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Abstract.  Known group key transfer protocols in group 

communications using classical secret sharing require that a t -degree 

interpolating polynomial be computed in order to encrypt and decrypt 

the secret group key. Secret sharing plays an important role in ensuring 

the group communications security. A verifiable multi-secret sharing 

(VMSS) scheme is a multi-secret sharing scheme with the verifiable 

property. Recently, Zhao et al. and Dehkordi et al. successively 

proposed two threshold VMSS schemes. Shortly, using the same 

verification mechanism, Dehkordi et al. presented another two VMSS 

schemes. In these schemes, authors claimed that the dealer was 

absolutely impossible to become a cheater. In this paper, we show that 

in both Zhao scheme and Dehkordi scheme, a dishonest dealer may 

distribute a fake share to a certain participant, and then that participant 

would subsequently never obtain the true secret. Indeed, verification 

mechanism should be improved in these schemes; and furthermore our 

results highlight that extra cautions still be exercised when constructing 

schemes in this direction. 

Results 

A verifiable multi-secret sharing (VMSS) scheme is a multi-secret sharing scheme 

with the verifiable property. Recently, Zhao et al. [3] and Dehkordi et al. [1] 

successively proposed two threshold VMSS schemes. Shortly, using the same 

verification mechanism, Dehkordi et al. presented another two VMSS schemes [2]. In 

these schemes, authors claimed that the dealer was absolutely impossible to become a 

cheater. In this paper, we show that in both Zhao scheme and Dehkordi scheme, a 

dishonest dealer may distribute a fake share to a certain participant, and then that 

participant would subsequently never obtain the true secret. Indeed, verification 

mechanism should be improved in these schemes; and furthermore our results 

highlight that extra cautions still be exercised when constructing schemes in this 

direction. 
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Cryptanalysis of Zhao scheme 

In Zhao scheme [3], we assume that D  is a dishonest dealer. Let 

w
M ( {1.2,..., }w n ) be a certain participant in M . The goal of D  is to distribute a 

fake share to 
w

M  and 
w

M  will not detect this and, hence, 
w

M  would 

subsequently never obtain the true secret. A more detailed description of the attack is 

as follows: 

(1) As a preliminary step, D  chooses an integer 
1n

s


 from the interval [2, ]N  

and computes +1

1 0
modn

n

s
I R N


  such that 

1n i
I I


  for 1.2,...,i n ; 

(2) After polynomial ( ) modh x Q  is constructed, D  computes 

( ) mod
i i

y h I Q  for 1.2,...,i n , i w and specially computes 

1
( ) mod

w n
y h I Q


  instead of ( ) mod

w w
y h I Q . Afterwards, D  publishs 

1 2
( , , ..., )

n
y y y  or 

1 2
( , , ..., , (1), (2), ..., ( ))

n
y y y h h h k t ; 

(3) When any t  participants include 
w

M  want to recover the secrets 

1 2
, , ..,

k
P P P  (without loss of generality, suppose participants 

1
{ }

t

i i
M


), it is 

easy to see that anybody can verify '
i

I  is true or false but can not verify 
i

y  

is matched with 
i

I  or not for 1.2,...,i t . Therefore, after the verifications 

are done, 
w

M  is unable to detect any discrepancy on 
w

y  (actually, 

1
( ) mod

w n
y h I Q


  is not matched with 

w
I ); 

(4) By using Lagrange interpolation polynomial, these t  participants include 

w
M  will uniquely obtain another polynomial ( ) 'modh x Q  but not 

( ) modh x Q , since the complete share distributed to 
w

M , that is ( , )
w w

I y , is 

not correctly paired. As a consequence, 
w

M  would never obtain the secrets 

1 2
, , ..,

k
P P P . 

Through the attack, the verification mechanism of Zhao scheme is completely 

compromised. 

Cryptanalysis of Dehkordi scheme 

Indeed, the attack of Dehkordi scheme [1] is the same as that of Zhao scheme. In 

Dehkordi scheme [1], we assume that D  is a dishonest dealer. Let 

w
M ( {1.2,..., }w n ) be a certain participant in M . The goal of D  is to distribute a 

fake share to 
w

M  and 
w

M  will not detect this and, hence, 
w

M  would 
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subsequently never obtain the true secret. A more detailed description of the attack is 

as follows: 

(1) As a preliminary step, D  chooses an integer 
1n N

s

  and computes 

+1
( , )

n
f r s  such that 

+1
( , ) ( , )

n i
f r s f r s  for 1.2,...,i n ; 

(2) After 
( , )

1
{ , }

f r s ni

i i
r G g


  is published and polynomial ( ) modh x q  is 

constructed, D  computes ( ( , )) mod
i i

y h f r s q  for 1.2,...,i n , 

i w and specially computes 
1

( ( , )) mod
w n

y h f r s q


  instead of 

( ( , )) mod
w w

y h f r s q . Afterwards, D  publishs 
1 2

( , , ..., )
n

y y y  or 

1 2
( (1), (2), ..., ( ), , , ..., )

n
h h h k t y y y ; 

(3) When any t  participants include 
w

M  want to recover the secrets 

1 2
, , ..,

k
P P P  (without loss of generality, suppose participants 

1
{ }

t

i i
M


), it is 

easy to see that anybody can verify ( , )
i

f r s  is true or false but can not verify 

i
y  is matched with ( , )

i
f r s  or not for 1.2,...,i t . Therefore, after the 

verifications are done, 
w

M  is unable to detect any discrepancy on 
w

y  

(actually, 
1

( ( , )) mod
w n

y h f r s q


  is not matched with ( , )
w

f r s ); 

(4) By using Lagrange interpolation polynomial, these t  participants include 

w
M  will uniquely obtain another polynomial ( ) 'modh x q  but not 

( ) modh x q , since the complete share distributed to 
w

M , that is 

( ( , ), )
w w

f r s y , is not correctly paired. As a consequence, 
w

M  would never 

obtain the secrets 
1 2
, , ..,

k
P P P . 

Through this attack, the verification mechanism of Dehkordi scheme [1] is 

completely compromised. Furthermore, since the newer VMSS schemes proposed by 

Dehkordi et al. in [2] are based on the same verification mechanism, our attack 

equally applies to them. 

Countermeasure 

The main flaw in Zhao scheme and Dehkordi scheme is that there are no way for 

the participant to check whether 
i

I  (or ( , )
i

f r s ) chose by her/himself and 
i

y  

published by D  are correctly paired or not. All participants can not be sure that 
i

y  

is matched with 
i

I  (or ( , )
i

f r s ) by only checking the correctness of 
i

I  (or 

( , )
i

f r s ). This oversight allows the dishonest dealer in our attack to send the forged 
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i
y  without being detected by the participant. 

The simplest way to resolve the security problems with Zhao scheme and Dehkordi 

scheme would be to change the verification equations. For Dehkordi scheme, instead 

of computing 
( , )f r si

i
G g for 1.2,...,i n , D  need to compute 

1 modiP

i
G g p  for 0,1, 2,..., 1i k   and publish them. Through checking 

( , )
1

0

( ) modi
jy f r si

j

t

j

Gg p





  (if k t ) or ( , )
1

0

( ) modi
jy f r si

j

k

j

Gg p





  (if k t ) 

for 1.2,...,i n , the participants verify whether ( , )
i

f r s  and 
i

y  are valid (i.e, 

correctly paired). After the secrets are recovered, the participants check 

1 modiP

i
G g p  for 0,1, 2,..., 1i k   to verify whether 

1 2
, , ..,

k
P P P  are valid. 

As a consequence, our attack will no longer be valid against the fixed scheme. In the 

same way, this verification mechanism equally applies to Zhao scheme and the newer 

VMSS schemes proposed by Dehkordi et al. in [2].  

Conclusion 

This paper has considered the security of Zhao scheme and Dehkordi scheme for 

verifiable multi-secret sharing. Although these schemes claimed the dealer was 

absolutely impossible to become a cheater, we have shown that the schemes are 

indeed completely insecure against a dishonest dealer. In addition, we have 

recommended a small change to the schemes that can address the identified security 

problem. Furthermore, our attack and security patch apply also to the newer VMSS 

schemes proposed by Dehkordi et al. 
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