N

N

Evaluating ITU-T G.9959 Based Wireless Systems Used
in Critical Infrastructure Assets
Christopher Badenhop, Jonathan Fuller, Joseph Hall, Benjamin Ramsey,

Mason Rice

» To cite this version:

Christopher Badenhop, Jonathan Fuller, Joseph Hall, Benjamin Ramsey, Mason Rice. Evaluating
ITU-T G.9959 Based Wireless Systems Used in Critical Infrastructure Assets. 9th International
Conference on Critical Infrastructure Protection (ICCIP), Mar 2015, Arlington, VA, United States.
pp.209-227, 10.1007/978-3-319-26567-4__13 . hal-01431003

HAL Id: hal-01431003
https://inria.hal.science/hal-01431003
Submitted on 10 Jan 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-01431003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 13

EVALUATING ITU-T G.9959 BASED
WIRELESS SYSTEMS USED IN
CRITICAL INFRASTRUCTURE ASSETS

Christopher Badenhop, Jonathan Fuller, Joseph Hall, Benjamin Ramsey
and Mason Rice

Abstract ITU-T G.9959 wireless connectivity is increasingly incorporated in the
critical infrastructure. However, evaluating the robustness and security
of commercially-available products based on this standard is challeng-
ing due to the closed-source nature of the transceiver and application
designs. Given that ITU-T G.9959 transceivers are being used in smart
grids, building security systems and safety sensors, the development of
reliable, open-source tools would enhance the ability to monitor and se-
cure ITU-T G.9959 networks. This chapter discusses the ITU-T G.9959
wireless standard and research on ITU-T G.9959 network security. An
open-source, software-defined radio implementation of an I'TU-T G.9959
protocol sniffer is used to explore several passive reconnaissance tech-
niques and deduce the properties of active network devices. The exper-
imental results show that some properties are observable regardless of
whether or not encryption is used. In particular, the acknowledgment
response times vary due to differences in vendor firmware implementa-
tions.

Keywords: ITU-T G.9959, Z-Wave, vulnerabilities, wireless sniffing

1. Introduction

The prevalence of wireless connectivity in industrial control and sensor sys-
tems is increasing because it extends communications ranges at lower cost than
wired alternatives. A 2011 survey of industrial control system operators re-
ported that wireless networks were deployed in 43% of industrial control sys-
tems and numerous additional deployments were projected [3]. The survey
respondents reported the use of IEEE 802.11, WirelessHART, Bluetooth and
ZigBee as well as proprietary wireless systems [3]. An analysis of vulnerabilities
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and suggestions for mitigation have been published for these protocols, with
the exception of the proprietary systems [15].

The growing use of proprietary systems makes it necessary to analyze and
discuss their security implications, especially when considering these systems
for use in critical infrastructure assets. Of the numerous proprietary systems,
wireless systems based on the ITU-T G.9959 recommendation, which specifies
a short range narrow-band digital radio communications transceiver operating
in the sub-GHz spectrum, have significant potential for growth in the critical
infrastructure. The most common commercial instantiation of ITU-T G.9959
is Z-Wave, which is standardized and marketed by the Z-Wave Alliance. The
Z-Wave Alliance comprises more than 300 companies and is actively working
to increase the adoption of Z-Wave products around the globe.

IEEE 802.15.4 networks (e.g., WirelessHART and ZigBee) fulfill low-rate
communications roles similar to those of Z-Wave in the critical infrastructure.
Recent research efforts (see, e.g., [4, 12, 14]) have proposed novel security strate-
gies for these networks. However, Z-Wave product development has been sig-
nificantly restricted by nondisclosure and confidentiality agreements that stifle
open-source security and resilience research. As a result, the security implica-
tions of the use of Z-Wave networks in the critical infrastructure are not well
understood. In order to address this issue, this chapter introduces open-source
techniques and tools for evaluating the security of ITU-T G.9959 wireless net-
works (including Z-Wave products) used in critical infrastructure assets.

2. ITU-T G.9959-Based Z-Wave Protocol

The ITU-T G.9959 recommendation specifies the physical (PHY) and media
access control (MAC) layers for short-range, narrow-band digital radio commu-
nications transceivers. All manufactures adhere to the PHY/MAC specifica-
tions to ensure interoperability, but market their devices based on the network
and application layers.

ITU-T G.9959-based networks operate in unlicensed frequency bands (e.g.,
908.4MHz in North America, 860.4 MHz in Europe and additional frequen-
cies in other regions). Data rates of 9.6 Kbps (Rate 1), 40Kbps (Rate 2) and
100Kbps (Rate 3) are supported, depending on the transceiver type. Net-
works have two basic types of nodes: (i) control nodes; and (ii) end device
nodes. Control nodes initiate commands while end device nodes respond to
commands. Leveraging mesh topologies, end device nodes also forward com-
mands to other nodes that are not directly reachable by a control node. The
protocol allows a maximum of four hops between nodes and a maximum of 232
nodes in one network.

Each Z-Wave network is identified by a unique 32-bit Home ID, which is
programmed by the manufacturer on each control node. The Home ID al-
lows multiple networks to operate in close proximity without overlap. While
a network may contain multiple control nodes, only one control node may be
designated as the primary controller and its Home ID uniquely identifies the
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Figure 1. ITU-T G.9959/Z-Wave model mapped to the TCP/IP reference model.

network. During the network inclusion process, the primary control node as-
signs the new node an 8-bit Node ID, which is only unique in the local network.

The Z-Wave protocol consists of four layers. Figure 1 shows the four-layer
ITU-T G.9959/Z-Wave reference model mapped to the five-layer TCP /TP ref-
erence model. The PHY layer controls access to the radio frequency medium,
the MAC layer handles transmission and reception of frames between adjacent
nodes, the routing layer controls the flow of messages throughout the mesh and
the application layer executes commands associated with the end device.

2.1 PHY Layer

The PHY layer uses carrier sense multiple access with collision avoidance to
control access to the wireless medium. As mentioned above, Z-Wave utilizes
unlicensed frequency bands, which differ according to the region. The protocol
offers three data rates: (i) 9.6 Kbps using frequency-shift keying with Manch-
ester encoding; (ii) 40 Kbps using frequency-shift keying with non-return-to-
zero encoding; and (iii) 100 Kbps using Gaussian frequency-shift keying with
non-return to zero encoding.

As shown in Figure 2, the PHY protocol data unit (PPDU) consists of
three main parts. The frame begins with a start header (SHR), which contains
a preamble for symbol and bit synchronization, followed by a start of frame
delimiter (SFD). The frame payload or PHY service data unit (PSDU) follows.
Finally, for 9.6 Kbps data rate transmissions only, the frame concludes with an
end header (EHR).

2.2 MAC Layer

The MAC layer (sometimes referred to as the transfer layer) is also detailed
by ITU-T G.9959. The layer controls the transfer of data between two nodes
and is responsible for frame acknowledgment, retransmission, data validation
and notifying battery-operated devices to stay awake pending incoming trans-
missions.
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Figure 2. ITU-T G.9959 and Z-Wave frame formats.

There are three basic types of MAC frames: singlecast, acknowledgment
and multicast. Each frame type follows the same general layout shown in Fig-
ure 2 with a MAC header (MHR), MAC service data unit (MSDU) and a
MAC footer (MFR). Singlecast frames are transmitted to only one destina-
tion address (including the broadcast address). Acknowledgement frames are
structured identically to singlecast frames, but have a MAC service data unit of
zero length. Acknowledgement frames are sent in response to singlecast frames.
Retransmissions occur when the sending node does not receive an acknowledg-
ment from the receiving node. Multicast frames are sent to multiple destination
nodes without acknowledgments.

The MAC header contains the Home ID, Source ID, frame control field, frame
length and Destination ID (or bitmask in the case of a multicast frame). The
MAC footer contains either an 8-bit checksum or a 16-bit cyclic redundancy
check depending on the data rate used.

2.3 Routing Layer

Z-Wave mesh network topologies are managed by the routing layer to en-
sure that messages are successfully routed among control and end device nodes.
The protocol specifies a maximum of 232 nodes and only one primary control
node, although multiple secondary control nodes may exist in order to parti-
tion a network. Every node, with the exception of battery-operated devices,
participates in routing by forwarding frames between nodes outside of direct
wireless transmission range. The protocol also specifies a maximum of four
hops between the primary control node and any other node.

The routing layer is responsible for scanning the network topology and main-
taining a routing table in the primary control node. The routing table is built
by the primary control node based on information received, upon inclusion or
request, from each end device node about the neighbors of each node. The
Z-Wave protocol stack supports automatic topology discovery and healing to
optimize routing tables when the location of a node has changed or a node has
been removed from the network (exclusion).
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2.4 Application Layer

The majority of the application layer is implementation-specific depending
on the Z-Wave developer. For brevity, this section discusses only what is ap-
plicable to all Z-Wave devices.

The application layer frame consists of the header, command class informa-
tion and command parameters (see Figure 2). The application layer is respon-
sible for executing the commands passed to it. Commands are broken into two
classes: command class and device class.

A command class is related to a specific function or device. An example is
the binary switchcommand class. The binary switch uses three commands: (i)
SET to turn a device on or off; (ii) GET to request the status of a device; and
(iii) REPORT to respond to the request. These three commands are foundational
to all Z-Wave devices.

The device class is subdivided into the basic, generic and special device
classes. The basic device class distinguishes between controllers, end devices
and end devices that are capable of routing. The generic device class defines
the function that the device performs as a controller or end device. The special
device class allows for more specificity in device functionality.

It is important to note that the Z-Wave protocol supports encryption us-
ing the Advanced Encryption Standard (AES) with 128-bit keys. When im-
plemented, the application frame is encrypted and an 8-byte authentication
frame header is appended to the end of the MAC service data unit. While
data encryption is supported by the protocol, its implementation is left to the
manufacturer to decide if the device transmission is sensitive enough to war-
rant encryption. In wireless sensor networks, memory and power are scarce
resources, which discourages developers from implementing encryption “unless
required” [6]. Surveys of similar low-rate networks have demonstrated that the
use of encryption or other security measures are far from ubiquitous [13].

3. ITU-T G.9959/Z-Wave Attack Classes

While Z-Wave is a proprietary protocol, vendors may purchase software
development kits to produce Z-Wave certified products. Given the nature
of hardware and software development, certain vulnerabilities are introduced
by developer-specific implementation faults as illustrated in [5]. This section
focuses on vulnerabilities of the underlying ITU-T G.9959 recommendation,
which are common to all devices and attack classes that exploit the vulnerabil-
ities.

Three classes of attacks are considered: (i) reconnaissance; (ii) denial-of-
service; and (iii) packet injection. The three classes of attacks undermine net-
work confidentiality, availability and integrity, respectively. A reconnaissance
attack involves the passive collection of traffic or the active probing of a tar-
get network to gain information without interfering with normal operations.
A denial-of-service attack prevents wireless system access and causes varying
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degrees of system unavailability. A packet injection attack involves the trans-
mission of specially-crafted packets to manipulate network or device behavior.

3.1 Reconnaissance Attacks

Reconnaissance lays the foundation for sophisticated follow-up attacks. The
information acquired includes the protocols in use, device types, traffic flow
patterns and even encryption keys if they are not handled properly. Information
received from reconnaissance can help an attacker obtain accurate mappings of
a system, services and /or vulnerabilities, enabling more significant attacks to be
conducted in the future. Using a high-gain antenna, observations can be made
at long distances, allowing an attacker to remain inconspicuous while gathering
information. Apa and Hollman [1] have presented a proven exploitation of a
wireless sensor network used in critical infrastructure assets. In particular,
they demonstrated the exploitation of three devices from a maximum distance
of 64 km.

An attacker armed with a directional antenna can capture ITU-T G.9959
transmissions for further analysis. Information gathered that might be use-
ful to an attacker includes: (i) traffic patterns; (ii) use of encryption during
transmission; and (iii) frame header content, which includes the unique Home
ID of an ITU-T G.9959 network, Source 1D of the device being sniffed and
Destination ID.

Two demonstrations of ITU-T G.9959 exploitation have been published to
date, both of them relied heavily on the ability to conduct reconnaissance to
gain the knowledge required to craft follow-up attacks. Fouladi and Ghanoun [5]
showed how to obtain a detailed understanding of the manner in which a secure
door lock implements encryption and authentication; using this knowledge, they
were able to discover a flaw that could be exploited. Picod et al. [11] were able
to discern the specific commands and associated bit values that could be used
to turn an alarm on and off. Follow-on attacks of these example attacks are
discussed later in this chapter.

Several entities have developed sniffers for intercepting and transmitting Z-
Wave frames. Sigma Designs [17] markets a closed-source development kit for
Z-Wave device developers. The kit incorporates several hardware development
platforms, technical documentation, software tools and a Z-Wave protocol snif-
fer. However, the kit comes with a non-disclosure agreement, which restricts
the use of the tools.

A second sniffer project is z-force [5]. The sniffer includes custom firmware
hosted on a CC1110 development board [20] and a z-force personal computer
application. At the time of this writing, z-force has only been demonstrated on
European Z-Wave frequency bands. The closed-source nature of z-force makes
it difficult to evaluate and extend.

A third Z-Wave sniffer is Scapy-Radio, part of the open-source hackrf
project [11]. Scapy-Radio integrates Scapy, a Python environment for ma-
nipulating network traffic and GNU Radio, an open-source signal processing
toolbox. The tool includes GNU Radio companion implementations of Z-Wave,
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Figure 3. Wireshark Z-Wave dissection.

Bluetooth and ZigBee transceivers. The Z-Wave implementation receives sam-
ples from a software-defined radio, demodulates, synchronizes and decodes NRZ
or Manchester encodings. As with z-force, the implementation is tuned to Eu-
ropean bands, but can be modified for other bands using GNU Radio tools.

Application layer sniffers are available from OpenZWave. OpenZWave is an
open-source project that provides libraries and drivers to communicate with
USB-based Z-Wave controllers (e.g., Z-Stick S2 from Aeon Labs). OpenZWave
provides a network querying tool to demonstrate its MinOZW library API. The
python-openzwave package, an open-source wrapper for OpenZWave, provides
a Python version of MinOZW and a Z-Wave shell interface to interact with a
Z-Wave controller.

While Scapy or a netcat listener could be used to collect the encapsulated
UDP frames sent over a local loopback device, future work will support the
capture and analysis of Z-Wave frames using Wireshark. Wireshark is capable
of intercepting UDP datagrams, but is unable to decode the encapsulation
header, MAC header or Z-Wave payloads.

As part of this research, a packet dissector was developed for the encap-
sulation header and Z-Wave MAC header. Figure 3 shows a Z-Wave frame
dissection. The dissector also decodes the first byte of the PHY service data
unit payload to identify the application payload command class. The remaining
payload bytes depend on the value of the command class field. The dissector
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Table 1. Jamming efficiency against ITU-T G.9959 frames.

Integrity Check* Max Jammer Efficiency
Data Rate Payload Bits to Jam

9.6 Kbps (Rate 1)  8-bit checksum 512 bits 1 512
40Kbps (Rate 2) 8-bit checksum 512 bits 1 512
100 Kbps (Rate 3)  16-bit CRC 1,360 bits 1 1,360

*ITU-T G.9959 uses non-correcting integrity checks.

computes a checksum for each frame and denotes the outcome to the user in
the info field of the packet list window. Dissectors for each of the 49 com-
mand classes, as identified in the OpenZWave source code, are currently being
developed.

3.2 Denial-of-Service Attacks

Denial-of-service attacks prevent or degrade legitimate access to resources
(e.g., radio frequency spectrum). Such attacks can be easily accomplished using
off-the-shelf equipment [10]. Denial-of-service attacks on wireless networks can
deny or degrade access to resources from the physical layer to the network layer.
For example, the physical layer may be susceptible to narrow-band jamming,
the carrier sense algorithms may be exploited to deny access to the medium [22]
and routers can be consumed with overflowing interface queues.

Constant and deceptive jamming are effective for conducting denial-of-service
attacks due to the MAC layer collision avoidance characteristics of ITU-T
G.9959. When an attacker is operating a constant or deceptive jammer, any
node within range will sense the channel as busy and wait to transmit. Even
more effective and efficient is reactive jamming [8], which is difficult to de-
tect [18]. A reactive jammer, that only transmits after the preamble and start
of a frame delimiter of an ITU-T G.9959 PHY frame are detected, merely has
to corrupt one bit of the PHY service data unit in order to cause an integrity
check error and the complete loss of the frame. The non-correcting integrity
checks used by Z-Wave are capable of detecting, but not correcting, single-bit
errors. Even worse, the corruption of a single bit in the Z-Wave PHY layer, un-
like a PHY layer that uses a spreading technique such as direct-sequence spread
spectrum (DSSS), is achievable using narrow-band jamming. The use of error
correction codes, as in IEEE 802.11a, is more robust to bitwise jamming [9].
Table 1 presents an estimate of jammer efficiency in terms of bits jammed per
bit transmitted against ITU-T G.9959 (i.e., ratio of communications effort to
jammer effort) based on the results in [9].

Depending on the objective, an attacker may use any of the methods de-
scribed above to impact the availability of one or more nodes in a wireless
network. For example, a Z-Wave network containing a thermostat (sensor)
and water valve (actuator) could be subjected to a denial-of-service attack that
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prevents the thermostat from reporting the current temperature or obstructs
a command to activate the water valve. A similar scenario was successfully
demonstrated in [15] with a gas pipeline remote terminal unit that included a
wireless pressure sensor, pump and relief valve.

3.3 Packet Injection Attacks

Due to the broadcast nature of wireless networks, an attacker armed with
information gained via reconnaissance may be able to inject forged packets
into a network. The ability to conduct packet injection enables the attacker
to masquerade as a legitimate network device while transmitting messages to
manipulate system operation. Badenhop and Mullins [2] have investigated
network degradation attacks against wireless routing protocols similar to those
used in Z-Wave.

Using publicly-available hardware and software, researchers have reported
the ability to conduct packet injection attacks to manipulate ITU-T G.9959
devices. Fouladi and Ghanoun [5] have developed a packet inspection/injection
tool using a Texas Instruments radio transceiver and custom software (now
publicly-available, albeit not open source). Using the tool, Fouladi and Gha-
noun were able to inject traffic to exploit a vulnerability in a device-specific
encryption implementation at the application layer that enabled them to send
encrypted commands to perform unauthorized actions.

Picod et al. [11] have also demonstrated a packet injection attack against
ITU-T G.9959 devices. Their packet inspection/injection tool uses a software-
defined radio and open-source software packages. They demonstrated the abil-
ity to sense legitimate SWITCH.BINARY_ON commands and automatically inject
subsequent SWITCH_BINARY_OFF commands, which effectively nullified legiti-
mate messages.

These preliminary case studies demonstrate the attack possibilities when
a malicious entity has the ability to inject forged ITU-T G.9959 traffic. In
addition to these examples, an attacker may be able to: (i) flood a network
with traffic causing a denial of service at the routing or application layers; (ii)
send false status messages; or (iii) provide a control node with false routing
information to poison the network routing table.

If the target ITU-T G.9959-based network is used in a critical infrastructure
asset, the ability to inject commands and report false state information could
prove disastrous. For example, an attacker may choose to send a close command
to a water valve in a cooling system immediately following every open command
sent by the master terminal unit while falsely reporting to the human-machine
interface that the valve is open.

4. Passive Reconnaissance Techniques

Several high-level attack classes for Z-Wave systems have been presented
above. A basic, invariant system threat from which other threats originate
is passive reconnaissance. In the remainder of this chapter, the focus is on



218 CRITICAL INFRASTRUCTURE PROTECTION IX

Sniffer PC
GnuRadio

Z-Wave Controller

‘ Wireshark

i

)

Figure 4. Sniffer architecture.

identifying several low-complexity passive reconnaissance techniques to further
the exploration of Z-Wave security.

To capture arbitrary Z-Wave frames, a receiver chain was constructed us-
ing a USRP N210, GNU Radio, Scapy-Radio and a Z-Wave Wireshark packet
dissector. Figure 4 shows the sniffer architecture. The USRP was tuned to
a center frequency of 908.40 MHz to collect frequency-shift-keyed symbols at
+20KHz deviation from the center frequency. An Ettus VERT900 dipole an-
tenna was connected directly to the USRP and sampling was performed at
800 Kbps with 20 MHz bandwidth. Filtering, demodulation and symbol syn-
chronization were performed by GNU Radio. Scapy-Radio, a subsystem within
GNU Radio, provided preamble detection, byte synchronization, NRZ decod-
ing and frame extraction operations. The extracted frames were transmitted
over the localhost interface encapsulated as UDP datagrams to port 52002.
Wireshark captured traffic over the localhost interface to intercept the data-
grams. A custom Z-Wave packet dissector was used to decode the encapsulated
Z-Wave frames, which were preserved in the PCAP format for later analysis.
The experimental setup in Figure 4 permitted the passive collection of Z-Wave
frames. Unlike application level sniffers, Z-Wave frames were captured regard-
less of the frame Home-ID. Moreover, the PHY and MAC layers were retained
rather than stripped in order to provide insights into system behavior.

4.1 Controller-Device Pairing

Observations of the responses of the included device to the controller revealed
significant details about the hardware, software and current state. At the end
of an inclusion process, the controller interrogates the included device to learn
about it. This information is used by the controller to present accurate control
options and device information to the user.

Figure 5 shows a frame capture of an Aeon Labs Z-Stick controller using a
Jasco JS-45603 smart dimmer. The data in the application payloads, which was
reversed by referencing the Open-ZWave command class source code, is sum-
marized to the right of Figure 5. The figure shows a sequence of GET commands
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92 316,340579000  Homeld: GxlBdetns Src: 1 bst 13 Len: 18 Type: Acknowtedgesent
393 316.350916000  Home1d: Oxlhsedes Src: 1 Dat 12 Len: 12 Type: Suitch Mattilem

394 316356620000 omeld: Ox16detbs Src: 5 Dst 12 Len: 10 Type: Acknautedoesen

5 316.361810000  HoseId: oxlBsetns Src: $ st 14 Len: 13 Typ: Swteh mattile L tion: Not Used
396 316.379406000 _ Home1d: OxlBdedes Src: 1 Dst 14 Len: 10 Type: Acknoutedgesent ocation: Not Use

Basic State: Off

Multilevel State: 0x00

Figure 5. Pairing between a Jasco smart dimmer and an Aeon Z-Stick controller.

from the controller to the dimmer. The dimmer responds to each request with
a REPORT message that reveals information. Device-level information, such as
the vendor, device type and ID are provided in a manufacturer-specific REPORT
message. The controller requests software version information, to which the
dimmer device replies with a Z-Wave library, protocol and application ver-
sion. After the device and software level information is gathered, the controller
queries the device on the current state of each configuration and control item.
This state information can be used by an observer to determine the set of mes-
sages that the device services, which is especially useful when the device-specific
data refers to an unknown product type or manufacturer ID. The location state
is of particular interest. While location information was not initialized in the
capture shown in Figure 5, it is still possible for a device to reveal some infor-
mation about its configured location. The location information is in the form
of a grouping index that corresponds to a user-defined label assigned at the
controller interface. A user may group devices by room, floor or functionality,
so additional information is required to understand the semantics of this value.

If the pairing is not observable, passive reconnaissance may still capture the
interactions between the controller and end devices. As with the latter por-
tion of the pairing process, the command classes of observed messages provide
information about the device function. The drawback is that the observation
period is significantly longer than if observed during the pairing process. This
is especially true for low-power event triggered devices. These devices operate
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No. Time Protocol ‘ Length | Info
52 2.344342000 Zwave 63 HomeId: ©x184eBb6 Src: 1 Dst: 5 Seq: 8 Len: 13 Type: Switch Multilevel
54 2.353639000 Zwave 60 HomeId: ©x184eBb6 Src: 5 Dst: 1 Seq: 8 Len: 10 Type: Acknowledgement
56 2.366168000 Zwave 62 HomeId: ©x184e@b6 Src: 1 Dst: 5 Seq: 9 Len: 12 Type: Switch Multilevel
58 2.368858000 Zwave 60 HomeId: ©x184e@b6 Src: 5 Dst: 1 Seq: 9 Len: 10 Type: Acknowledgement
60 2.375081000 Zwave 63 HomeId: ©x184eBb6 Src: 5 Dst: 1 Seq: 6 Len: 13 Type: Switch Multilevel
62 2.380123000 Zwave 60 HomeId: Bx184eBb6 Src: 1 Dst: 5 Seq: 6 Len: 10 Type: Acknowledgement

Figure 6. Z-Stick controller SET command capture.

at low duty cycles to extend battery life and only emit frames when a specific
monitored event occurs (e.g., a door opening or an excessive sensor reading).

4.2 Controller-Specific Behavior

A controller may exhibit discernible differences in how it interacts with de-
vices. To illustrate this observation, the dimmer (multilevel switch class device)
was paired with two different controllers to show that the frames are noticeably
different.

In the first experiment, the Jasco Smart Dimmer was paired with an Aeon
Labs Z-Stick S2 controller (Node 1). The multilevel switch SET command was
executed through an OpenZWave control panel while the Z-Wave frames were
captured by the Scapy-Radio USRP sniffer and processed by the Wireshark Z-
Wave dissector. Note that the Z-Stick controller has an ID of 1 and the dimmer
has a node ID of 5. The Z-Stick controller sends a multilevel dimmer command
to set the dimmer to a value, shown as frame 52, which is acknowledged by the
device. After receiving the acknowledgment (ACK), the controller requests an
update of the current dimmer state (output voltage) by sending frame number
56 in Figure 6. The dimmer complies by sending its current value to the
controller in frame 60 in Figure 6. This results in six frames being exchanged per
transaction. The same pattern occurs when the Aeon Z-Stick controller sends
commands to other devices. Essentially, the controller issues a SET command,
followed by a GET command on the same value to confirm that the device
complied with the command. The targeted device responds to the command
with a REPORT command.

No. [ Time ‘ Protocol ‘ Length \ Info
63 8.171197600 63 HomeId: Ox17b784d Src: 1 Dst: 5 Seq: 3 Len: 13 Type: Switch Multilevel
65 8.272984000 Zwave 63 HomeId: 0x17b784d Src: 1 Dst: 5 Seq: 4 Len: 13 Type: Switch Multilevel

67 8.279402000 Zwave 60 HomeId: 0x17b784d Src: 5 Dst: 1 Seq: 4 Len: 10 Type: Acknowledgement

Figure 7. VeraLite controller SET command capture.

In the second experiment, the same dimmer device was paired with a Ve-
raLite controller. Using the VeraLite controller web interface, the multilevel
switch SET command was invoked while capturing Z-Wave frames. Figure 7
shows the results of the capture. Coincidentally, the node IDs are once again
one and five. The VeraLite controller sends two versions of the same multi-
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level switch SET command. In frame 63, the ACK-required bit in the frame
control field is not set; however, it is set in frame 65. After the dimmer device
receives frame 65, it acknowledges receipt to the controller, which is shown in
Figure 7 by the matching sequence numbers. The controller initiates the same
command with and without the ACK-required bit set is very likely because the
controller is compatible with devices that are not able to reply. Devices that
are unable to transmit may ignore frames that require an ACK. As with the
Z-Stick controller, this pattern is observable when the VeraLite controller issues
SET commands to devices. The SET command is sent both with and without
the ACK and does not necessarily expect a reply.

The results show that there is more than one way to execute a switch SET
transaction. While it cannot be concluded that the observed patterns are
unique to the controllers, it can be deduced that a given command pattern
reduces the possible identities of the target controller. For example, when an
unknown controller exhibits a pattern consistent with that of a Z-Stick con-
troller, this would imply that the unknown device is not a VeraLite controller.

4.3 Device-Specific ACK Times

When the application layer of Z-Wave frames are encrypted, passive re-
connaissance of a device using the previously-identified methods may prove
ineffective. Application layer encryption obscures the command class fields,
making it more difficult to identify controller-specific command patterns. An
outside observer must turn to non-encrypted observations to deduce properties
of the devices. Implementation differences between hardware, software and the
physical environments of devices may result in observable differences outside
of the encrypted traffic. Existing techniques such as traffic analysis and side
channel analysis have been shown to be effective at thwarting confidentiality
mechanisms like encryption [21].

A fingerprinting technique known as preamble manipulation may be appli-
cable to Z-Wave devices [14]. Unfortunately, it was difficult to find a Z-Wave
device that uses a transceiver other than the ZM3102N to verify this technique.
Since the experimental hardware was homogeneous, firmware implementations
could be examined behaviorally to identify implementation and functionality
differences. As a matter of fact, the 32 KB of flash memory available in the
ZM3102N provides ample opportunities for vendors to customize their imple-
mentations.

One ubiquitous observable behavior below the application layer is the time
taken by a node to send an ACK upon receiving a request. Time-of-flight
fingerprinting metrics are explored in [16], where the authors report that mea-
surement variance is due to hardware and environmental factors. In their exper-
iments, laptop computers were used to perform packet injection, ACK response
and time measurements. Each had an operating system that managed indepen-
dent operations, but also competed for CPU clock cycles, resulting in variations
in the time-of-flight measurements. While this is a valid issue, Z-Wave devices
are far more specialized than laptop computers, having application-specific I/O
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and fewer, if any, concurrent tasks. This suggests that an ACK response of a
Z-Wave device is more deterministic than a general purpose laptop. If this
is true, ACK-based fingerprinting would be a valid approach for identifying
Z-Wave devices.

The experiments described in the remainder of this section demonstrate
that ACK-based fingerprinting of Z-Wave devices shows promise. While the
Z-Wave devices used in the experiments were all embedded systems, the sniffer
ran on a Dell Latitude E6520 laptop. The laptop incurred a degree of the
dynamics identified in [16]. The ACK delay time was measured using the
packet arrival times observed by the Wireshark Z-Wave dissector. The time
values were determined by the Wireshark process when an encapsulated Z-Wave
frame was observed on the localhost interface. Encapsulated frames were
sent over the localhost interface by the GNU Radio process. The GNU Radio
process received samples from the USRP FPGA via a gigabit Ethernet interface.
In the experiments, each process, interface and device driver contended with
other resources on the sniffer laptop and were subject to contention dynamics.
Regardless of the dynamics, adequate sampling of ACK delays eliminated the
confounding effects from the measurements. Seventy ACK response times were
collected for each device under test to mitigate sampling bias and to facilitate
observational comparisons.

ACK Times for Different Vendor Devices. In the first experiment,
a Veralite controller was used to repeatedly issue commands to a FortrezZ
water valve. Each command generated several acknowledged frames from the
controller and valve. The ACK response to a particular singlecast frame could
be identified by the matching four-bit sequence numbers. After carefully pair-
ing the singlecast frames with their associated ACKs, the response time was
measured as the difference in time of between the observation of the singlecast
frame being sent and the observation of the ACK being sent. The distances
between the water valve, VeraLite controller and the Z-Wave sniffer were all
within one meter of one another, implying that signal propagation delays were
negligible.

Figure 8 shows the 99% confidence intervals estimating the true mean (n =
70) of the ACK response times for the VeraLite controller and FortrezZ water
valve. The mean response times are different with a two-sample t-test p-value
of 0.00; clearly, the response time of the water valve is greater than that of
the VeraLite controller. Moreover, the difference in the response times is an
order of magnitude more than variations due to thermal effects [23]. Since
both devices use the same hardware, the differences may be due to firmware
implementation differences.

ACK Times for Same Vendor Devices. The same experiment was
repeated, except that the selected controller and device originated from the
same vendor. The Aeon Labs Z-Stick S2 controller was used as the controller
and an Aeon Labs Appliance Switch was used as the device. A total of 70
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Figure 8. Mean ACK response times for devices from two different vendors.
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Figure 9. Mean ACK response times for devices from the same vendor.

ACKs were recorded for both systems by repeatedly issuing commands from
the controller. Figure 9 shows the observed mean ACK response times for
the two devices (n = 70 and a confidence interval of 99%). In this case, the
mean ACK response times of the two Aeon Labs devices are not statistically
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Figure 10. Mean ACK response times for a 60-second polling interval.

different (two-sample t-test p-value = 0.64). This suggests that both devices
have similar ZM3102N implementations.

ACK Times for Polling Commands. In this experiment, instead of
manually creating Z-Wave traffic, the Veraliite controller was configured to au-
tomatically poll two devices every 60 seconds. The two devices polled were the
FortrezZ WVO1LFUSO075 water valve and an Everspring AN145 lamp socket
switch. Figure 10 shows the mean response delays for each device with 99%
confidence intervals (n = 70). The figure reveals several interesting points.
First, there is a statistically significant difference between the response times
of the Veralite controller and the other two devices (ANOVA p-value = 0.00).
The difference of means between the water valve and lamp switch is not statis-
tically significant, but the variance is higher for the Everspring switch. Second,
the mean ACK response time of the water valve is different from that seen
in Figure 8. The variances of the devices in Figure 10 are larger than those
reported in Figures 8 and 9. This experiment had 60 seconds between each
transaction, whereas the two previous experiments had repetitions at intervals
of one or two seconds. During the 60-second period of inactivity, it is hypoth-
esized that the devices went into a lower power state, which increased their
ACK response times.

Differences in Mean ACK Response Times. The experimental data
suggests that the differences in means are due to implementation differences in
how ACKs are handled by the devices. Upon receiving a frame, a checksum is
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performed. If the checksum passes and the frame has either requested an ACK
or the protocol requires it, the recipient generates an ACK using the sequence
number of the received frame and sends the response to the originator. The
differences arise depending on when these steps are taken during the transceiver
chains. The ACK response may be initiated immediately upon receiving the
frame or after the frame is queued so that the receiver may quickly return to
search for the next frame. This option, for example, is provided by the CC2420
transceiver [19].

After the ACK is generated, another implementation decision involves the
transmission of the ACK frame. If the ACK is given priority, it is either
placed at the front of the send queue or an interrupt is generated to force
the transceiver to immediately transmit the ACK. Other design choices in-
clude the sizes of the receive and send queues, buffer exception handling and
the queue service rates. In a delay-prone scenario, ACKs are handled by an
attached microprocessor via the SPI bus.

Another source of differences may be the ZM3102N configuration settings.
The ITU-T G.9959 specification lists parameters relevant to ACK response
times such as MacMinAckWaitDuration, TurnaroundTimeRXTX and MacMin
CCARetryDuration. The three parameters specify the minimum frame spacing
between receiving a packet and transmitting its ACK, the time penalty for
switching from the receive mode to the transmit mode and the minimum time
to wait between clear channel assessments, respectively. It is not clear which, if
any, of these parameters are configurable on the ZM3102N; however, each may
impact the ACK response time.

5. Conclusions

This chapter has examined the security implications of using ITU-T G.9959
wireless networks with Z-Wave devices in critical infrastructure assets. Sev-
eral techniques for passively discriminating between Z-Wave devices based on
functionality and vendor were investigated. Experiments involving passive ob-
servations of ACK response times demonstrate that it is possible to identify
implementation differences in ZM3102N firmware. In particular, the experi-
mental results reveal that a VeraLite controller and FortrezZ water valve have
different mean ACK response times, while an Z-Stick controller and appli-
ance switch from the same vendor (Aeon Labs) have equivalent response times.
These results suggest intra-vendor similarities.

Future research will focus on developing new passive techniques and refining
existing techniques for use with other types of devices. Additionally, research
will attempt to understand the reasons for the differences in the mean ACK
response times. Efforts will also explore active fingerprinting techniques. One
such technique will involve sending messages corresponding to all the com-
mand classes to a target device to discern its capabilities. The ultimate goal
is to develop a tool that leverages passive and active techniques in device fin-
gerprinting, with functionality similar to the popular nmap operating system
fingerprinting tool.
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Note that the views expressed in this chapter are those of the authors and
do not reflect the official policy or position of the U.S. Air Force, U.S. Army,
U.S. Department of Defense or U.S. Government.
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