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Abstract. Architecting a System of Systems (SoS) is a complex task. 

Capabilities of heterogeneous and interactive sub-systems are composed to 

fulfil a mission, while preserving, as possible, the autonomy, independence, 

geographic distribution… of sub-systems and to face up efficiently while 

remaining as resilient as possible to disturbances and emergent phenomenon. 

The “-ilities” are relevant non-functional abilities (e.g. robustness, resilience, 

flexibility, adaptability, survivability, interoperability…) for guiding SoS 

architects and managers to choose and interface sub-systems. The goal is to 

become able to increase or decrease the value of these “–ilities” thanks to their 

interest for the SoS mission. The here presented work aims to support resilient 

SoS design and, in particular, their architecting by proposing a formalised 

model of property allowing to define and describe an “–ility” and a behavioural 

modelling approach to evaluate it. 

Keywords: System of Systems, “–ilities”, Non-functional Properties, 

Resilience, SoS behavioural modelling, Dependencies, Formalisation   

1 Introduction 

A System of Systems (SoS) is composed of (in most cases, existing) heterogeneous 

sub systems chosen for their capabilities, assembled and interfaced to interact during a 

time-frame and to provide capabilities to achieve a mission that each sub system 

cannot fulfil alone [1]. First, some characteristics of sub systems must be preserved: 

operational and managerial independence, evolutionary development, geographic 

distribution, and connectivity. Second, requested interactions induce emergent 

phenomenon (new properties and behaviours with more or less predictable and 

unwanted effects) at the SoS level that can favour or affect the achievement of its 

objectives and mission. Third, it is now recognized, for SoS, the relevance of specific 

properties called “-ilities”. An “-ility” 1 is an “ability to respond to changes, both 

                                                           
1 An “–ility” (plural “-ilities”) [5] is “a developmental, operational, and support requirements a 

program must address (e.g. availability, maintainability, vulnerability, reliability, 

supportability” which are generally non-functional requirements. 
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foreseeable and unforeseeable” focusing on “how the SoS should be and not what it 

should do” [2]. For a SoS, “-ilities” differ from authors, but essentials ones remain: 

robustness, resilience, flexibility, adaptability, survivability, interoperability, 

sustainability, reliability, availability, maintainability and safety; each “-ility” can be 

strongly dependant or influenced by various causes considering SoS context, 

evolution period of its life cycle and emerging phenomenon. So, architecting a SoS 

implies to study these “-ilities” and how to increase or decrease their values thanks to 

their interest for the SoS purpose. Particularly, SoS has to face up, efficiently and 

accordingly to its mission, to various dynamic contexts in which disturbances can 

occur due to disruptive actions (from SoS environment or internal sub-systems 

failures [2]) or to new and enabled technological evolutions i.e., it has to maximise its 

resilience. The here presented work aims to help and support resilient SoS design, 

particularly architecting step of the design. Section 2 introduces two approaches for 

resilient SoS architecting that can be combined with a behavioural modelling 

approach named OMAG, briefly introduced. In section 3, retained SoS “–ilities” and 

their interdependence are discussed and formalised. Section 4 illustrates the proposed 

contributions before concluding.  

2 Resilient SoS Architecting 

Architecting a resilient SoS means to consider various interdependent “-ilities” and 

new design approaches. [4] insists on “designing for resilience is about creating a 

system that can bounce back from something no one ever thought would happen”. 

Existing approaches are strongly based on system paradigm and follows Systems 

Engineering principles [24]. In the next we discuss about requested “–ilities” and two 

approaches. 

 
Fig. 1: Overview of “-ilities” dependencies [7] 

Various “–ilities” definitions can be found [6] [7] [8]. The concept of “–ility” can be 

used to characterize both SoS and each of its sub-systems. As illustrated in Fig. 1, it is 

admitted that an “–ility” dynamically vary and is dependant or influenced all along 

SoS life cycle depending on 1) its characteristics (properties, behaviours and “–
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ilities”), 2) the characteristics (properties, behaviours, and –ilities) of its sub-systems, 

and 3) emergent properties and behaviours from sub-systems’ interactions.  

For instance DoD [6] presents resilience as dependant from robustness, flexibility 

and protection “–ilities”. Following the same dependence principles, robustness 

depends from reliability, availability, survivability and maintainability. In the same 

way, the DSTA framework [2] considers two levels of SoS “–ilities”: Key SoS “–

ilities” (robustness and evolvability) and Key Enabling “–ilities” (flexibility 

(operational and design) and interoperability) that have been enriched in Fig. 2 by 

decomposing interoperability definition. 

SoS

 
Fig. 2: Key SoS "–ilities” and Enabling “–ilities” (inspired from DSTA Framework [2]) 

In both cases, whatever the definition for “-ility” and its interdependence with other 

abilities of the SoS, an “–ility” remains difficult to conceptualize from a unified 

manner (that can be even not expected), to handle and to use in confidence in 

architecting process [10] [11] [12]. 

Concerning SoS architecting approaches, first SAI (SoS Architecting with Ilities) 

[8] focuses on value sustainment of both functional and non-functional requirements. 

Fig. 3 shows the essential steps of SAI, especially the steps 4 (Generate initial 

architecture alternatives) and 6 (Evaluate potential alternatives) in which a 

behavioural model of the SoS architecture is built and executed for evaluating the 

chosen “-ilities” defined in step 3. Second, DSTA framework [2] is a methodological 

framework for supporting SoS architecting and a reference framework for choosing 

the most relevant “–ilities” allowing practitioners and manager to drive and manage 

efficiently SoS architecting. In both approaches, the SoS architecting phase (i.e., 

defining strategy, requested operations and scenarios, and specifying architectural 

alternatives according to a more or less high level of abstraction) is apart from SoS 

designing phase (for instance, choice and interfacing of sub-systems, validating 

scenarios). In design phase, several solutions are proposed in [10] to improve various 

“–ilities” to gain resilience e.g. employing redundancy, reducing complexity or 

improving reparability. Alternatives solutions must be modelled and compared thanks 

to an expected value (quantitative or qualitative) level for each “-ility”.  
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Fig. 3: SAI principles approach [8] 

To this purpose, the behavioural modelling method OMAG can support both SAI 

steps and DSTA framework to describe simply and to link the behaviours of a SoS 

and of its sub-systems. This approach is enriched by the formalisation of a set of “–

ilities” by properties allowing their checking or evaluation. 

3 SoS Behavioural Modelling: OMAG Method 

OMAG (Operating Modes Analysis Guide) [13] is a behavioural and functional 

modelling and analysis method allowing: 

- System architect to select the Operating Modes [14] that characterize a system all 

along its life cycle.  

- To determine gradually the expected Properties (functional and non-functional 

i.e. “–ilities”) and Parameters of the system when evolving into a mode.  

- To determine gradually and to model various Operational Scenarios. It is 

question of a functional model describing the dynamic of a system (what are the 

expected functions or activities and how they are chained and synchronised?) in a 

given operating mode. Various modelling languages can be used e.g. BPMN, eFFBD, 

or use case diagram. In OMAG approach, each operational scenario describes a part 

of the whole expected functional architecture of the system. 

OMAG is based on a graphical grid shown in Appendix, detailed and illustrated in 

[13]. Briefly, the OMAG principles are summarized in Fig. 4. Considering a system, 

OMAG requires defining first systems’ attributes and to gather them into a 

ParametersAndPropertiesSet. An attribute is modelled as a Parameter, a valued and 

typed data describing time (temporal aspect e.g. maximum delays for reaction), shape 

(structure e.g. geometric constraints) or space (situation e.g. non-functional 

expectation) characteristics of any element from the system or its environment. 
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Fig. 4: OMAG main elements meta model (simplified view) 

The ParametersAndPropertiesSet is set up and grows up gradually all along the 

architecting process. The set of generic Operating Modes and Transitions is then 

formalised by the grid and the architect must select those relevant for the system and 

to be studied. Each transition is characterized by a couple (condition/event) allowing 

system evolving from an operating to the next. For each mode and transition, architect 

has to model what are the expected operational scenarios allowed in the studied Mode 

or induced / expected to fire the transition. Fig. 4 shows the main elements of a grid 

OMAG allowing to describe and link operating modes, operational scenarios 

associated to each mode, parameters and properties of a system. The result is a 

behavioural model of the studied system conforms to the underlying mathematical 

formalism (inspired from Finite State Machine model [15]). Each operating mode is 

modelled as a state and each mode transition as a state transition. An operational 

semantic of OMAG grid is given in [13] specifying formally with no ambiguity the 

interpretation and execution rules of an OMAG grid. This allows then defining and 

implementing OMAG grid simulation and proof mechanisms not detailed here. These 

mechanisms allow to model and verify properties (modelling properties as non-

functional properties), to approximate “–ilities” values, or to highlight rapidly some 

disturbing or awkward situations the SoS has to face. This can be helpful for SoS 

architect who intends to test and compare various SoS architectural alternatives as 

requested, for instance, in SAI approach.  

4 SoS –ilities and –ilities Dependence Modelling: Property 

Concept 

A 'property' is defined in [18] as "an entity that can be predicated of a thing or, in 
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other words, attributed to it (also called 'attribute', 'quality', 'feature', 'characteristic' 

or 'type')".  [19] introduced a Property-Based Requirements (PBR) theory based on 

semi-lattices on which a property formalizes a portion of a well-formed requirement 

(denoted wf-requirement) and be owned by a system. In this case, a property is 

interpreted as a variable to be quantified or qualified to evaluate the relevance and 

adequacy of a system solution; such an evaluation is to be carried out by using a 

model of the system here, an OMAG grid. [20] postulates that a property is any 

descriptor of an artefact (i.e., a modelling artefact of the system). The property is 

represented as a mathematical function defined for this artefact, associating a (set of) 

value(s) allowing evaluating the solution described by this artefact. [21] and [22] 

define a property as "the formal statement of an expectation by using a formal 

language, i.e., in the form of a logical formula to be proved later".  

These definitions are merged as follows and adopted in the CREI property 

modelling language (Cause Relation Effect Indicators) proposed in [16][17]:  

[A property is] a provable or evaluable (i.e., quantifiable or qualifiable) 

characteristic of an artefact [that is 1) a system S, or 2) a model M of S built for 

achieving a design objective] that translates all or part of stakeholder expectations 

to be satisfied by this artefact.  

The goal is to help managers, architects and designers to formalise “what is” and 

“how” can evolve an “–ility” of a SoS i.e., how it can be influenced or dependent 

from 1) other characteristics of SoS, 2) conditions taking into account external and 

internal events, but also 3) characteristics related to each sub-systems of SoS or 

resulting from their interactions.  

A CREI property is formalized as a composite entity made up of a group of causes 

(C) correlated with a group of effects (E) via a parameterized and constrained relation 

(R) between C and E describing the condition and the expected effects under which 

the property is satisfied. This relationship formally describes how the set of causes C 

induces a modification in the entire set of effects E. Moreover, a set I of indicators 

can be associated with R to make property assessable. These indicators are the 

observation variable and Design variables2 [20]. For the formalization, we define the 

set Φ as the set of user-defined or predefined properties of the studied system. A 

CREI Property CP is defined as: 

CP ::= < referencecp, C , R , E , checkingValuecp, [I , evaluationValuecp] > 

With: 

- referencecp ∈ S is a handle (unique) for property proof traceability. 

- C = {vi / vi ∈ ParametersSet ∪ Φ, i ∈ [0 ; card(ParametersSet ∪ Φ)]}, i.e., C can 

be empty (C = ∅): the property is then considered to be an own property3, 

otherwise (C <> ∅) as a composite property4. 

- E = { vj / vj ∈ F ∪ Φ, j ∈ ]0 ; card(F ∪ Φ)]} i.e., E <> ∅. 

- R ::= <Tp, θc , θe, relationType, θi >, where: 

                                                           
2 An observation variable allows modelling an expected performance level or an expected "i-

lity" level. A design variable allows to handle and to set up values corresponding with 

potential design choices. 
3 An own property models expected values of a (set of) Parameter(s).  
4 A composite property is to be characterized by the causal relation. 
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− Tp = C ∩ E is the set of variables that may be simultaneously used for 

describing causes and effects. 

− θc: Tp
k
 x C

m
 x ℝ

+*n
→ { True, False } defines the Boolean function describing 

the condition under which the causes of C are interpreted. By default, the 

function θc returns True (denoted θc= True in the next): 

(t1, … , tk, c1, … , cm, r1, … , rn) → θc(t1, … , tk, c1, … , cm, r1, … , rn) ∈ { True, False } 

− θe: Tp
o x Ep x ℝ +*q → { True, False } defines the Boolean function describing 

the condition under which the effects of E are interpreted. By default, the 

function θe returns False (denoted θe= False in the next): 

(t1, … , to, e1, … , ep, r1, … , rq) → θe(t1, … , to, e1, … , ep, r1, … , rq) ∈ { True, False } 

− At this stage, relationType models the relation to be checked: 'C implies E', 'C 

is equivalent to E', or 'C influences E' formalized as follows: 

° ‘C implies E’ is defined as the logical function: θc ⟹ θe  

° 'C is equivalent to E' is defined as the logical function: θc ⟺ θe  

° 'C influences E' is defined as the function: θc ⇢θi θe. This relation is 

defined by [23] as "in knowing with certainty C, we can then deduce E with 

certainty", i.e., knowing the values (and their variation) of the causes defined in C 

allows to deduce the possible values (and their potential variation) of effects defined 

in E by defining an influence factor θi ∈ [-1,1] allowing to interpret a beneficial vs. 

harmful influence as follows: 

° θi → 0: the influence exists between the causes and effects remaining more 

or less neutral (by default, θi = 0); 

° θi → 1: each variation of the variables used in C induces a variation of the 

variables used in E, interpreted as beneficial for the system; 

° θi → -1: each variation of the variables used in C, induces a variation of the 

variables used in E, interpreted as harmful for the system; 

- checkingValuecp is set to True, else False (i.e., if a checking technique can be 

applied on the model for proving the property CP and can conclude CP is 

satisfied, False otherwise, thus providing a counterexample). 

- (optional) [I, evaluationValuecp] I ⊆ ParametersSet is a set of indicators that can 

be evaluated to characterize the truthfulness of the property CP (e.g. in case of 

simulation or for guiding the appraisal): I = {ij / ij ∈ ParametersSet, j ∈ [0, 

card(ParametersSet)]}, where ij is a Modeling Variable extracted from the system 

model. In case of I is defined, then CP.evaluationValuecp=μ(I), where μ is the 

aggregation function chosen for the evaluation, e.g. μ can be defined by μ ::= 

1/card(I)*∑I(i.value). CP can be considered as satisfied as proposed in [19] i.e. 

CP.checkingValuecp = True if and only if ∀i∈I, i.value ∈ i.objectif ∧ i.value ∈ 

i.valueset otherwise not satisfied, i.e., CP.checkingValuecp = False. 

As an illustration, we focus on the next on the interoperability of each sub-system 

making up the SoS, considering the ‘key enabling –ility’ role of this characteristic [2] 

and its direct influence on the objectives of resilient SoS architecting project. 

For this, we consider (see Fig. 5) there are some dependencies to respect 

(evaluated by using 5 levels of dependencies from preferred to forbidden) between the 

operating modes of the SoS and the operating modes of sub-system at each moment, 
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taking into account their dynamical evolution. For instance, when the SoS works and 

fulfil the mission (SoS is in Operating Mode O3), it seems important (++) that a 

maximum of sub-systems can be able to provide their own mission, and to operate 

efficiently (sub-systems have to be preferably in Operating Modes O1 to O5). Some 

of these sub-systems can also (+) be under deployment (operating Mode D1) for 

instance if these sub-systems have to replace existing sub-systems at a given moment, 

assuming then architectural evolution of the SoS. Conversely, it seems inacceptable (-

-) that a sub-system must be in dismantling operating mode (EL1 or EL2). These 

interdependencies are, of course, indicative: architect can modify them without any 

impact on the property formalisation and analysis that follows. Other tables can be 

built for maintainability, resilience or robustness as expected in [2].  
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Fig. 5: operating modes dependencies considering requested interoperability 

The interoperability characteristic of the SoS is formalized as the property P as 

follows: 

1. Cause := ∀OMSoS ∈ OperatingModes(SoS) ; OMAG grid behaviour is translated 

into symbolic logico-temporal formulae. Each transition between Operating 

Modes selected by architect is modelled as an Elementary Valid Formula (EVF) 

[26] modified as follows5: 

EVF ::= �  ( OMi ∧ eventj ∧ conditionk  ⊃ oOMl ∧ scenariom ) 

With:  

- OMi and OMl are propositional variables modelling the source and 

destination operating modes of the transition, and set to True if the studied system 

is in the corresponding operating mode, false otherwise.  

- eventj and conditionk are propositional variables set to True if event and 

                                                           
5 The formula oA means that the propositional variable A will be true at the next moment in a 

common logical and unified time scale. 
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condition associated to the transition are True, false otherwise. 

The entire list of EVFs defines a symbolic and formal description of the behaviour of 

the OMAG grid. Similarly, a Unified Valid Formula (UVF) is computed by taking 

EVFs into consideration. Here considered, an UVF is the set of conditions i.e. θc 

which specifies how a given Operating Mode OM can be activated:  

conditioneventOM

conditioneventOM

),,(

)(: rqSoS

oOMrqSoS

rqp

oOMUVF

SoS

SoSc ∧∧

⊃∧∧

== ∨θ

 
2. Relation := (influences) ; Indicators are user-defined and computed including 

parameters associated to sub-systems e.g. the latency time or interoperation time 

as proposed in [25]. 

3. Effect := SSi ∈ SubSystems(SoS) ; Fig. 5 shows how dependency vectors 

(denoted V++, V+, V*, V- and V—) are computed regarding each state of the SoS 

for a top down analysis of the dependence relations. We focus on the preferred 

states of the sub-system i.e., those characterized by a dependence relation ‘++’. 

The state vector V of the SoS (resp. sub-system) is 1x18 vector defined as follows: 

 
 (there are 18 possible operating modes in the current OMAG grid and the sub-system 

SSi must be in one and only one operating mode OMk) 

So θe is defined as follows: 

 
Where: 

- Tk is the set of output transitions from the preferred operating mode OM of the 

sub-system SSi that is preferred when SoS is in operating mode OMSoS. 

- ==1 iff SSi is in the 

state OM and will stay in this state at the next moment or if the state OM will be 

activated at the next moment.  

The same computation process is used for determining θe in the case of dependence 

relation that indicates the operating mode of SSi is acceptable, neutral, not 

recommended or forbidden. In the same way, the same computation approach is used 

in a bottom-up analysis regarding the dependence relations between each operating 

mode of each SSi and SoS operating mode.  

Simulation (following operational semantics given in [13]), evaluation of 

parameters and the generation of counter examples provided by checking technique 

proposed in [26] and developed in [27] are suitable for allowing architect to detect 1) 

modelling errors or mistakes, 2) unwanted or unexpected behaviour inducing non-

functional properties variation. Fig. 6 shows a big picture of the overall approach 

consisting to use OMAG and properties modelling, checking and evaluation in SAI 

approach.  
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6 Conclusion and Perspectives 

A demonstrator of the OMAG grid and properties modelling tool is currently being 

tested. The automated properties building, taking into account various version of 

dependence tables, properties checking and OMAG grid simulation techniques are 

under development by using framework developed in [27]. The goal is now to test the 

overall approach on relevant case studies. The perspective is to enrich the two 

aforementioned analysis techniques when facing problematic of growing up models’ 

size and complexity (e.g. due to number of OMAG to be considered).  

Modelling (steps 4 and 6 from [8])

- Determine expected–ilities

- For each select –ility:

• Choose and parametrize Operating Modes dependence 

grid 

• Choose relevant parameters regarding SoS mission

- Model SoS and Sub systems

• Specify Mission, Finality, Objectives (Parameters), 

roles, capacities, requested interactions (Material / 

Information / Energy Flows) and requested interfaces

• Build behavioural models by using OMAG grid:

� Select relevant Operating Modes

� Specify event/condition associated to each transition 

between selected Operating Modes

� Build ParametersSet

� For each Operating modes

- Define operational scenarios

- Specify relations (see meta model figure 4 between 

Operating Modes / Parameters / Operational 

Scenarios)

Analysis

- Identify potential external and internal perturbations

- Analyse behaviour by taking into account these 

perturbations:

• Determine initial Operating Mode of SoS and of each 

sub-systems

• Simulate OMAG grids evolution

• For each execution path: analyse properties

� Transform OMAG grid behaviours into logico-

temporal formulas

� Compute EVF and FVU

� For each –ility, formalize it as (a set of) property(ies)

� Check / Evaluate properties
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Fig. 6: Overview of the approach (big picture) 
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