
HAL Id: hal-01437925
https://inria.hal.science/hal-01437925

Submitted on 17 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

System of Systems Architecting: A Behavioural and
Properties Based Approach for SoS “–ilities” Modelling

and Analysis
Vincent Chapurlat, Nicolas Daclin

To cite this version:
Vincent Chapurlat, Nicolas Daclin. System of Systems Architecting: A Behavioural and Properties
Based Approach for SoS “–ilities” Modelling and Analysis. 16th Working Conference on Virtual
Enterprises (PROVE), Oct 2015, Albi, France. pp.591-603, �10.1007/978-3-319-24141-8_55�. �hal-
01437925�

https://inria.hal.science/hal-01437925
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

System of Systems Architecting: A Behavioural and

Properties based Approach for

SoS “–ilities” Modelling and Analysis

Vincent Chapurlat, Nicolas Daclin

LGI2P Ecole des mines d’Alès, 69 rue G. Besse, 30035 Nîmes Cedex 1, France

{Vincent.Chapurlat, Nicolas.Daclin}@mines-ales.fr

Abstract. Architecting a System of Systems (SoS) is a complex task.

Capabilities of heterogeneous and interactive sub-systems are composed to

fulfil a mission, while preserving, as possible, the autonomy, independence,

geographic distribution… of sub-systems and to face up efficiently while

remaining as resilient as possible to disturbances and emergent phenomenon.

The “-ilities” are relevant non-functional abilities (e.g. robustness, resilience,

flexibility, adaptability, survivability, interoperability…) for guiding SoS

architects and managers to choose and interface sub-systems. The goal is to

become able to increase or decrease the value of these “–ilities” thanks to their

interest for the SoS mission. The here presented work aims to support resilient

SoS design and, in particular, their architecting by proposing a formalised

model of property allowing to define and describe an “–ility” and a behavioural

modelling approach to evaluate it.

Keywords: System of Systems, “–ilities”, Non-functional Properties,

Resilience, SoS behavioural modelling, Dependencies, Formalisation

1 Introduction

A System of Systems (SoS) is composed of (in most cases, existing) heterogeneous

sub systems chosen for their capabilities, assembled and interfaced to interact during a

time-frame and to provide capabilities to achieve a mission that each sub system

cannot fulfil alone [1]. First, some characteristics of sub systems must be preserved:

operational and managerial independence, evolutionary development, geographic

distribution, and connectivity. Second, requested interactions induce emergent

phenomenon (new properties and behaviours with more or less predictable and

unwanted effects) at the SoS level that can favour or affect the achievement of its

objectives and mission. Third, it is now recognized, for SoS, the relevance of specific

properties called “-ilities”. An “-ility” 1 is an “ability to respond to changes, both

1 An “–ility” (plural “-ilities”) [5] is “a developmental, operational, and support requirements a

program must address (e.g. availability, maintainability, vulnerability, reliability,

supportability” which are generally non-functional requirements.

584 V. Chapurlat and N. Daclin

foreseeable and unforeseeable” focusing on “how the SoS should be and not what it

should do” [2]. For a SoS, “-ilities” differ from authors, but essentials ones remain:

robustness, resilience, flexibility, adaptability, survivability, interoperability,

sustainability, reliability, availability, maintainability and safety; each “-ility” can be

strongly dependant or influenced by various causes considering SoS context,

evolution period of its life cycle and emerging phenomenon. So, architecting a SoS

implies to study these “-ilities” and how to increase or decrease their values thanks to

their interest for the SoS purpose. Particularly, SoS has to face up, efficiently and

accordingly to its mission, to various dynamic contexts in which disturbances can

occur due to disruptive actions (from SoS environment or internal sub-systems

failures [2]) or to new and enabled technological evolutions i.e., it has to maximise its

resilience. The here presented work aims to help and support resilient SoS design,

particularly architecting step of the design. Section 2 introduces two approaches for

resilient SoS architecting that can be combined with a behavioural modelling

approach named OMAG, briefly introduced. In section 3, retained SoS “–ilities” and

their interdependence are discussed and formalised. Section 4 illustrates the proposed

contributions before concluding.

2 Resilient SoS Architecting

Architecting a resilient SoS means to consider various interdependent “-ilities” and

new design approaches. [4] insists on “designing for resilience is about creating a

system that can bounce back from something no one ever thought would happen”.

Existing approaches are strongly based on system paradigm and follows Systems

Engineering principles [24]. In the next we discuss about requested “–ilities” and two

approaches.

Fig. 1: Overview of “-ilities” dependencies [7]

Various “–ilities” definitions can be found [6] [7] [8]. The concept of “–ility” can be

used to characterize both SoS and each of its sub-systems. As illustrated in Fig. 1, it is

admitted that an “–ility” dynamically vary and is dependant or influenced all along

SoS life cycle depending on 1) its characteristics (properties, behaviours and “–

System of Systems Architecting: A Behavioural and Properties based Approach 585

ilities”), 2) the characteristics (properties, behaviours, and –ilities) of its sub-systems,

and 3) emergent properties and behaviours from sub-systems’ interactions.

For instance DoD [6] presents resilience as dependant from robustness, flexibility

and protection “–ilities”. Following the same dependence principles, robustness

depends from reliability, availability, survivability and maintainability. In the same

way, the DSTA framework [2] considers two levels of SoS “–ilities”: Key SoS “–

ilities” (robustness and evolvability) and Key Enabling “–ilities” (flexibility

(operational and design) and interoperability) that have been enriched in Fig. 2 by

decomposing interoperability definition.

SoS

Fig. 2: Key SoS "–ilities” and Enabling “–ilities” (inspired from DSTA Framework [2])

In both cases, whatever the definition for “-ility” and its interdependence with other

abilities of the SoS, an “–ility” remains difficult to conceptualize from a unified

manner (that can be even not expected), to handle and to use in confidence in

architecting process [10] [11] [12].

Concerning SoS architecting approaches, first SAI (SoS Architecting with Ilities)

[8] focuses on value sustainment of both functional and non-functional requirements.

Fig. 3 shows the essential steps of SAI, especially the steps 4 (Generate initial

architecture alternatives) and 6 (Evaluate potential alternatives) in which a

behavioural model of the SoS architecture is built and executed for evaluating the

chosen “-ilities” defined in step 3. Second, DSTA framework [2] is a methodological

framework for supporting SoS architecting and a reference framework for choosing

the most relevant “–ilities” allowing practitioners and manager to drive and manage

efficiently SoS architecting. In both approaches, the SoS architecting phase (i.e.,

defining strategy, requested operations and scenarios, and specifying architectural

alternatives according to a more or less high level of abstraction) is apart from SoS

designing phase (for instance, choice and interfacing of sub-systems, validating

scenarios). In design phase, several solutions are proposed in [10] to improve various

“–ilities” to gain resilience e.g. employing redundancy, reducing complexity or

improving reparability. Alternatives solutions must be modelled and compared thanks

to an expected value (quantitative or qualitative) level for each “-ility”.

586 V. Chapurlat and N. Daclin

Fig. 3: SAI principles approach [8]

To this purpose, the behavioural modelling method OMAG can support both SAI

steps and DSTA framework to describe simply and to link the behaviours of a SoS

and of its sub-systems. This approach is enriched by the formalisation of a set of “–

ilities” by properties allowing their checking or evaluation.

3 SoS Behavioural Modelling: OMAG Method

OMAG (Operating Modes Analysis Guide) [13] is a behavioural and functional

modelling and analysis method allowing:

- System architect to select the Operating Modes [14] that characterize a system all

along its life cycle.

- To determine gradually the expected Properties (functional and non-functional

i.e. “–ilities”) and Parameters of the system when evolving into a mode.

- To determine gradually and to model various Operational Scenarios. It is

question of a functional model describing the dynamic of a system (what are the

expected functions or activities and how they are chained and synchronised?) in a

given operating mode. Various modelling languages can be used e.g. BPMN, eFFBD,

or use case diagram. In OMAG approach, each operational scenario describes a part

of the whole expected functional architecture of the system.

OMAG is based on a graphical grid shown in Appendix, detailed and illustrated in

[13]. Briefly, the OMAG principles are summarized in Fig. 4. Considering a system,

OMAG requires defining first systems’ attributes and to gather them into a

ParametersAndPropertiesSet. An attribute is modelled as a Parameter, a valued and

typed data describing time (temporal aspect e.g. maximum delays for reaction), shape

(structure e.g. geometric constraints) or space (situation e.g. non-functional

expectation) characteristics of any element from the system or its environment.

System of Systems Architecting: A Behavioural and Properties based Approach 587

Fig. 4: OMAG main elements meta model (simplified view)

The ParametersAndPropertiesSet is set up and grows up gradually all along the

architecting process. The set of generic Operating Modes and Transitions is then

formalised by the grid and the architect must select those relevant for the system and

to be studied. Each transition is characterized by a couple (condition/event) allowing

system evolving from an operating to the next. For each mode and transition, architect

has to model what are the expected operational scenarios allowed in the studied Mode

or induced / expected to fire the transition. Fig. 4 shows the main elements of a grid

OMAG allowing to describe and link operating modes, operational scenarios

associated to each mode, parameters and properties of a system. The result is a

behavioural model of the studied system conforms to the underlying mathematical

formalism (inspired from Finite State Machine model [15]). Each operating mode is

modelled as a state and each mode transition as a state transition. An operational

semantic of OMAG grid is given in [13] specifying formally with no ambiguity the

interpretation and execution rules of an OMAG grid. This allows then defining and

implementing OMAG grid simulation and proof mechanisms not detailed here. These

mechanisms allow to model and verify properties (modelling properties as non-

functional properties), to approximate “–ilities” values, or to highlight rapidly some

disturbing or awkward situations the SoS has to face. This can be helpful for SoS

architect who intends to test and compare various SoS architectural alternatives as

requested, for instance, in SAI approach.

4 SoS –ilities and –ilities Dependence Modelling: Property

Concept

A 'property' is defined in [18] as "an entity that can be predicated of a thing or, in

588 V. Chapurlat and N. Daclin

other words, attributed to it (also called 'attribute', 'quality', 'feature', 'characteristic'

or 'type')". [19] introduced a Property-Based Requirements (PBR) theory based on

semi-lattices on which a property formalizes a portion of a well-formed requirement

(denoted wf-requirement) and be owned by a system. In this case, a property is

interpreted as a variable to be quantified or qualified to evaluate the relevance and

adequacy of a system solution; such an evaluation is to be carried out by using a

model of the system here, an OMAG grid. [20] postulates that a property is any

descriptor of an artefact (i.e., a modelling artefact of the system). The property is

represented as a mathematical function defined for this artefact, associating a (set of)

value(s) allowing evaluating the solution described by this artefact. [21] and [22]

define a property as "the formal statement of an expectation by using a formal

language, i.e., in the form of a logical formula to be proved later".

These definitions are merged as follows and adopted in the CREI property

modelling language (Cause Relation Effect Indicators) proposed in [16][17]:

[A property is] a provable or evaluable (i.e., quantifiable or qualifiable)

characteristic of an artefact [that is 1) a system S, or 2) a model M of S built for

achieving a design objective] that translates all or part of stakeholder expectations

to be satisfied by this artefact.

The goal is to help managers, architects and designers to formalise “what is” and

“how” can evolve an “–ility” of a SoS i.e., how it can be influenced or dependent

from 1) other characteristics of SoS, 2) conditions taking into account external and

internal events, but also 3) characteristics related to each sub-systems of SoS or

resulting from their interactions.

A CREI property is formalized as a composite entity made up of a group of causes

(C) correlated with a group of effects (E) via a parameterized and constrained relation

(R) between C and E describing the condition and the expected effects under which

the property is satisfied. This relationship formally describes how the set of causes C

induces a modification in the entire set of effects E. Moreover, a set I of indicators

can be associated with R to make property assessable. These indicators are the

observation variable and Design variables2 [20]. For the formalization, we define the

set Φ as the set of user-defined or predefined properties of the studied system. A

CREI Property CP is defined as:

CP ::= < referencecp, C , R , E , checkingValuecp, [I , evaluationValuecp] >

With:

- referencecp ∈ S is a handle (unique) for property proof traceability.

- C = {vi / vi ∈ ParametersSet ∪ Φ, i ∈ [0 ; card(ParametersSet ∪ Φ)]}, i.e., C can

be empty (C = ∅): the property is then considered to be an own property3,

otherwise (C <> ∅) as a composite property4.

- E = { vj / vj ∈ F ∪ Φ, j ∈]0 ; card(F ∪ Φ)]} i.e., E <> ∅.

- R ::= <Tp, θc , θe, relationType, θi >, where:

2 An observation variable allows modelling an expected performance level or an expected "i-

lity" level. A design variable allows to handle and to set up values corresponding with

potential design choices.
3 An own property models expected values of a (set of) Parameter(s).
4 A composite property is to be characterized by the causal relation.

System of Systems Architecting: A Behavioural and Properties based Approach 589

− Tp = C ∩ E is the set of variables that may be simultaneously used for

describing causes and effects.

− θc: Tp
k
 x C

m
 x ℝ

+*n
→ { True, False } defines the Boolean function describing

the condition under which the causes of C are interpreted. By default, the

function θc returns True (denoted θc= True in the next):

(t1, … , tk, c1, … , cm, r1, … , rn) → θc(t1, … , tk, c1, … , cm, r1, … , rn) ∈ { True, False }

− θe: Tp
o x Ep x ℝ +*q → { True, False } defines the Boolean function describing

the condition under which the effects of E are interpreted. By default, the

function θe returns False (denoted θe= False in the next):

(t1, … , to, e1, … , ep, r1, … , rq) → θe(t1, … , to, e1, … , ep, r1, … , rq) ∈ { True, False }

− At this stage, relationType models the relation to be checked: 'C implies E', 'C

is equivalent to E', or 'C influences E' formalized as follows:

° ‘C implies E’ is defined as the logical function: θc ⟹ θe

° 'C is equivalent to E' is defined as the logical function: θc ⟺ θe

° 'C influences E' is defined as the function: θc ⇢θi θe. This relation is

defined by [23] as "in knowing with certainty C, we can then deduce E with

certainty", i.e., knowing the values (and their variation) of the causes defined in C

allows to deduce the possible values (and their potential variation) of effects defined

in E by defining an influence factor θi ∈ [-1,1] allowing to interpret a beneficial vs.

harmful influence as follows:

° θi → 0: the influence exists between the causes and effects remaining more

or less neutral (by default, θi = 0);

° θi → 1: each variation of the variables used in C induces a variation of the

variables used in E, interpreted as beneficial for the system;

° θi → -1: each variation of the variables used in C, induces a variation of the

variables used in E, interpreted as harmful for the system;

- checkingValuecp is set to True, else False (i.e., if a checking technique can be

applied on the model for proving the property CP and can conclude CP is

satisfied, False otherwise, thus providing a counterexample).

- (optional) [I, evaluationValuecp] I ⊆ ParametersSet is a set of indicators that can

be evaluated to characterize the truthfulness of the property CP (e.g. in case of

simulation or for guiding the appraisal): I = {ij / ij ∈ ParametersSet, j ∈ [0,

card(ParametersSet)]}, where ij is a Modeling Variable extracted from the system

model. In case of I is defined, then CP.evaluationValuecp=μ(I), where μ is the

aggregation function chosen for the evaluation, e.g. μ can be defined by μ ::=

1/card(I)*∑I(i.value). CP can be considered as satisfied as proposed in [19] i.e.

CP.checkingValuecp = True if and only if ∀i∈I, i.value ∈ i.objectif ∧ i.value ∈

i.valueset otherwise not satisfied, i.e., CP.checkingValuecp = False.

As an illustration, we focus on the next on the interoperability of each sub-system

making up the SoS, considering the ‘key enabling –ility’ role of this characteristic [2]

and its direct influence on the objectives of resilient SoS architecting project.

For this, we consider (see Fig. 5) there are some dependencies to respect

(evaluated by using 5 levels of dependencies from preferred to forbidden) between the

operating modes of the SoS and the operating modes of sub-system at each moment,

590 V. Chapurlat and N. Daclin

taking into account their dynamical evolution. For instance, when the SoS works and

fulfil the mission (SoS is in Operating Mode O3), it seems important (++) that a

maximum of sub-systems can be able to provide their own mission, and to operate

efficiently (sub-systems have to be preferably in Operating Modes O1 to O5). Some

of these sub-systems can also (+) be under deployment (operating Mode D1) for

instance if these sub-systems have to replace existing sub-systems at a given moment,

assuming then architectural evolution of the SoS. Conversely, it seems inacceptable (-

-) that a sub-system must be in dismantling operating mode (EL1 or EL2). These

interdependencies are, of course, indicative: architect can modify them without any

impact on the property formalisation and analysis that follows. Other tables can be

built for maintainability, resilience or robustness as expected in [2].

++

+

*

-

--

Prefered

Acceptable

Neutral

Not recommended

Forbidden

 SoS

SS

R D
1

D
2

D
3

O
1

O
2

O
3

O
4

O
5

D
M

1

D
M

2

D
M

3

M
E
1

M
E
2

M
E
3

M
E
4

E
L1

E
L2

R * -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

D1 * + + + + + + + + + + + + + + + * *

D2 * + + + - - - - - * * * * * * * * *

D3 * + + + * * * * * * * * * * * * * *

O1 * + + + ++ ++ ++ ++ ++ * * * * * * * * *

O2 * + + + ++ ++ ++ ++ ++ * * * * * * * * *

O3 * + + + ++ ++ ++ ++ ++ * * * * * * * * *

O4 * + + + ++ ++ ++ ++ ++ * * * * * * * * *

O5 * + + + ++ ++ ++ ++ ++ * * * * * * * * *

DM1 * - - - - - - - - * * * * * * * * *

DM2 * - - - - - - - - * * * * * * * * *

DM3 * - - - - - - - - * * * * * * * * *

ME1 * - - - - - - - - * * * * * * * * *

ME2 * - - - - - - - - * * * * * * * * *

ME3 * - - - - - - - - * * * * * * * * *

ME4 * - - - - - - - - * * * * * * * * *

EL1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- * --

EL2 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- +

Operating modes of
SoS

Operating modes of
Sub systems

SS

R

D1

D2

D3

O1

O2

O3

O4

O5

DM1

DM2

DM3

ME1

ME2

ME3

ME4

EL1

EL2

SoS

O
3

V
+

+

V
+

V
*

V
-

V
--

-- 0 0 0 0 1

+ 0 1 0 0 0

- 0 0 0 1 0

* 0 0 1 0 0

++ 1 0 0 0 0

++ 1 0 0 0 0

++ 1 0 0 0 0

++ 1 0 0 0 0

++ 1 0 0 0 0

- 0 0 0 1 0

- 0 0 0 1 0

- 0 0 0 1 0

- 0 0 0 1 0

- 0 0 0 1 0

- 0 0 0 1 0

- 0 0 0 1 0

-- 0 0 0 0 1

-- 0 0 0 0 1

Sub systems

Fig. 5: operating modes dependencies considering requested interoperability

The interoperability characteristic of the SoS is formalized as the property P as

follows:

1. Cause := ∀OMSoS ∈ OperatingModes(SoS) ; OMAG grid behaviour is translated

into symbolic logico-temporal formulae. Each transition between Operating

Modes selected by architect is modelled as an Elementary Valid Formula (EVF)

[26] modified as follows5:

EVF ::= � (OMi ∧ eventj ∧ conditionk ⊃ oOMl ∧ scenariom)

With:

- OMi and OMl are propositional variables modelling the source and

destination operating modes of the transition, and set to True if the studied system

is in the corresponding operating mode, false otherwise.

- eventj and conditionk are propositional variables set to True if event and

5 The formula oA means that the propositional variable A will be true at the next moment in a

common logical and unified time scale.

System of Systems Architecting: A Behavioural and Properties based Approach 591

condition associated to the transition are True, false otherwise.

The entire list of EVFs defines a symbolic and formal description of the behaviour of

the OMAG grid. Similarly, a Unified Valid Formula (UVF) is computed by taking

EVFs into consideration. Here considered, an UVF is the set of conditions i.e. θc

which specifies how a given Operating Mode OM can be activated:

conditioneventOM

conditioneventOM

),,(

)(: rqSoS

oOMrqSoS

rqp

oOMUVF

SoS

SoSc ∧∧

⊃∧∧

== ∨θ

2. Relation := (influences) ; Indicators are user-defined and computed including

parameters associated to sub-systems e.g. the latency time or interoperation time

as proposed in [25].

3. Effect := SSi ∈ SubSystems(SoS) ; Fig. 5 shows how dependency vectors

(denoted V++, V+, V*, V- and V—) are computed regarding each state of the SoS

for a top down analysis of the dependence relations. We focus on the preferred

states of the sub-system i.e., those characterized by a dependence relation ‘++’.

The state vector V of the SoS (resp. sub-system) is 1x18 vector defined as follows:

 (there are 18 possible operating modes in the current OMAG grid and the sub-system

SSi must be in one and only one operating mode OMk)

So θe is defined as follows:

Where:

- Tk is the set of output transitions from the preferred operating mode OM of the

sub-system SSi that is preferred when SoS is in operating mode OMSoS.

- ==1 iff SSi is in the

state OM and will stay in this state at the next moment or if the state OM will be

activated at the next moment.

The same computation process is used for determining θe in the case of dependence

relation that indicates the operating mode of SSi is acceptable, neutral, not

recommended or forbidden. In the same way, the same computation approach is used

in a bottom-up analysis regarding the dependence relations between each operating

mode of each SSi and SoS operating mode.

Simulation (following operational semantics given in [13]), evaluation of

parameters and the generation of counter examples provided by checking technique

proposed in [26] and developed in [27] are suitable for allowing architect to detect 1)

modelling errors or mistakes, 2) unwanted or unexpected behaviour inducing non-

functional properties variation. Fig. 6 shows a big picture of the overall approach

consisting to use OMAG and properties modelling, checking and evaluation in SAI

approach.

592 V. Chapurlat and N. Daclin

6 Conclusion and Perspectives

A demonstrator of the OMAG grid and properties modelling tool is currently being

tested. The automated properties building, taking into account various version of

dependence tables, properties checking and OMAG grid simulation techniques are

under development by using framework developed in [27]. The goal is now to test the

overall approach on relevant case studies. The perspective is to enrich the two

aforementioned analysis techniques when facing problematic of growing up models’

size and complexity (e.g. due to number of OMAG to be considered).

Modelling (steps 4 and 6 from [8])

- Determine expected–ilities

- For each select –ility:

• Choose and parametrize Operating Modes dependence

grid

• Choose relevant parameters regarding SoS mission

- Model SoS and Sub systems

• Specify Mission, Finality, Objectives (Parameters),

roles, capacities, requested interactions (Material /

Information / Energy Flows) and requested interfaces

• Build behavioural models by using OMAG grid:

� Select relevant Operating Modes

� Specify event/condition associated to each transition

between selected Operating Modes

� Build ParametersSet

� For each Operating modes

- Define operational scenarios

- Specify relations (see meta model figure 4 between

Operating Modes / Parameters / Operational

Scenarios)

Analysis

- Identify potential external and internal perturbations

- Analyse behaviour by taking into account these

perturbations:

• Determine initial Operating Mode of SoS and of each

sub-systems

• Simulate OMAG grids evolution

• For each execution path: analyse properties

� Transform OMAG grid behaviours into logico-

temporal formulas

� Compute EVF and FVU

� For each –ility, formalize it as (a set of) property(ies)

� Check / Evaluate properties

It
e
ra

te
 u

n
ti

l
p

ro
p

er
ti

es
 a

re
 s

at
is

fi
e
d
 o

r
re

la
x

ed
 b

y
 a

rc
h

it
ec

t

 SoS

SS
R D1 D2 D3 O1 O2 O3 O4 O5 DM1 DM2 DM3 ME1 ME2 ME3 ME4 EL1 EL2

R * -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

D1 * + + + + + + + + + + + + + + + * *

D2 * + + + - - - - - * * * * * * * * *

D3 * + + + * * * * * * * * * * * * * *

O1 * + + + ++ ++ ++ ++ ++ * * * * * * * * *

O2 * + + + ++ ++ ++ ++ ++ * * * * * * * * *

O3 * + + + ++ ++ ++ ++ ++ * * * * * * * * *

O4 * + + + ++ ++ ++ ++ ++ * * * * * * * * *

O5 * + + + ++ ++ ++ ++ ++ * * * * * * * * *

DM1 * - - - - - - - - * * * * * * * * *

DM2 * - - - - - - - - * * * * * * * * *

DM3 * - - - - - - - - * * * * * * * * *

ME1 * - - - - - - - - * * * * * * * * *

ME2 * - - - - - - - - * * * * * * * * *

ME3 * - - - - - - - - * * * * * * * * *

ME4 * - - - - - - - - * * * * * * * * *

EL1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- * --

EL2 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- +

Simulator / FVU Model

Checker [27]

Results / Counter examples

Fig. 6: Overview of the approach (big picture)

Acknowledgement. The authors thank A. Monfouga and R. Blainvillier for their

involvement in the development of a demonstrator for modelling OMAG grid.

References

1. Maier, M.W.: Architecting principles for systems-of-systems. Syst. Eng. 1, 267–284, 1998

2. KANG Shian Chin, PEE Eng Yau, SIM Kok Wah, PANG Chung Khiang, Framework for

managing System-of-systems ilities, DSTA HORIZONS, 2013/14

System of Systems Architecting: A Behavioural and Properties based Approach 593

3. Timothy L.J. Ferris, It Depends: Systems of systems engineering requires new methods if

you are talking about new kinds of systems of systems, INCOSE 2006, SoS panel

(http://www.3milsys.com/sys_of_sys.asp [last visited 2011-07-12])

4. Weck O., Roos D. Magee C, Engineering Systems: Meeting Human Needs in a Complex

Technological World, chapter 4, MIT Press, January 2012

5. INCOSE, System Engineering (SE) Handbook Working Group, System Engineering

Handbook, A Guide For System Life Cycle Processes And Activities Version 3.2.1,

INCOSE TP 2003 002 03.2., 2011

6. ESD Terms and Definitions (Version 12), ESD Symposium Committee, October 19, 2001,

Massachusetts Institute of Technology Engineering Systems Division, Working Paper

Series, SD-WP-2002-01

7. Adam M. Ross and Donna H. Rhodes, Towards a Prescriptive Semantic Basis for Change-

type Ilities, 2015 Conference on Systems Engineering Research, Procedia Computer

Science 44 (2015) 443 – 453

8. Nicola Ricci, Matthew E. Fitzgerald, Adam M. Ross, Donna H. Rhodes, Architecting

Systems of Systems with Ilities: an Overview of the SAI Method, Systems Engineering

Research (CSER 2014), March 21-22, 2014

9. Adam M. Ross, Adaptive and Resilient Space Systems Panel, AIAA Space 2011 Long

Beach, CA 28 September, 2011

10. Warren K. Vaneman and Kostas Triantis, An Analytical Approach to Assessing Emergent

Behavior is a System of System, SEDC 2014, Chantilly, VA, 3-5 April 2014

11. Hugh L. McManus, Matthew G. Richards, Adam M. Ross, and Daniel E. Hastings, A

Framework for Incorporating “ilities” in Tradespace Studies, A Collection of Technical

Papers - AIAA Space 2007 Conference, Vol. 1, pp. 941-954

12. Ke Dou, Xi Wang, Chong Tang, Adam Ross, Kevin Sullivan, An Evolutionary Theory-

Systems Approach to a Science of the Ilities, Systems Engineering Research (CSER 2015)

13. Chapurlat V., Daclin N., Proposition of a guide for investigating, modeling and analyzing

system operating modes: OMAG, Complex Systems Design and Management CSDM, 2013

14. Charles S.Wasson, System Analysis, Design and Development: concepts, principles and

practices, Wiley Intersciences Eds., 2014

15. K.T.Cheng, A.S.Krishnakumar ‘Automatic functional test generation using the Extended

Finite State Machine Model’, 30th ACM/IEEE Design Automation Conference, USA, 1993

16. Chapurlat V., UPSL-SE: A Model Verification Framework for Systems Engineering,

Computers in Industry, Computers in Industry 64 (2013), pp. 581–597

17. Chapurlat V., Property concept and modelling language for Model-Based Systems

Engineering (MBSE) context, Internal Research Report (access on demand),

18. Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/properties/ [last

visited 2012-08-31]

19. Micouin, P., 2008, Toward a Property Based Requirements Theory: System Requirements

Structured as a Semilattice, System Engineering, Vol. 11, Issue 3: 235-245, INCOSE/Wiley

20. A.Qamar, C.J.J.Paredis, Dependency modeling and model management in mechatronics,

proceedings of ASME 2012, International Design Engineering Technical Conference and

Computers and Information Engineering Conference, IDET/CIE 2012, August 2012, USA

21. Pallab Dasgupta, A roadmap for formal property verification, Springer, 2010, ISBN: 978-

90-481-7185-9 (Bérard et al. 2001)

22. Bérard B., Bidoit M., Finkel A., Laroussinie F., Petit A., Petrucci L., Schnoebelen Ph.

McKenzie P. Systems and Software verification: model checking techniques and tools,

Springer, 2001

23. J. Pearl, "Reasoning with cause and effect" , UCLA Cognitive Systems Laboratory,

Technical Report (R-265), July 1999. In AI Magazine, Vol. 23(1), 95-111, Spring 2002.

594 V. Chapurlat and N. Daclin

24. BKCASE Editorial Board. 2015. The Guide to the Systems Engineering Body of

Knowledge (SEBoK), v. 1.3.2 R.D. Adcock (EIC). Hoboken, NJ: The Trustees of the

Stevens Institute of Technology [last visited 2015-04-23].

25. Billaud S., Daclin N., Chapurlat V., Interoperability as a key concept for the control and

evolution of the System of Systems (SoS) , 6th International Workshop on Enterprise

Interoperability, to appear in IWEI Proc. LNCS Springer Verlag Series, May 2015, France

26. Chapurlat V., Larnac M., Dray G., Analysis and formal verification of Grafcet (FCCS)

using Interpreted Sequential Machine, IEEE CESA’96, July 1996, Lille, France

27. Nastov B., Chapurlat V., Dony C., Pfister F., A verification approach from MDE applied to

Model Based Systems Engineering: xeFFBD dynamic semantics, Complex Systems Design

and Management CSDM 2014, December 2014, Paris, France

Appendix: OMAG grid

