architect must select those relevant for the system and
to be studied. Each transition is characterized by a couple (condition/event) allowing
system evolving from an operating to the next. For each mode and transition, architect
has to model what are the expected operational scenarios allowed in the studied Mode
or induced / expected to fire the transition. Fig. 4 shows the main elements of a grid
OMAG allowing to describe and link operating modes, operational scenarios
associated to each mode, parameters and properties of a system. The result is a
behavioural model of the studied system conforms to the underlying mathematical
formalism (inspired from Finite State Machine model [15]). Each operating mode is
modelled as a state and each mode transition as a state transition. An operational
semantic of OMAG grid is given in [13] specifying formally with no ambiguity the
interpretation and execution rules of an OMAG grid. This allows then defining and
implementing OMAG grid simulation and proof mechanisms not detailed here. These
mechanisms allow to model and verify properties (modelling properties as non-
functional properties), to approximate “—ilities” values, or to highlight rapidly some
disturbing or awkward situations the SoS has to face. This can be helpful for SoS
architect who intends to test and compare various SoS architectural alternatives as
requested, for instance, in SAI approach.

4 SoS —ilities and —ilities Dependence Modelling: Property
Concept

A 'property’ is defined in [18] as "an entity that can be predicated of a thing or, in
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other words, attributed to it (also called 'attribute’, 'quality’, 'feature’, 'characteristic’
or 'type')". [19] introduced a Property-Based Requirements (PBR) theory based on
semi-lattices on which a property formalizes a portion of a well-formed requirement
(denoted wf-requirement) and be owned by a system. In this case, a property is
interpreted as a variable to be quantified or qualified to evaluate the relevance and
adequacy of a system solution; such an evaluation is to be carried out by using a
model of the system here, an OMAG grid. [20] postulates that a property is any
descriptor of an artefact (i.e., a modelling artefact of the system). The property is
represented as a mathematical function defined for this artefact, associating a (set of)
value(s) allowing evaluating the solution described by this artefact. [21] and [22]
define a property as "the formal statement of an expectation by using a formal
language, i.e., in the form of a logical formula to be proved later".

These definitions are merged as follows and adopted in the CREI property
modelling language (Cause Relation Effect Indicators) proposed in [16][17]:

[A property is] a provable or evaluable (i.e., quantifiable or qualifiable)
characteristic of an artefact [that is 1) a system S, or 2) a model M of S built for
achieving a design objective] that translates all or part of stakeholder expectations
to be satisfied by this artefact.
The goal is to help managers, architects and designers to formalise “what is” and
“how” can evolve an “-ility” of a SoS i.e., how it can be influenced or dependent
from 1) other characteristics of SoS, 2) conditions taking into account external and
internal events, but also 3) characteristics related to each sub-systems of SoS or
resulting from their interactions.

A CREI property is formalized as a composite entity made up of a group of causes
(C) correlated with a group of effects (E) via a parameterized and constrained relation
(R) between C and E describing the condition and the expected effects under which
the property is satisfied. This relationship formally describes how the set of causes C
induces a modification in the entire set of effects E. Moreover, a set I of indicators
can be associated with R to make property assessable. These indicators are the
observation variable and Design variables® [20]. For the formalization, we define the
set @ as the set of user-defined or predefined properties of the studied system. A
CREI Property CP is defined as:

CP ::= <reference., C, R, E, checkingValue,,, [I, evaluationValue,] >

With:

- reference, € S is a handle (unique) for property proof traceability.

- C={v;/ v; € ParametersSet U @, 1 € [0 ; card(ParametersSet U ®)]}, i.e., C can
be empty (C = ): the property is then considered to be an own property’,
otherwise (C <> &) as a composite property?.

-E={vj/vie FU® je ]0;card(F U ®)]} i.e, E<>D.

- R::=<T,, 6., O, relationType, 0; >, where:

2 An observation variable allows modelling an expected performance level or an expected "i-
lity" level. A design variable allows to handle and to set up values corresponding with
potential design choices.

3 An own property models expected values of a (set of) Parameter(s).

4 A composite property is to be characterized by the causal relation.
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-T, = C N E is the set of variables that may be simultaneously used for
describing causes and effects.

-0.: T, x C" x R™™ { True, False } defines the Boolean function describing
the condition under which the causes of C are interpreted. By default, the
function O, returns True (denoted 6.= True in the next):

(thy coe st Cly eve s Copp Ty ovn 5 Tn) = Oty .o, G €1y vev , Coy I, +.. , Ty) € { True, False }
-0, T,° x E’ x R*"9 — { True, False } defines the Boolean function describing
the condition under which the effects of E are interpreted. By default, the
function O, returns False (denoted 6.= False in the next):

(th, oo st @1y ooy € Iy e 1) = Oc(ty, oo Lt €4, ooy € 1y, ..., 1) € { True, False }

— At this stage, relationType models the relation to be checked: 'C implies E', 'C
is equivalent to E', or 'C influences E' formalized as follows:

° ‘Cimplies E’ is defined as the logical function: 6, = 6,

° 'Cis equivalent to E' is defined as the logical function: 6. < 6,

° 'C influences E' is defined as the function: 6, -3¢ 0.. This relation is
defined by [23] as "in knowing with certainty C, we can then deduce E with
certainty", i.e., knowing the values (and their variation) of the causes defined in C
allows to deduce the possible values (and their potential variation) of effects defined
in E by defining an influence factor 6; € [-1,1] allowing to interpret a beneficial vs.
harmful influence as follows:

° 8; — 0: the influence exists between the causes and effects remaining more
or less neutral (by default, 6; = 0);

° 0; — 1: each variation of the variables used in C induces a variation of the
variables used in E, interpreted as beneficial for the system;

° 0; — -1: each variation of the variables used in C, induces a variation of the
variables used in E, interpreted as harmful for the system;

- checkingValue,, is set to True, else False (i.e., if a checking technique can be
applied on the model for proving the property CP and can conclude CP is
satisfied, False otherwise, thus providing a counterexample).

(optional) [1, evaluationValue.,] I € ParametersSet is a set of indicators that can
be evaluated to characterize the truthfulness of the property CP (e.g. in case of
simulation or for guiding the appraisal): I = {i; / ij € ParametersSet, j € [0,
card(ParametersSet)]}, where i; is a Modeling Variable extracted from the system
model. In case of [ is defined, then CP.evaluationValue.,=p(I), where u is the
aggregation function chosen for the evaluation, e.g. p can be defined by u ::=

1/card(1)*zl(i.value). CP can be considered as satisfied as proposed in [19] i.e.
CP.checkingValue., = True if and only if Viel, i.value € i.objectif A i.value €
i.valueset otherwise not satisfied, i.e., CP.checkingValue., = False.
As an illustration, we focus on the next on the interoperability of each sub-system
making up the SoS, considering the ‘key enabling —ility’ role of this characteristic [2]
and its direct influence on the objectives of resilient SoS architecting project.
For this, we consider (see Fig. 5) there are some dependencies to respect
(evaluated by using 5 levels of dependencies from preferred to forbidden) between the
operating modes of the SoS and the operating modes of sub-system at each moment,



590 V. Chapurlat and N. Daclin

taking into account their dynamical evolution. For instance, when the SoS works and
fulfil the mission (SoS is in Operating Mode O3), it seems important (++) that a
maximum of sub-systems can be able to provide their own mission, and to operate
efficiently (sub-systems have to be preferably in Operating Modes O1 to O5). Some
of these sub-systems can also (+) be under deployment (operating Mode D1) for
instance if these sub-systems have to replace existing sub-systems at a given moment,
assuming then architectural evolution of the SoS. Conversely, it seems inacceptable (-
-) that a sub-system must be in dismantling operating mode (EL1 or EL2). These
interdependencies are, of course, indicative: architect can modify them without any
impact on the property formalisation and analysis that follows. Other tables can be
built for maintainability, resilience or robustness as expected in [2].
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Fig. 5: operating modes dependencies considering requested intero_perability

The interoperability characteristic of the SoS is formalized as the property P as
follows:

1. Cause := VOMgs,s € OperatingModes(SoS) ; OMAG grid behaviour is translated
into symbolic logico-temporal formulae. Each transition between Operating
Modes selected by architect is modelled as an Elementary Valid Formula (EVF)
[26] modified as follows>:

EVF ::=  ( OM;A event; A condition, > 0OM, A scenario,, )
With:

- OM; and OM, are propositional variables modelling the source and
destination operating modes of the transition, and set to True if the studied system
is in the corresponding operating mode, false otherwise.

- event; and condition, are propositional variables set to True if event and

3 The formula oA means that the propositional variable A will be true at the next moment in a
common logical and unified time scale.
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condition associated to the transition are True, false otherwise.
The entire list of EVF's defines a symbolic and formal description of the behaviour of
the OMAG grid. Similarly, a Unified Valid Formula (UVF) is computed by taking
EVFs into consideration. Here considered, an UVF is the set of conditions i.e. 6.
which specifies how a given Operating Mode OM can be activated:
0. =UVF(0OM )= \Y OM g8 Aeventy A condition
(p.q,r)
OM §p8 A event g A condition > 00M g,

2. Relation := (influences) ; Indicators are user-defined and computed including
parameters associated to sub-systems e.g. the latency time or interoperation time
as proposed in [25].

3. Effect := SS; € SubSystems(SoS) ; Fig. 5 shows how dependency vectors
(denoted V++, V+, V¥, V- and V—) are computed regarding each state of the SoS
for a top down analysis of the dependence relations. We focus on the preferred
states of the sub-system i.e., those characterized by a dependence relation ‘++’.
The state vector V of the SoS (resp. sub-system) is 1x18 vector defined as follows:

atk € [L18], [(V00) == 1) === vj € [L13]} = k (V()) == 0)]

AT iR N T

(there are 18 possible operating modes in the current OMAG grid and the sub-system
SS; must be in one and only one operating mode OMy)
So 0. is defined as follows:

o [ lomess) ) s v == 1) Ao H{nmr;fﬁm: A event ]| v [FUTrian M ss]
T

Where:

- Ty is the set of output transitions from the preferred operating mode OM of the
sub-system SS; that is preferred when SoS is in operating mode OMg,s.

- (VIOM(55).1) = ‘.FL == 1) A - [Ilcondition; A event; }]==1 iff SS; is in the
state OM and will stay in this state at the next moment or if the state OM will be
activated at the next moment.

The same computation process is used for determining 6. in the case of dependence
relation that indicates the operating mode of SS; is acceptable, neutral, not
recommended or forbidden. In the same way, the same computation approach is used
in a bottom-up analysis regarding the dependence relations between each operating
mode of each SS; and SoS operating mode.

Simulation (following operational semantics given in [13]), evaluation of
parameters and the generation of counter examples provided by checking technique
proposed in [26] and developed in [27] are suitable for allowing architect to detect 1)
modelling errors or mistakes, 2) unwanted or unexpected behaviour inducing non-
functional properties variation. Fig. 6 shows a big picture of the overall approach
consisting to use OMAG and properties modelling, checking and evaluation in SAI
approach.
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6 Concl

A demonstrator of the OMAG grid and properties modelling tool is currently being
tested. The automated properties building, taking into account various version of
dependence tables, properties checking and OMAG grid simulation techniques are
under development by using framework developed in [27]. The goal is now to test the
overall approach on relevant case studies. The perspective is to enrich the two
aforementioned analysis techniques when facing problematic of growing up models’

Chapurlat and N. Daclin

usion and Perspectives

size and complexity (e.g. due to number of OMAG to be considered).

JLModelling (steps 4 and 6 from [8])

- Determine expected-ilities
- For each select —ility:
* Choose and parametrize Operating Modes dependence -
grid
« Choose relevant parameters regarding SoS mission
-Model SoS and Sub systems
« Specify Mission, Finality, Objectives (Parameters),
roles, capacities, requested interactions (Material /
Information / Energy Flows) and requested interfaces
* Build behavioural models by using OMAG grid:
= Select relevant Operating Modes d\
= Specify event/condition associated to each transition
between selected Operating Modes
* Build ParametersSet
= For each Operating modes
- Define operational scenarios
- Specify relations (see meta model figure 4 between
Operating Modes / Parameters / Operational

Scenarios) .

Iterate until properties are satisfied or relaxed by architect

T

Analysis

- Identify potential external and internal perturbations
- Analyse behaviour by taking into account these
perturbations:
« Determine initial Operating Mode of SoS and of each
sub-systems
* Simulate OMAG grids evolution
« For each execution path: analyse properties
= Transform OMAG grid behaviours into logico-
temporal formulas
= Compute EVF and FVU
= For each —ility, formalize it as (a set of) property(ies)
= Check / Evaluate properties

Simulator / FVU Model

Checker [27]

Results / Counter examples

Acknowledgement. The authors thank A. Monfouga and R. Blainvillier for their

Fig. 6: Overview of the approach (big picture)

involvement in the development of a demonstrator for modelling OMAG grid.
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Appendix: OMAG gri
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