
HAL Id: hal-01434796
https://inria.hal.science/hal-01434796

Submitted on 13 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enhanced Energy Efficiency with the Actor Model on
Heterogeneous Architectures

Yaroslav Hayduk, Anita Sobe, Pascal Felber

To cite this version:
Yaroslav Hayduk, Anita Sobe, Pascal Felber. Enhanced Energy Efficiency with the Actor Model on
Heterogeneous Architectures. 16th IFIP WG 6.1 International Conference on Distributed Applications
and Interoperable Systems (DAIS), Jun 2016, Heraklion, Crete, Greece. pp.1-15, �10.1007/978-3-319-
39577-7_1�. �hal-01434796�

https://inria.hal.science/hal-01434796
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Enhanced Energy Efficiency with the Actor
Model on Heterogeneous Architectures

Yaroslav Hayduk, Anita Sobe and Pascal Felber
first.last@unine.ch

University of Neuchâtel, Switzerland

Abstract. Due to rising energy costs, energy-efficient data centers have
gained increasingly more attention in research and practice. Optimiza-
tions targeting energy efficiency are usually performed on an isolated
level, either by producing more efficient hardware, by reducing the num-
ber of nodes simultaneously active in a data center, or by applying dy-
namic voltage and frequency scaling (DVFS). Energy consumption is,
however, highly application dependent. We therefore argue that, for best
energy efficiency, it is necessary to combine different measures both at
the programming and at the runtime level. As there is a tradeoff be-
tween execution time and power consumption, we vary both indepen-
dently to get insights on how they affect the total energy consumption.
We choose frequency scaling for lowering the power consumption and
heterogeneous processing units for reducing the execution time. While
these options showed to be effective already in the literature, the lack
of energy-efficient software in practice suggests missing incentives for
energy-efficient programming. In fact, programming heterogeneous ap-
plications is a challenging task, due to different memory models of the
underlying processors and the requirement of using different program-
ming languages for the same tasks. We propose to use the actor model
as a basis for efficient and simple programming, and extend it to run
seamlessly on either a CPU or a GPU. In a second step, we automati-
cally balance the load between the existing processing units. With het-
erogeneous actors we are able to save 40-80% of energy in comparison to
CPU-only applications, additionally increasing programmability.

1 Introduction

Energy efficiency of data centers and clouds has become a major concern. As
claimed in 2012 by a Greenpeace report [6], current cloud computing systems
consume the same amount of energy as a whole country such as Germany and
India. While going green is from the users’ and operators’ perspective often done
voluntarily or for economic benefits, today’s systems reach physical limitations—
the so-called “power wall”—that enforce focusing on energy-efficiency [5].

Usually, work on improving energy efficiency is limited to isolated strate-
gies. For instance, on a data center level, power consumption is reduced by
adaptively shutting down nodes; on a single system level, power consumption is



reduced by providing more efficient hardware or runtime support and by dynam-
ically adapting the CPU frequency using dynamic voltage and frequency scaling
(DVFS) [4]. While these approaches are effective per se, we believe that software
and hardware have to be considered together to best enable energy-efficient re-
source usage. In general, the energy consumption E of an application relates to
its power consumption P and its execution time T (E = P ·T ). Hence, to reduce
energy consumption, one can either radically (1) reduce the power consumption
(usually at the cost of execution time) or (2) reduce the execution time (usually
at the cost of power consumption).

As shown by Trefethen et al. [24] the CPU frequency has a major impact on
power consumption. We therefore exploit the CPU frequency scaling features of
Linux where possible and use predefined “governors”.

To reduce the execution time, a possible way is to exploit all available hard-
ware resources, e.g., graphical processing units (GPUs). Programming applica-
tions that run both on CPUs and GPUs is a challenging task as parts of a
program might be better targeted at a CPU, while other parts are data paral-
lelizable and run more efficiently on GPUs. As it might be necessary to provide
two versions of the same application (e.g., CUDA/C++), we focus our contri-
butions especially on programmable solutions for heterogeneous applications.

As a basis we rely on the actor model [10]. The model offers a high degree of
isolation between its main entities, called actors. Actors enable seamless inter-
operability between heterogeneous components [1], allowing us to differentiate
between actors running on a CPU or GPU and consequently support heteroge-
neous actors. Actors are useful for data parallelizable applications; they, however,
might cause overhead if applications are iterative and maintain state.

In this paper we investigate several strategies for implementing heterogeneous
actors focusing on iterative applications. We start from a manually crafted and
optimized implementation, in which an actor running in Scala calls the CUD-
A/GPU code written in C/C++ using the Java native interface (JNI). Later, we
propose to decouple this design by using a middleware component, RabbitMQ.1

Another solution is to use a domain-specific language (DSL) for generating
both CPU and GPU code. Frameworks such as Delite [21], which provide auto-
matic code generation, expect the entire application to be written with the DSL
and executed by the provided runtime. With actors it is desirable to be able to
decide on a fine-grained level whether a task, encapsulated in an actor, should
execute on a CPU or on the GPU. Therefore, we adapt the actor model by
introducing heterogeneous actors, which can be programmed using Delite DSLs.

From a programmer’s point of view we show that the heterogeneous actors
based on DSLs represent the simplest solution and lead to a reduced energy con-
sumption of up to 40% in comparison to CPU-only actor implementations, with
JNI actors allowing for savings of up to 80%. We present our final contribution,
which is a scheduler that balances workload among GPU and CPU resources.

The rest of the paper is organized as follows. We introduce the generic ideas
on power consumption and execution time reduction in Section 2, providing im-

1 http://www.rabbitmq.org



plementation details on heterogeneous actors in Section 3. The load balancing of
actor tasks is introduced in Section 4. In Section 5 we describe the hardware and
software setup used for evaluation. We present and analyze results in Section 6
and discuss related work in Section 7. We conclude in Section 8.

2 Improving Energy Efficiency

One way to reduce the energy consumption is to decrease the power consumption
(E = P · T ). This can be achieved either by influencing the hardware (e.g.,
by changing the frequency of a CPU), or by lowering the resource usage of
the application itself (e.g., only use a single CPU with a sequential program).
Another way is to focus on the improvement of the application’s performance.
In the following sections we discuss mechanisms for both approaches in detail.

2.1 Reducing Power Consumption

The overall power consumption of a machine is highly influenced by the power
consumption of the CPU. Although CPUs become more and more energy-efficient,
the overall energy consumption increases as we usually trade power for perfor-
mance [3]. We focus on two strategies that are easy to configure: (1) the level of
parallelism and (2) the voltage/frequency of a CPU.

If the level of parallelism (i.e., thread count) of an application is not properly
chosen, the performance and the power consumption are negatively affected.
For example, the system scheduler might interfere with the program execution,
impeding the application’s performance.

The power consumption of a CPU can be influenced by changing the CPU
frequency. The Linux kernel provides a tool, cpufreq,2 allowing us to configure
governors that automatically set the desired CPU frequency. Specifically, we are
interested in three governors. (1) Performance: the CPU will be automatically
set to the highest available frequency; (2) Powersave: the CPU will be auto-
matically set to the lowest available frequency; (3) Ondemand (DVFS): the
governor monitors the CPU utilization and, if it is on average more than 95%, the
frequency will be increased. The dynamic approach with the ondemand governor
is the most promising, as it provides DVFS to fit the needs of an application.

2.2 Reducing Execution Time

If the performance gain is significant, it can be translated into a reduction of the
total energy consumption. Concurrent programming is one measure to reduce
execution time. Programming with threads and locks, however, is challenging.

The actor model has been introduced by Hewitt et al. [10] as a popular mech-
anism for implementing parallel, distributed and scalable systems. An actor is an
independent, asynchronous object with an encapsulated state that can only be

2 https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt



(b)

C/C++
T

data
T

data

Scala RabbitMQ

queue

result queue

A

A

A

P

P

P

queue

CUDAJNI C/C++Scala

A

A

data

data
input buffer

result buffer

result buffer

input buffer

(a)

CUDA

Fig. 1: Heterogeneous actors using (a) JNI and (b) RabbitMQ.

modified locally based on the exchange of messages. Considering a typical data-
parallel algorithm as an example, we can easily design an application with a set
of dedicated worker actors performing the required computations and a separate
coordination entity actor that distributes the data and collects the results. In
contrast to a classical multithreading approach we do not need to account for
synchronizing shared memory accesses. For our actor implementations we use
Akka3, an official platform to manage actors in Scala.

Actors allow for interoperability not only on a single CPU but also across
its boundaries. Communication, however, is not yet supported between different
kinds of processors such as GPUs.

3 Enabling Heterogeneous Actors

To reduce the energy consumption while ensuring programmability, we exploit
heterogeneous computing (CPU/GPU programming) with the help of actors. For
GPU programming CUDA is a de facto standard.4 CUDA provides a C/C++
binding for communicating with the GPU. As a GPU is a co-processor, the
CPU is always necessary for communication, management, and data exchange.
While with C/C++ and CUDA the program would be tightly interwoven, the
actor model provides inherent decoupling by separating tasks into actors. As
stated before, the communication between actors on different processors is not
straightforward. As such, we provide support for actors that are able to run on
either a GPU or a CPU, calling them heterogeneous actors. In what follows, we
present three different possibilities for implementing heterogeneous actors.

JNI. The Java native interface (JNI) can be used for communicating with na-
tive libraries written in C/C++, supporting the communication with the GPU.
In data-parallel programs, actors responsible for interacting with the GPU are
initialized with a portion of input data (see Figure 1(a)). A copy of the actor-
local data is propagated to the actor-local GPU memory as well. In each GPU
actor the final result is then stored in a result buffer, which can be accessed from
either C or Scala using JNI.

RabbitMQ. An alternative for decoupling CPU and GPU code is to use a
middleware component like RabbitMQ.5 RabbitMQ enables the communication

3 http://akka.io
4 http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
5 http://www.rabbitmq.org



BalancingPool 
Router

actor 1

actor 2

actor 3

1

2

3 GPU

CPU

Heterogeneous Actor

programmed generated

Delite Application ObjectDSL

Scala
C++/

CUDA
JNI

Scala Mediator

Akka Actor

1
2

3

3 2 1

(b)(a)

Fig. 2: (a) Heterogeneous actors using DSLs from the programmer’s view.
(b) BalancingPool Router in Akka.

(via queues) between programs written in different languages and amongst dis-
tributed machines. By using RabbitMQ we can connect CPU actors with GPU
actors. Communication is supported via a proxy (P in Figure 1(b)) that passes
data from Akka to RabbitMQ. On the C/C++ side, each actor is associated
with one thread (T) that waits for work in its RabbitMQ queue and, once avail-
able, fetches and forwards the data to the GPU for processing. The data is still
isolated and accesses do not have to be synchronized. Upon completion, threads
dispatch their result to the shared RabbitMQ result queue. The results are then
collected and merged by a coordination actor in Akka. With RabbitMQ it is
still necessary to provide both the CPU and the GPU implementations. It also
requires the development of custom code to interact with the communication
middleware (the proxy is not part of Akka).

DSL. For the DSL implementation we base our efforts on Delite [20], a frame-
work that provides high level DSLs and runtime for heterogeneous programming.
Delite expects that the programmer writes the entire application in the provided
DSLs and executes the generated code in a dedicated runtime environment. As
it is not always feasible to write the entire application in a DSL, our goal is to
provide finer control to the programmer such that only some parts of his appli-
cation have to be written in a DSL. In particular, only heterogeneous actors will
be written in one of the Scala-like intuitive DSLs provided by Delite.

To support the execution of generated code from the actor environment,
we need to provide custom communication facilities. Delite currently supports
communication to generated Scala code with an intermediate packaging step
into a Delite application object. To interact with this object (stored in a JAR
file), so-called Scopes are needed as entry points [21]. They are limited, how-
ever, to mapping simple Scala data types to generated Scala code and they
cannot forward data from Scala to the generated C++/CUDA code. As a first
measure, we enhanced Scopes with a JNI method for forwarding data to the
generated C++/CUDA code. We further extended Scopes to automatically load
the generated C++/CUDA code and enable the interaction between Scala and
C++/CUDA, which was not supported by Delite.

Another limitation of Delite is the lack of support for applications that main-
tain state between iterations. Typically, upon start-up the generated C++ code
allocates main memory and GPU memory for storing input and intermediate
data. Before completion, Delite cleans all the memory that it used during its



execution. We adapted Delite such that the state-relevant memory (e.g., input
dataset chunks copied to GPU memory) is only cleaned after the last iteration
of the application has been executed. With this measure we avoid copying data
between CPU and GPU at each actor message exchange.

In Figure 2 we show the overall heterogeneous actor approach. The program-
mer must provide actor code targeting the GPU in the Delite DSL (1), which
will generate and build the Delite application object (2). A lightweight media-
tion part in Scala (3) is required to convert Akka messages into data structures
for the Delite application object and vice versa. We also provided support for
Delite-generated CUDA code to return the result to the calling Scala code.

4 Resource Load Balancing with Heterogeneous Actors

Since the CPU and the GPU have different performance characteristics, load im-
balances can happen. Hence, this section focuses on efficient workload balancing
strategies for runtime and energy reduction.

To distribute work among actors on a CPU, Akka provides so called Routers
that schedule messages targeted to a set of actors accomplishing a similar task.
Specifically, the BalancingPool router embraces “work-stealing”6 by balancing
workload dynamically among worker actors. When an actor accesses its mailbox
to fetch the next available message to be processed, Akka transparently forwards
that request to a shared message queue started by the BalancingPool Router (see
Figure 2). Since the mailbox queue is shared, any worker actor should be capable
of processing any message in the queue. Hence, Akka imposes a requirement for
worker actors to be stateless, thus limiting its usage for iterative applications.

To overcome this limitation, we propose to use the following strategies. First,
to enable iterative applications to be used with routers, we encapsulate all state
required for the execution into messages. Each message contains the required
context for having it processed on either the GPU or the CPU. For example, to
avoid copying input data on each iteration, we store a pointer to it in a message.
Also, to avoid synchronization issues between the CPU and the GPU memory,
the message also contains a result object, stored in CPU memory, to which all
implementations write intermediate results for the next iteration.

For actors running on both processing units, both implementations are re-
quired and any of the strategies discussed in Section 3 can be used. Also, since
for iterative applications, the behavior will be repetitive, it is likely that the
number of actors running on a CPU/GPU will not change at runtime. Hence,
it is sufficient to find the optimal actor CPU/GPU configuration at startup. As
such, at application start we introduce a brief profiling phase. For each config-
uration (e.g., 0 GPU actors/8 CPU actors; 1 GPU actor/7 CPU actors; etc.),
we measure the execution time using 1% of messages to be processed. Once fin-
ished, we select the configuration with the lowest execution time and use it for
the processing of remaining messages.

6 The actual implementation more precisely follows a work-sharing approach.



To summarize, our approach enables actors, independent of whether they run
on the CPU or GPU, to request work when required, thus leading to reduced
idle time and more balanced workloads.

5 Experimental Setup

Hardware. Our experiments are executed on a server equipped with an AMD
FX-8120 (8 cores, no hyperthreading) CPU and an NVIDIA GeForce GTX 780
Ti (2880 CUDA cores) with 3GB of RAM. We use a hardware power meter
(Alciom PowerSpy v2.0) that periodically reports the system power in Watts.

Software. We base our evaluations on the well-known k-means [2] algorithm
used for splitting an input dataset into different clusters. K-means is a good case
study as it exhibits iterative and processing-intensive characteristics representa-
tive for data-parallelism. We further focus on k-means as it is a well-understood
algorithm that can be represented in a straightforward manner in Delite’s Op-
tiML DSL. As such, we chose depth over breadth regarding our analysis, pre-
senting the results of k-means only. Despite exclusively focusing on k-means, the
core premise of heterogeneous actors is applicable for implementing other itera-
tive algorithms (e.g., coordinate descent, logistic regression, deep belief learning
with a restricted Boltzmann machine).

We used the thread-based STAMP [17] implementation of k-means as a basis
for creating the actor version. For the actor-based implementation the following
data structures are required: (1) input matrix; (2) current cluster center matrix;
(3) points to cluster center map (holds the current cluster center index for each
input point); (4) per-cluster member count structure (holds the number of points
assigned to each cluster).

Parallel implementation with actors. Our actor-based algorithm uses two
types of actors: iteration actors (Algorithm 1) and worker actors (Algorithm 2).
While a typical thread-based version maintains a shared copy of the current
cluster center matrix and the per-cluster member counts, the actor-based version
maintains a private copy of these data structures in each of the worker actors.
The iteration actor then merges the data sent by each of the worker actors to
calculate the final cluster centers.

Algorithm 1: K-means iteration actor.

Data: input set, number of clusters, number of workers
Result: clusters
Initialize K cluster centers
foreach Worker do

Create workers and pass partial input set
while Termination condition is not met do

Send current cluster centers to worker actors
foreach Worker do

Receive partial results
Compute final cluster centers by merging partial results



Algorithm 2: K-means worker actor.

Data: partial input set, current cluster center
Result: local cluster centers, local member count
foreach Assigned input point do

Assign point to the closest cluster center
Update the local cluster centers matrix and member count

Send local cluster centers and cluster counts to iteration actor

Heterogeneous implementation with JNI. For the heterogeneous imple-
mentation we extend the baseline actor implementation. Specifically, we execute
the worker actor code on the GPU, while leaving the iteration actor unchanged
for execution on the CPU. We further preserve the communication patterns be-
tween worker actors and the iteration actor. We reimplemented the worker actor
to access the GPU resources by calling the C/CUDA code using JNI with the
help of shared byte buffers as shown in Figure 1(a). Each worker actor connects
to a C implementation that starts two CUDA kernels, one for finding the clos-
est cluster center for each input point (on block memory), and one for finding
the total number of points that changed clusters as compared to the previous
iteration (on GPU global memory). Once the GPU execution has finished, the
results are transferred to the result buffer and to the iteration actor.

Heterogeneous implementation with RabbitMQ. In this implementation
we reused the CUDA code of the worker actor from the JNI implementation, but
adapted the communication pattern between Scala and C/CUDA. Each worker
actor now includes a proxy (as shown in Figure 1(b)) that is responsible for
marshaling the messages and sending them to the RabbitMQ queue. Once work
is available, the aforementioned CUDA implementation is launched, omitting
the shared byte buffers. In the end, a proxy actor connecting to the iteration
actor transfers the results.

Heterogeneous implementation using a DSL. We define the worker actor’s
logic using OptiML [19]—a Delite DSL. Next, we write the mediation code to
connect to the generated code (Figure 2). The mediation code extracts the cur-
rent cluster centers from an Akka message, converts them to a Delite array (to
map the Rep data structures in the DSL), and then calls that generated code
with the array as input. Once the result is available, the mediation code converts
it to an Akka message and forwards it to the iteration actor.

Heterogeneous work balancing implementation. For the implementation
of the work balancing use case any of the before mentioned implementations can
be used. We decided to use JNI as it showed the best performance (see Section 6).
We define the worker actor code just like in the heterogeneous implementation
with JNI, but the worker actors are able to execute on both the CPU and the
GPU. To enable load balancing, we require stateless actors, hence moved their
state to messages (see Section 4). The profiling uses 1% of the overall workload
for testing each possible configuration, hence we allow the programmer to set
the number of desired iterations manually.

System Configuration. K-means is a representative candidate for this evalu-
ation as it is able to work on different input sizes. For the first three implemen-



tations of k-means (CPU/GPU), we chose a default data set from the STAMP
benchmark with 65,536 input rows and 16 clusters. To test the profiling and selec-
tion process of the best share of CPU/GPU actors we use three different datasets:
small (4,096 rows), medium (10,240), large (131,072). We set the worker actor
count to match the CPU core count (i.e., 8). To enable efficient load balancing,
the iteration actor divides the work into more tasks than the number of worker
actors (32 tasks per iteration). As the run times can be considerably reduced
with a GPU, we increased the load to gather reasonable results. The profiling
takes 450 iterations per configuration, with an overall benchmark length of 5,000
iterations. We run each implementation 5 times and take the median execution
time and power readings; the energy is then calculated out of these two values.

6 Results and Discussion

In this section we discuss the results of the different k-means implementations
from Section 5 with respect to power consumption and execution time, and relate
them to energy consumption.

6.1 Reducing Power Consumption

We investigate the reduction of power consumption by varying the number of
workers, as well as the governors impacting the frequency of the CPU. The
default governor is ondemand ; its goal is to provide good performance when
work is available and downscaling of the frequency otherwise (DVFS).

On the left side of Figure 3 we present the power consumption of the three
CPU-only Scala implementations (seq: sequential, par: parallel thread-based,
act: actor). We scale the number of threads/actors (4, 8, 16, 32) in separate runs
and average the results for each chosen frequency. The sequential implementa-
tion consumes the least power since only one core is used while the others are
idling. The ondemand governor depends on CPU utilization and, since k-means
is CPU-intense, power consumption of the ondemand and performance governors
is comparable. The powersave governor sets the CPU to the lowest frequency,
hence power consumption is reduced. The difference between the powersave and
other two governors is 70 W for the parallel implementations and around 40 W
for the sequential implementation.

The middle part of Figure 3 shows the impact of the governors on the exe-
cution time. The sequential algorithm using the powersave governor is about 3
times slower than with any other governor. The parallel implementations exhibit
a slowdown of about 2 times if the powersave governor is used.

Based on power and execution time measurements, we can compute the en-
ergy consumption as shown in Figure 3 (right). The actor implementation out-
performs the parallel and the sequential implementations. We can further see
that, while the powersave governor decreases the power consumption, the execu-
tion time is significantly higher. This leads to higher energy consumption than
when using the ondemand and performance governors. In general, the ondemand
governor seems to be the best choice independent of the type of implementation.



 0

 50

 100

 150

 200

ac
t

pa
r

se
q

power W

 0
 5

 10
 15
 20
 25
 30
 35
 40

ac
t

pa
r

se
q

execution time s
ondemand

performance
powersave

 0

 500

 1000

 1500

 2000

 2500

 3000

ac
t

pa
r

se
q

energy J

 0

 50

 100

 150

 200

ac
t

jn
i

ra
b

ds
l

power W

 0
 2
 4
 6
 8

 10
 12
 14

ac
t

jn
i

ra
b

ds
l

execution time s
ondemand

performance
powersave

 0
 200
 400
 600
 800

 1000
 1200
 1400

ac
t

jn
i

ra
b

ds
l

energy J

Fig. 3: Comparison of the power consumption (left), execution time (middle), and
energy (right) using different governors. The top graphs refer to CPU execution.
The bottom graphs include one bar for CPU-only execution and three bars for
mixed execution (CPU/GPU).

6.2 Reducing Execution Time

This section focuses on execution time reduction and its impact on energy con-
sumption. In the heterogeneous implementation, CPU actors cooperate with the
GPU in different ways. We compare the JNI implementation (jni) with Rab-
bitMQ (rab) and DSL actors (dsl) as described in Section 5. We also vary the
frequencies for the CPU running the remaining code.

Figure 3 shows the power consumption (left), execution time (middle) and
energy consumption (right). We see that the power consumption is not impacted
by the usage of the GPU. The reason is that in this hardware setup the GPU is
more energy-efficient than the CPU, hence running code on the CPU is more ex-
pensive in terms of power consumption. All GPU implementations execute faster
than CPU implementations, yielding lower total energy consumption (Figure 3
(right)). The DSL implementation in powersave mode consumes 540 J, which
is lower than the 1,001 J of the actor implementation in ondemand mode. In
contrast to the CPU-only execution, we see that reducing the CPU frequency
with the powersave governor does not have a drastic impact on performance.



 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

0 1 2 3 4 5 6 7 8

n
o
rm

a
liz

e
d
 e

x
e
cu

ti
o
n
 t

im
e

small

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

0 1 2 3 4 5 6 7 8
no. of GPU actors

medium

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0 1 2 3 4 5 6 7 8

large

profile
full

Fig. 4: Normalized execution time of the profiling phase as well as of the remain-
ing workload using different configurations of CPU/GPU actors.

Therefore, the best choice would be the powersave governor in the heteroge-
neous scenarios.

With respect to the different implementations, JNI provides the most direct
way of communication with the GPU. This implementation does not provide the
decoupling nor the flexibility for seamlessly exchanging the code to be executed
on the GPU or the CPU. While the RabbitMQ implementation provides the
possibility of exchanging worker (GPU) code, it still requires the programmer
to implement the actual GPU code in C/CUDA. In comparison, by using het-
erogeneous actors with the DSL, programmers only need to provide the worker
code for message processing in one of the Delite DSLs.

In terms of the lines of code required to implement k-means, JNI imple-
mentation is the most energy-efficient one, it requires 336 lines for the k-means
logic written in CUDA and C, as well as 67 lines for providing JNI functional-
ity (communication logic). RabbitMQ uses the same k-means logic as JNI, but
requires another 337 lines for the communication logic. In comparison, our DSL
implementation does not require communication logic because it is automati-
cally generated by Delite. Hence, the overall effort for the DSL implementation
is as low as 39 lines of code.

From a programmer’s point of view heterogeneous actors with DSL represents
the best solution, with better energy efficiency than CPU-only implementations.
However, from an energy-efficiency point of view heterogeneous actors with JNI
are preferable, as with it is possible to reduce the energy consumption of up to
80% in comparison to a solution running on the CPU.

6.3 Resource Load Balancing with Heterogeneous Actors

This section presents our proposed load balancing approach. We execute the
profiling phase as well as the full run on all datasets and combine the prediction
capability of the profiling phase. Clearly, the execution time of the full running
phase will be a multitude higher than the execution time of the profiling phase.



Therefore, we normalize all values to the execution time of the first configura-
tion. Figure 4 presents the results for different dataset sizes showing that the
profiling phase can mimic the execution time of the remaining workload reason-
ably well. In more detail, for the small dataset we see that the problem is not
scaled significantly to amortize overheads associated with executions on a GPU.
When using the medium dataset we see that the most efficient configuration
is composed of 3 GPU actors and 5 CPU actors. When we use a large dataset
(e.g., also the STAMP sample dataset from our former experiments), it is always
beneficial to process all the workload using GPU actors.

The energy consumption reveals the same trends, however, we further noticed
that with increased load, the CPU tends to use its turbo frequencies and hence
draws about 20 W more than in the experiments before. In the case of the large
dataset the CPU has a significantly higher power value if it shares work with
the GPU while the execution time is not reduced significantly. Therefore, from
an energy consumption point of view any sharing of work with the CPU in our
hardware setup would be disadvantageous. With the medium and small dataset
the load is not as high, hence sharing the work between the CPU and the GPU
leads to slightly increased power consumption but lower execution time, and in
total to lower energy consumption.

7 Related Work

In general, research on hybrid computing rarely considers energy efficiency. Re-
searchers focus more on performance improvements (e.g., [25]) or develop power
estimation models [14, 11]. The trend of using graphical processing units (GPUs)
for scientific programming became popular as there is a potential for significant
performance improvement over executing only on a CPU. With the radical reduc-
tion of execution time, GPUs can in turn reduce the total energy consumption,
providing means for energy-efficient programming [13, 18]. Nevertheless, if the
gains in execution time of GPU implementations are not high enough, the energy
consumption might increase as compared to a CPU-only implementation [18].

The PEACH framework [9], for example, combines performance and power
metrics to guide the scheduling on both CPU and GPU, but it focuses on defining
a theoretical model rather than a practical implementation capable of working
with real-world applications. Researchers working on SEEP [12] aim at help-
ing programmers to produce energy-aware software. Their approach considers
continuous energy monitoring of specific code paths helping to identify energy-
hungry code. They mainly target, however, embedded systems capable of ex-
ecuting a single task. On the programming language level the authors of [8]
divide a program into phases for which specific CPU frequencies are assigned.
This approach does not only necessitate fine-grained monitoring of energy and
execution time, but also requires that a program exclusively occupies a single
core of a CPU. In [15] the authors propose a hybrid OpenMP/MPI programming
model for power-aware programming. They use this model to steer the level of
parallelism as well as the current frequency of a CPU.



The SPRAT [22] environment can automatically select the proper execution
processor (either CPU or GPU) at runtime for energy efficiency. Migration is,
however, quite expensive as the current state of the application must be saved
when moving from one processor to another. There are a number of approaches
for scheduling work between the CPU and the GPU. They can be broadly di-
vided into performance/cost models (e.g., HEFT [23]), offline training [16], as
well as work stealing [7]. A performance/cost model requires determining the
approximate runtimes and data transfer times beforehand for each processing
unit. For developers this requirement is hard to meet.

8 Conclusion

In this paper we tackle the problem of reducing energy consumption of parallel
programs in heterogeneous environments. As energy depends on both power con-
sumption and execution time, we investigate the impact of each independently.
We first reduce the power consumption with the help of frequency scaling. We
then reduce the execution time by running parts of an application on a GPU,
while the sequential parts remain on the CPU. We evaluate a number of strate-
gies for heterogeneous actors regarding their energy efficiency and programma-
bility. JNI and RabbitMQ provide a more direct way of accessing a GPU, while
the DSL implementations provide a concise and simple way for building hetero-
geneous actors. In a first step all heterogeneous implementations require manual
assignment to the best processing unit. Hence, our final contribution enables au-
tomatic sharing of resources among actors yielding the highest energy efficiency.
Our contributions lead to significant reductions of energy consumption in the
range of 40-80% as compared to CPU-only implementations.

References

1. Agha, G.: Actors programming for the mobile cloud. In: Symposium on Parallel
and Distributed Computing (ISPDCP). pp. 3–9. IEEE (2014)

2. Alpaydin, E.: Introduction to machine learning. MIT press (2004)
3. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. IEEE Com-

puter 40(12), 33–37 (2007)
4. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A., et al.: A taxonomy and survey

of energy-efficient data centers and cloud computing systems. Elsevier Advances
in Computers 82(2), 47–111 (2011)

5. Cai, C., Wang, L., Khan, S.U., Tao, J.: Energy-aware high performance comput-
ing: A taxonomy study. In: International Conference on Parallel and Distributed
Systems (ICPADS). pp. 953–958. IEEE (2011)

6. Cook, G.: How clean is your cloud? Report, Greenpeace International, April 2012
7. Faxén, K.F.: Wool-A work stealing library. ACM Computer Architecture News

36(5), 93–100 (2009)
8. Freeh, V.W., Lowenthal, D.K.: Using multiple energy gears in MPI programs on

a power-scalable cluster. In: Symposium on Principles and Practice of Parallel
Programming (PPoPP). pp. 164–173. ACM (2005)



9. Ge, R., Feng, X., Burtscher, M., Zong, Z.: PEACH: A model for performance
and energy aware cooperative hybrid computing. In: Conference on Computing
Frontiers. pp. 1–24. ACM (2014)

10. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: International Joint Conference on Artificial Intelligence
(IJCAI). pp. 235–245. Morgan Kaufmann Publishers (1973)

11. Hong, S., Kim, H.: An integrated GPU power and performance model. In: Interna-
tional Symposium on Computer Architecture (ISCA). pp. 280–289. ACM (2010)

12. Hönig, T., Eibel, C., Kapitza, R., Schröder-Preikschat, W.: SEEP: Exploiting sym-
bolic execution for energy-aware programming. In: Workshop on Power-Aware
Computing and Systems (HotPower). pp. 1–4. ACM (2011)

13. Huang, S., Xiao, S., Feng, W.: On the energy efficiency of graphics processing
units for scientific computing. In: International Parallel & Distributed Processing
Symposium (IPDPS). pp. 1–8. IEEE (2009)

14. Kasichayanula, K., Terpstra, D., Luszczek, P., Tomov, S., Moore, S., Peterson,
G.D.: Power aware computing on GPUs. In: Symposium on Application Accelera-
tors in High-Performance Computing (SAAHPC). pp. 64–73. IEEE (2012)

15. Li, D., de Supinski, B.R., Schulz, M., Cameron, K., Nikolopoulos, D.S.: Hybrid
MPI/OpenMP power-aware computing. In: International Parallel & Distributed
Processing Symposium (IPDPS). pp. 1–12. IEEE (2010)

16. Luk, C.K., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: IEEE/ACM International Symposium on
Microarchitecture (Micro). pp. 45–55. ACM (2009)

17. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: International Symposium on Workload
Characterization (IISWC). pp. 35–46. IEEE (2008)

18. Rofouei, M., Stathopoulos, T., Ryffel, S., Kaiser, W., Sarrafzadeh, M.: Energy-
aware high performance computing with graphic processing units. In: Workshop
on Power Aware Computing and Systems (HotPower). pp. 11–11. ACM (2008)

19. Sujeeth, A., Lee, H., Brown, K., Rompf, T., Wu, M., Atreya, A., Odersky, M.,
Olukotun, K.: OptiML: An implicitly parallel domain-specific language for machine
learning. In: International Conference on Machine Learning (ICML). pp. 609–616.
ACM (2011)

20. Sujeeth, A.K., Brown, K.J., Lee, H., Rompf, T., Odersky, M., Olukotun, K.: Delite:
A compiler architecture for performance-oriented embedded domain-specific lan-
guages. ACM Transactions on Embedded Computing Systems 13(4s), 1–25 (2014)

21. Sujeeth, A.K., Rompf, T., Brown, K.J., Lee, H., Chafi, H., Popic, V., Wu, M.,
Prokopec, A., Jovanovic, V., Odersky, M., Olukotun, K.: Composition and reuse
with compiled domain-specific languages. In: European Conference on Object-
Oriented Programming (ECOOP). pp. 52–78. Springer (2013)

22. Takizawa, H., Sato, K.: SPRAT: Runtime processor selection for energy-aware
computing. In: International Conference on Cluster Computing (Cluster). pp. 386–
393. IEEE (2008)

23. Topcuouglu, H., Hariri, S., Wu, M.Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260–274 (2002)

24. Trefethen, A.E., Thiyagalingam, J.: Energy-aware software: Challenges, opportuni-
ties and strategies. Elsevier Journal of Computational Science 4(6), 444–449 (2013)

25. Yang, C., Wang, F., Du, Y., Chen, J., Liu, J., Yi, H., Lu, K.: Adaptive optimization
for petascale heterogeneous CPU/GPU computing. In: International Conference on
Cluster Computing (Cluster). pp. 19–28. IEEE (2010)


