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Abstract. As computer systems have become more complex and dy-
namic, unstructured and decentralized techniques serve as basic build-
ing blocks in large-scale systems such as cloud computing systems. In
particular, we consider a gossip-based algorithm, one of the unstruc-
tured overlay construction techniques. In this paper, we propose a mem-
bership management mechanism using the gossip-based algorithm with
social graphs for the Byzantine fault tolerance problem. Experimental
results show that our membership management mechanism copes with
Byzantine nodes effectively in a scalable way without a bottleneck in
dynamic computing environments, requiring only n ≥ 2f + 1 nodes.

1 Introduction

In recent years, the epidemic or gossip-based communication model has been em-
ployed in many applications in large-scale distributed systems and cloud com-
puting systems. These applications include information dissemination [1], [2],
clock synchronization [3], mutual exclusion [4], deadlock detection [5], termina-
tion detection [6], video streaming service [7], and BitTorrent (Tribler) [8]. In
cloud computing environments, nodes can join or leave the system at will by
virtue of virtualization technology [9]. Because of the characteristics of typical
cloud computing environments, that is, the overlay network is often not fully
connected and is constantly changing, the existing communication models are
not able to suitably address reliability and scalability problems [10]. Therefore,
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as cloud computing matures, the gossip-based communication model has re-
ceived significant attention because of its inherent ability to handle the dynamic
behavior of nodes or resources [11].

Because modern gossip-based protocols use local view, which is a membership
table that contains a small number of neighbor nodes, rather than maintaining
full membership information of the system, the uniformity of peer sampling
has become an important basic factor for evaluating the protocol. In this re-
gard, several membership management mechanisms of the gossip-based protocols
have been devised [12], [13], [14] to maintain the uniformity of peer sampling.
Although biased peer sampling may not influence the correctness of the gossip
protocol, it leads to performance degradation for applications. Furthermore, ma-
licious or Byzantine nodes may subvert the system even though the number of
Byzantine nodes is sufficiently small, and therefore, existing membership man-
agement mechanisms are not suitable for preserving the uniformity of random
sampling.

In this paper, we propose a membership management solution over social
graphs in the presence of Byzantine nodes. Although previous solutions focus
on the uniform sampling of nodes, including Byzantine nodes, we endeavor to
sample nodes within the set of correct nodes disregarding Byzantine nodes from
local views. In brief, when a correct node encounters a suspicious (Byzantine)
node, the correct node does not accepting the membership information of the
suspicious node and leverages the pre-existing social graph for membership man-
agement.

The rest of this paper is organized as follows. We describe the gossip pro-
tocol, social graph, and Byzantine fault tolerance problem with related work in
Section 2. In Section 3, we provide our system model and algorithms for mem-
bership management using social graphs. We present the results of performance
evaluation in Section 4. Then, we conclude the paper in Section 5.

2 Related Work

An epidemic or gossip protocol is a method to communicate among uniquely
identifiable nodes in a cycle-based fashion, inspired by the spread of disease. Dis-
eases such as airborne diseases, contagious diseases, or HIV can be spread when
individuals encounter others through networking connections. Another analogy
of a gossip protocol can be found in the social behavior of persons. For example,
if person P has just been updated for some data, P is willing to spread that
information to other persons. Subsequently, P will contact some neighbors and
try to push the data. In contrast, if person P has not yet obtained new data, P
wants to be updated and P will try to obtain the data by pulling other neighbors.
A gossip protocol guarantees message delivery with a high probability even if
failures occur because of its inherent properties [15]. Refer to [16] and [17] for a
correctness proof of the gossip protocol. The simplest form of the gossip protocol
comes in two states: susceptible and infected. This form of the gossip protocol
is called the SI model [18]. In the gossip protocol, each node maintains little
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membership information, which is called local view, instead of full membership
information in the system. Hence, the overlay network can be greatly simplified.
At each cycle, a node selects o(fanout) gossip targets from its local view and
then communicates with the gossip targets using one of the following methods:
(1) push mode, (2) pull mode, and (3) push-pull mode.

As for membership management of the gossip protocol, several schemes have
been proposed. In [12], the authors proposed the view-shuffling operation, where
pairs of nodes regularly and continuously swap portions of their local views. Un-
fortunately, the naive version of the view-shuffling operation has some drawbacks
in that the overlay network may be partitioned in some cases. Hence, an enhanced
version of view shuffling has been proposed [13]. The difference between naive
view shuffling and enhanced view shuffling is that in the enhanced version, when
swapping local views, the initiator includes the id of the gossip target in the
sent view, which will be included to the local view of the gossip target, and then
replaces the id of the gossip target with its own id before transmission. This
modification results in the uniformity of random sampling even when starting
from a non-uniform distribution of nodes in the local views [19].

In Newscast [14], each node performs a view-swapping operation periodically,
keeping only the most up-to-date local view entries of the union of the two local
views. This idea is based on the assumption that nodes exhibit dynamic behavior,
and therefore, the probability of existing in the local views of two nodes is high for
newly joined nodes. In Brahms [20], the authors proposed a Byzantine-resilient
and uniform peer sampling algorithm based on view shuffling, requiring multiple
samplers and validators, where a unique hash function is used in each. Because
of this, to obtain a uniform sample for a sampler, a sufficiently long sequence
of shuffle operations is required. Moreover, the uniformity is valid only for one
instance. In other words, another sequence of shuffling operations needs to be
performed for another instance.

On the other hand, the membership management proposed in this paper
does not require multiple samplers at each node, and the additional overhead
for uniformity is minimized. Furthermore, the uniformity of local views is always
evolving as the number of gossip cycles increases, retaining the previous unifor-
mity regardless of different instances of membership management operations.
In addition, as discussed, we endeavor to sample nodes within the set of cor-
rect nodes disregarding Byzantine nodes from local views, unlike the previous
solutions, which focus on the uniform sampling of nodes including Byzantine
nodes.

We consider social graphs to enhance the uniformity of peer sampling, dis-
regarding Byzantine nodes. An informal definition of a social graph is a graph
representation of an overlay network, of which every two nodes with a social
relationship are connected through an overlay. In a typical gossip protocol, the
overlay network is constructed only by local views of nodes. In addition to this,
if Node A has relationships with Node G and Node H, Node A has an outdegree
of seven (if the gossip protocol uses push mode).
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Assume that Node A has data informative to its neighbors (i.e., nodes in
a social view), but the data are sensitive and private. In such a case, Node A
does not want to expose the data to nodes (although the data are beneficial
to the nodes) other than its neighbors. Similarly, if Node A has sent sensitive
and private data to its neighbor (Node G), Node A requires that Node G not
send the data because the social relationships are not transitive. We note that
the social relationships are symmetric. That is, if Node A trusts Node G, Node
G also trusts Node A. We note that even though Node A and G have a trust
relationship, they may not have contact information between them. For instance,
if Node A contacts Node G, which does not have Node A in its own contact list,
Node G will recognize Node A, and vice versa.

We use these properties of social graphs to solve the Byzantine fault tol-
erance problem. As far as confidentiality and privacy are concerned, explicit
mechanisms should be employed when using social graphs. Because we focus on
the Byzantine fault tolerance problem, these confidentiality and privacy mecha-
nisms are beyond the scope of this paper. Several studies have been devoted to
these mechanisms [21], [22].

3 Proposed Membership Management

In this study, we propose an enhanced version of gossip membership manage-
ment with social graphs. The basic idea of our proposed solution is to utilize an
existing social relationship in order to increase the expectations of the correct
nodes in local views. More precisely, when a node encounters a suspicious node,
the node utilizes its social neighbors to replace the suspicious node with a trust-
worthy node. As gossip cycles progress, a correct node may contact a Byzantine
node, which outputs an incorrect decision value. In this case, we let the correct
node perform a membership management algorithm that we provide. The pseu-
docode of the algorithm is provided in Section 3.2. In brief, in our membership
management, the correct node contacts its social neighbor and then retrieves the
social view of one of the social neighbors. Afterwards, the correct node replaces
the Byzantine node information in the local view with the retrieved information.

One of the simplest forms that solve the Byzantine consensus problem is
based on broadcast primitives. In this approach, the leader periodically sends a
broadcast message to every node in the system, and then the leader waits until
it receives all of the acknowledgements. Next, the leader performs the consensus
algorithm to decide whether consensus is reached. If consensus is not reached
(because some distributed computations are not finished), the leader sends an-
other broadcast message. The drawbacks of this approach are: (1) the leader
should remain stable during the whole epoch (single point of failure), (2) the
message complexity of the algorithm is O(n2) (scalability problem), (3) it is not
good at handling the dynamism of the system (not churn-resilient), and (4) no
node (except for the leader) knows the system-wide information (not globally
optimized).



Lecture Notes in Computer Science: Authors’ Instructions 5

To solve the global optimization problem, one can use gossip algorithms based
on a broadcast primitive. In such a case, at each cycle, every node sends its local
information to every other node in the system. Although the broadcast-based
algorithms require fewer gossip cycles to reach consensus, the message complexity
of the algorithms is O(n2) at each cycle. Unlike the previous approaches, our
solution is not based on the broadcast primitive or the leader and is able to
properly address the scalability problem in terms of the number of nodes even
in the presence of Byzantine nodes. Furthermore, as gossip cycles progress, the
system-wide information is distributed across the nodes in the system. To the
best of our knowledge, several previous studies have dealt with the Byzantine
fault tolerance problem in a dynamic system. The implicit assumptions of some
previous studies are: no Byzantine nodes exist in the system, and the system is
static (i.e., nodes are not allowed to join or leave).

3.1 System Model

There is a set of nodes or processes and all the nodes are functionally equivalent
to each other. Henceforth, we use the terms “node” and “process” interchange-
ably. There is no notion of global memory. Therefore, message passing is the
only way to communicate in the system. Communication channels are reliable
but are not restricted to FIFO. In terms of failures, we assume that any node
can be subject to Byzantine failures (i.e., they arbitrarily deviate from the spec-
ification of the algorithm intentionally or inadvertently, outputting an incorrect
decision value by definition). In the worst case, a malicious Byzantine node per-
forms covert activities in collusion with other Byzantine nodes to hinder or delay
the objectives of other correct nodes. To prevent identification forgery, we use a
digital signature scheme that uses public and private keys to sign and verify a
message. That is, a node signs a message with a private key before transmission
to a gossip target, and a receiver verifies a message using a public key of a sender.
This guarantees the identity and the reputability of the signatory.

For Byzantine consensus, we consider the interactive consistency problem [23],
where n ≥ 2f + 1. In the problem in the presence of Byzantine nodes, each node
sends and receives its DecisionVector by gossiping and checks DecisionVector
in order to reach the consensus. If over half of the DecisionVector has non-
empty elements, and their values are identical, the nodes can conclude the con-
sensus value. We assume that Byzantine nodes exhibit malicious behavior. To
be more precise, they send an empty DecisionVector except for their own ele-
ments. This behavior is the best effort of malicious Byzantine nodes, if we use a
cryptographic scheme for DecisionVector.

3.2 Detailed Algorithms

To realize our proposed scheme, an additional data structure is required (i.e.,
social view). In our scenario, however, the additional overhead resulting from the
data structure is marginal because the size of the social view is small compared
to that of the local view. Recall that the size of the local view is significantly
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Algorithm 1: Management of social view for P i

1 begin at each cycle
2 if Pi makes a new social neighbor Pj then
3 if socialViewPi is full then
4 if there is Pk that has less friendship than Pj then
5 socialViewPi ← socialViewPi – Pk;
6 socialViewPi ← socialViewPi ∪ Pj ;

7 else
8 socialViewPi ← socialViewPi ∪ Pj ;

9 if Pi breaks up with Pj then
10 socialViewPi ← socialViewPi – Pj ;

less than that of the membership information of the system. We note that we
consider the size of the social view a global system parameter with the same
value for all nodes. In the following algorithms, a subscript indicates the owner
of the data structure. We assume that P i is a correct node in the algorithms.

Algorithm 1 shows the pseudocode for social view management. At each
cycle, P i manages its social view (socialView) based on relationships with other
nodes. If P i has a new social neighbor P j , it tries to add P j to socialView (line
2-8). During this phase, P i checks the empty slot for P j . If no empty slot is
available in socialView (line 3), it tries to find Pk that has less friendship than
that of P j (line 4). If there is Pk that meets the condition, it replaces Pk with P j

(line 5-6). If an empty slot is available in socialView, it adds P j to socialView

(line 8). When P i breaks up with P j , it removes P j from socialView (line 10).
We assume that no correct node deviates from the specification of the pro-

tocol. The gossip-based protocol consists of two threads: an active thread that
initiates communication at each cycle and a passive thread that waits for in-
coming messages. The proposed membership management mechanism uses the
Byzantine consensus algorithm running in the system. By inspecting the result
of the decision value of the encountered node, individual nodes differentiate cor-
rect nodes and Byzantine nodes. When a correct node encounters a suspicious
node, the correct node does not accept the membership information of the sus-
picious node and performs the membership management algorithm proposed in
this paper. Furthermore, we assume that correct nodes do not violate trust rela-
tionships with others. In other words, no correct node will intentionally disclose
membership information and create friendships with Byzantine nodes.

A full analysis of criteria determining friendships is out of the scope of this
paper, because it depends on the specific characteristics of the applications using
the gossip protocols. In fact, we can use an application-specific criterion that
works best for the application. For example, Gossple [24] uses a set item cosine
similarity metric to measure the friendships between nodes. If we apply the set
item cosine similarity to measure the friendships, a node that has the larger
metric value can replace the existing node. In addition, the application may
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have a threshold value to determine the friendships for nodes. In this case, a
node can remove (break up) one of the friends in socialView when a metric
value between the two nodes is below the threshold value.

For the active thread of the gossip protocol, each time P i selects a gossip
target P j it checks the decision value of P j . We note that the verify() function
returns true when two input parameters are identical; otherwise, it returns false.
If verify() returns true, it assigns true to the activate variable. If the protocol
is in push mode, P i includes its own id in the sendingView and then sends this
view to P j . If the protocol is in pull mode, it tries to receive the sendingView

from P j and then updates its local view with the received view.
When the verify function returns false, P i neither sends its view infor-

mation to P j nor receives the view information from P j because sendingView

from P j may contain harmful information that pollutes the local view of P i

with Byzantine nodes. At this stage, P i sets the activate variable to false and
then selects one of the social neighbors from its socialView. After selecting
the social neighbor, P i tries to receive the socialView of the social neighbor.
Then, P i selects Pk, that is, one of the nodes from the socialView of the so-
cial neighbor. Afterwards, P i replaces P j with Pk in its localView. If P i has
no social neighbor, or rand function returns null, Pk cannot be inserted into
localView. For brevity, this checking procedure is omitted. Lastly, P i performs
the ByzantineConsensusAlgorithm() function or not, based on the activate

value.
For the passive thread of the gossip protocol, whenever P i is selected from

another node P j it first checks requestType. If requestType is for a local view,
P i compares the decisionValue of P j with its own value. If the two values are
coherent, it accepts the sendingView of P j and updates its local view with the
received view in push mode. If the protocol is in pull mode, P i includes its own
id in sendingView and sends the view to P j . If requestType is for the social
view, and P j is a friend, P i sends its socialView to P j .

4 Evaluation

In this section, we provide performance results of our membership management
mechanism using social graphs. We do not include Shuffling [12] and News-
cast [14] because those methods cannot tolerate Byzantine nodes even if the
number of the Byzantine nodes is negligible. In our observation, Shuffling places
less than 30% of the correct nodes in decision vectors on average when perform-
ing the Byzantine consensus algorithm if the Byzantine probability is 0.1, and
the shuffle ratio is 50%. Newscast can be considered as view shuffling with a
shuffle ratio of 100%. In other words, Newscast is more vulnerable to Byzantine
nodes compared to Shuffling.

4.1 Experimental Settings

Table 1 shows the parameters and their values used in the evaluations. We note
that the numbers in parentheses are the default values unless specified otherwise.
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Table 1: Evaluation parameters and their values (numbers in parentheses are the
default values unless specified otherwise)

Parameter Value

Number of nodes 104

Gossip mode Push-pull

Size of local view 20

Size of social view 8

Fanout 1

Gossip cycles per instance 20

Byzantine probability 0.1, 0.2, 0.3, (0.4)

Because we need at least f + 1 correct nodes, the Byzantine probability is
not configured to be higher than 0.5. Note also that because the probability
is a measure of the expectation that an event will occur, the actual number of
Byzantine nodes will be different from the number calculated with the Byzantine
probability parameter.

Starting with the initial overlay network and local views in the presence of
Byzantine nodes, we show how our membership management based on social
graphs improves the uniformity of peer sampling. Then, we detail the effects
on the local view to show how our proposed solution can improve the occur-
rence of correct nodes in local views. We note that we only show the results for
correct nodes in the system because the results for Byzantine nodes are mean-
ingless. Lastly, to show the scalability of the proposed approach, we present per-
formance results by increasing the number of nodes exponentially. There were
three objects for comparison: the default Byzantine consensus algorithm with-
out membership management (NoMgmt), membership management performing
random node sampling when a node encounters Byzantine nodes (Previous); and
our membership management with social graphs when the social view size is 8
(Social(8)).

4.2 Performance Results

One of the design goals of our membership management is to reduce the pos-
sibility that a correct node contacts Byzantine nodes. Thus, we measured the
number of Byzantine nodes in the local view to see how effectively our proposed
membership management copes with Byzantine nodes. We assume that local
views of individual nodes contain gossip partners selected at random from the
system. Therefore, Byzantine nodes are in the local views of the correct nodes.
Figures 1, 2, and 3 show the normalized percentages of Byzantine nodes in local
views.

Figure 1 shows the results of the first instance. Because NoMgmt has no
facility to perform membership management, the number of Byzantine nodes in
local views is the same during the whole execution of the Byzantine consensus
algorithm. Compared with Previous and Social(8), the percentage of Byzantine
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(c) Byzantine probability: 0.3
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Fig. 1: Normalized percentage of Byzantine nodes in local views (first instance)
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(b) Byzantine probability: 0.2
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Fig. 2: Normalized percentage of Byzantine nodes in local views (second instance)

nodes in local views decreases as the gossip cycle proceeds in both methods,
whereas Social(8) results in a greater reduction in the number of Byzantine
nodes in local views than Previous in late cycles. It is interesting to note that in
early cycles, Social(8) has a higher percentage of Byzantine nodes in local views
than Previous. The reason for this phenomenon is that some nodes have no social
neighbors. In other words, when P i tries to select socialNeighbor, this cannot
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Fig. 3: Normalized percentage of Byzantine nodes in local views (third instance)

be accomplished because the node has no social neighbors. Similarly, if P i, who
has some social neighbors, tries to receive socialView from socialNeighbor, it
is possible that socialNeighbor has no social neighbors except P i. In this case,
no local view exchange is executed.

Figure 2 shows the results of the second instance. As in Figure 1, NoMgmt
shows no change in the Byzantine nodes in local views. As the gossip cycle pro-
ceeds, and the Byzantine probability increases, Social(8) has a lower percentage
than Previous and always outperforms Previous. By the specification of the algo-
rithms, the nodes have a greater chance to exchange their local views when they
encounter Byzantine nodes frequently. In this regard, there is a trade-off between
the number of Byzantine nodes and the probability of exchanging local views.
When the number of Byzantine nodes is small, the probability of performing
membership management is low. Conversely, if the number of Byzantine nodes
is large, the probability of performing membership management is high, and
there are a number of local view slots to be changed.

Figure 3 shows the results of the second instance. As in Figures 1 and 2,
Social(8) outnumbers Previous in the total reduction of Byzantine nodes, and
the performance gap is greater with a larger Byzantine probability. At cycle 20,
the percentages of Byzantine nodes in local views for Previous (resp. Social(8))
are approximately 7.49% (resp. 6.31%), 10.47% (resp. 6.69%), 14.02% (resp.
7.32%), and 18.64% (resp. 7.69%) when the Byzantine probability is 0.1, 0.2, 0.3,
and 0.4, respectively. This means that our proposed membership management
has 1.19, 1.56, 1.92, and 2.42 times fewer Byzantine nodes in local views then
Previous when the Byzantine probability is 0.1, 0.2, 0.3, and 0.4, respectively.
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5 Conclusion

In this paper, we have presented a membership management mechanism based on
social relationships on the gossip overlay for the Byzantine fault tolerance prob-
lem. Rather than utilizing a traditional control method, where the centralized
medium monitors the system and performs corrective functions, we let each node
perform membership management with social graphs in a self-organizing way.
Our self-organized construction of membership management using social graphs
provides scalability, reliability, and resiliency in the presence of Byzantine nodes.
The experimental results show that our membership management mechanism for
Byzantine fault tolerance is globally optimized as the gossip cycle proceeds. Fur-
thermore, our proposed membership management surpasses existing methods
and effectively eliminates Byzantine nodes in the view of other nodes.
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