
HAL Id: hal-01398011
https://inria.hal.science/hal-01398011

Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Program Logic for Verifying Secure Routing Protocols
Chen Chen, Limin Jia, Hao Xu, Cheng Luo, Wenchao Zhou, Boon Thau Loo

To cite this version:
Chen Chen, Limin Jia, Hao Xu, Cheng Luo, Wenchao Zhou, et al.. A Program Logic for Verifying
Secure Routing Protocols. 34th Formal Techniques for Networked and Distributed Systems (FORTE),
Jun 2014, Berlin, Germany. pp.117-132, �10.1007/978-3-662-43613-4_8�. �hal-01398011�

https://inria.hal.science/hal-01398011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Program Logic for Verifying
Secure Routing Protocols

Chen Chen1, Limin Jia2, Hao Xu1, Cheng Luo1,
Wenchao Zhou3, and Boon Thau Loo1

1 University of Pennsylvania {chenche,haoxu,boonloo}@cis.upenn.edu
2 Carnegie Mellon University liminjia@cmu.edu

3 Georgetown University wzhou@cs.georgetown.edu

Abstract. The Internet, as it stands today, is highly vulnerable to at-
tacks. However, little has been done to understand and verify the formal
security guarantees of proposed secure inter-domain routing protocols,
such as Secure BGP (S-BGP). In this paper, we develop a sound pro-
gram logic for SANDLog—a declarative specification language for secure
routing protocols—for verifying properties of these protocols. We prove
invariant properties of SANDLog programs that run in an adversarial
environment. As a step towards automated verification, we implement a
verification condition generator (VCGen) to automatically extract proof
obligations. VCGen is integrated into a compiler for SANDLog that can
generate executable protocol implementations; and thus, both verifica-
tion and empirical evaluation of secure routing protocols can be carried
out in this unified framework. To validate our framework, we (1) encoded
several proposed secure routing mechanisms in SANDLog, (2) verified
variants of path authenticity properties by manually discharging the gen-
erated verification conditions in Coq, and (3) generated executable code
based on SANDLog specification and ran the code in simulation.

1 Introduction

In recent years, we have witnessed an explosion of services provided over the
Internet. These services are increasingly transferring customers’ private infor-
mation over the network and being used in mission-critical tasks. Central to
ensuring the reliability and security of these services is a secure and efficient
Internet routing infrastructure. Unfortunately, the Internet infrastructure, as it
stands today, is highly vulnerable to attacks. The Internet runs Border Gateway
Protocol (BGP), where routers are grouped into Autonomous Systems (ASes)
administrated by Internet Service Providers (ISPs). Individual ASes exchange
route advertisements with neighboring ASes using the path-vector protocol. Each
originating AS first sends a route advertisement (containing a single AS number)
for the IP prefixes it owns. Whenever an AS receives a route advertisement, it
adds itself to the AS path, and advertises the best route to its neighbors based
on its routing policies. Since these route advertisements are not authenticated,
ASes can advertise non-existent routes or claim to own IP prefixes that they do



SANDlog(Program(

Annota/ons(

SANDlog(Compiler(

Code((
genera/on(

Verifica/on(
condi/on(
genera/on(

Executable(
protocol(

Proof(
obliga/ons(

Theorem(
prover(

Simulator(
(Emulator)(

Fig. 1. Architecture of a unified framework for implementing and verifying secure routing protocols.
The round objects represent the inputs and outputs of the framework, which are either code or proofs.
The rectangular objects are software components of the framework.

not. These faults may lead to long periods of interruption of the Internet; best
epitomized by recent high-profile attacks [10, 24].

In response to these vulnerabilities, several new Internet routing architec-
tures and protocols for a more secure Internet have been proposed. These range
from security extensions of BGP (Secure-BGP (S-BGP) [19], ps-BGP [28], so-
BGP [30]), to “clean-slate” Internet architectural redesigns such as SCION [31]
and ICING [22]. However, none of the proposals formally analyzed their security
properties. These protocols are implemented from scratch, evaluated primarily
experimentally, and their security properties shown via informal reasoning.

Existing protocol analysis tools [7, 12, 14] are rarely used in analyzing rout-
ing protocols because routing protocols are considerably more complicated than
cryptographic protocols: they often compute local states, are recursive, and their
security properties need to be shown to hold on arbitrary network topologies. As
the number of models is infinite, model-checking-based tools, in general, cannot
be used to prove the protocol secure.

To overcome the above limitations, we develop a novel proof methodology to
verify these protocols. We augment prior work on declarative networking (ND-
Log) [21] with cryptographic libraries to provide compact encoding of secure
routing protocols. We call this extension SANDLog (Secure and Authenticated
Network DataLog). It has been shown that such a Datalog-like language can be
used for implementing a variety of network protocols [21]. We develop a program
logic for reasoning about SANDLog programs that run in an adversarial environ-
ment. Based on the program logic, we implement a verification condition gener-
ator (VCGen), which takes as inputs the SANDLog program and user-provided
annotations, and outputs intermediary proof obligations as lemma statements
in Coq’s syntax. Proofs for these lemmas are later completed manually. VCGen
is integrated into the SANDLog compiler, which augments the declarative net-
working engine RapidNet [26] to handle cryptographic functions. The compiler is
able to translate SANDLog specification into executable code, which is amenable
to implementation and evaluation. Both verification and empirical evaluation of
secure routing protocols can be carried out in this unified framework (Figure 1).

We summarize our technical contributions:

1. We define a program logic for verifying SANDLog programs in the presence
of adversaries (Section 3). We prove that our logic is sound.

2. We implement VCGen for automatically generating proof obligations and
integrate VCGen into a compiler for SANDLog (Section 4).



3. We encode S-BGP and SCION in SANDLog, verify path authenticity prop-
erties of these protocols, and run them in simulation (Section 5).

Due to space constraints, we omit many details, which can be found in our
companion technical report [9].

2 SANDLog

We introduce the syntax and operational semantics of SANDLog, which extends
the Network Datalog (NDLog) [21] with a library for cryptographic functions.
The complete definitions can be found in our TR.

2.1 Syntax

SANDLog’s syntax is summarized below. A SANDLog program is composed of
a set of rules, each of which consists of a rule head and a rule body. A rule
head is a tuple. A rule body consists of a list of body elements which are either
tuples or atoms. Atoms include assignments and inequality constraints. The
binary operator bop denotes inequality relations. Each SANDLog rule specifies
that if all the tuples in the body are derivable and all the constraints specified
by the atoms in the body are satisfied, then the head tuple is derivable. These
features are shared between NDLog [21] and SANDLog. Unique to SANDLog, are
the cryptographic functions denoted fc, implemented as a library. This library
includes commonly used functions such as signature generation and verification.

Crypt func fc ::� f sign asym | f verify asym � � �
Atom a ::� x :� t | t1 bop t2
Terms t ::� x | c | ι | fp~t q | fcp~t q
Body Elem B ::� ppagBq | a
Arg List ags ::� � | ags, x | ags, c
Rule Body body ::� � | body, B
Body Args agB ::� @ι, ags
Rule r ::� ppagHq :� body
Head Args agH ::� agB |@ι, ags, Faggxxy, ags
Program progpιq ::� r1, � � � , rk

To support distributed execution, SANDLog assumes that each node has
a unique identifier denoted ι. A SANDLog program prog is parametrized over
the identifier of the node it runs on. A location specifier, written @ι, specifies
where a tuple resides and is the first argument of a tuple. We require all body
tuples to reside on the same node as the program. A rule head can specify a
location different from its body tuples. When such a rule is executed, the derived
head tuple is sent to the specified remote node. Finally, SANDLog supports
aggregation functions (denoted Faggxxy), such as max and min, in the rule head.

An example program. The following program can be used to compute the
best path between each pair of nodes in a network. s is the location parameter
of the program, representing the ID of the node where the program is executing.



Each node stores three kinds of tuples: linkp@s, d, cq means that there is a direct
link from s to d with cost c; pathp@s, d, c, pq means that p is a path from s to d
with cost c; and bestPathp@s, d, c, pq states that p is the lowest-cost path between
s and d.

sp1 pathp@s, d, c, pq :� linkp@s, d, cq, p :� rs, ds.
sp2 pathp@z, d, c, pq :� linkp@s, z, c1q, pathp@s, d, c2, p1q, c :� c1� c2, p :� z::p1.
sp3 bestPathp@s, d,minxcy, pq :� pathp@s, d, c, pq.

Rule sp1 computes all one-hop paths based on direct links. Rule sp2 expresses
that if there is a link from s to z of cost c1 and a path from s to d of cost c2,
then there is a path from z to d with cost c1+c2 (for simplicity, we assume links
are symmetric, i.e. if there is a link from s to d with cost c, then a link from d
to s with the same cost c also exists). Finally, rule sp3 aggregates all paths with
the same pair of source and destination (s and d) to compute the best path. The
arguments that appear before the aggregation denotes the group-by keys.

2.2 Operational Semantics

The operational semantics of SANDLog adopts a distributed execution model.
Each node runs a designated program, and maintains a database of derived
tuples in its local state. Nodes can communicate with each other by sending
tuples over the network. The evaluation of the SANDLog programs follows the
PSN algorithm [20], and maintains the database incrementally. The semantics
introduced here is similar to that of NDLog except that we make explicit, which
tuples are derived, which are received, and which are sent over the network. This
addition is crucial to specifying and proving protocol properties. The constructs
needed for defining the operational semantics of SANDLog are presented below.

Table Ψ ::� � |Ψ, pn, P q Network Queue Q ::� U
Update u ::� �P | � P Local State S ::� pι, Ψ,U , progpιqq
Update List U ::� ru1, � � � , uns Configuration C ::� QB S1, � � � ,Sn
We write P to denote tuples. The database for storing all derived tuples on

a node is denoted Ψ . Because there could be multiple derivations of the same
tuple, we associate each tuple with a reference count n, recording the number
of valid derivations for that tuple. An update is either an insertion of a tuple,
denoted �P , or a deletion of a tuple, denoted �P . We write U to denote a list of
updates. A node’s local state, denoted S, consists of the node’s identifier ι, the
database Ψ , a list of unprocessed updates U , and the program prog that ι runs. A
configuration of the network, written C, is composed of a network update queue
Q, and the set of the local states of all the nodes in the network. The queue Q
models the update messages sent across the network.

Figure 2 presents an example scenario of executing the shortest-path program
shown in Section 2.1. The network consists of three nodes, A, B and C, connected
by two links with cost 1. In the current state, all three nodes are aware of their
direct neighbors, i.e., link tuples are in their databases ΨA, ΨB and ΨC . They have
constructed paths to their neighbors (i.e., the corresponding path and bestPath

tuples are stored). In addition, node B has applied sp2 and generated updates



A" B" C"

SA"="{A,""
"""""""""ψA"="{link(@A,B,1),"
""""""""" "path(@A,B,1,[A,B]),"
""""""""" "bestPath(@A,B,1,[A,B])}"
"""""""""UA"="[],"
"""""""""progA"="sp}"
"

SB"="{B,""
"""""""""ψB"="{link(@B,A,1),"link(@B,C,1),"
"""""""""""""path(@B,A,1,[B,A]),"path(@B,C,1,[B,C]),"
"""""""""" "bestPath(@B,A,1,[B,A]),""
"""""""""""""bestPath(@B,C,1,[B,C])}"
"""""""""UB"="[],"
"""""""""progB"="sp}"
"

SC"="{C,""
"""""""""ψC"="{link(@C,B,1),"
""""""""" "path(@C,B,1),"
"""""""""" "bestPath(@C,B,1,[C,B]),}"
"""""""""UC"="[],"
"""""""""progC"="sp}"
"

Q"="[+path(@A,C,2,[A,B,C]),"+path(@C,A,2,[C,B,A])]"

cost"="1" cost"="1"

Fig. 2. An Example Scenario.

+path(@A,C,2,[A,B,C]) and +path(@C,A,2,[C,B,A]), which are currently queued and
waiting to be delivered to their destinations (node A and C respectively).

Top-level transitions. The small-step operational semantics of a node is de-
noted S ãÑ S 1,U . From state S, a node takes a step to a new state S 1 and
generates a set of updates U for other nodes in the network. The small-step
operational semantics of the entire system is denoted C τ

ÝÑ C1, where τ is the
time of the transition step. A trace T is a sequence of transitions:

τ0ÝÑ C1
τ1ÝÑ

C2 � � �
τnÝÑ Cn�1, where the time points on the trace are monotonically increasing

(τ0   τ1   � � �   τn). We assume that the effects of a transition take place at
time τi (reflected in Ci�1). Figure 3 defines the rules for system state transition.

Rule NodeStep states that the system takes a step when one node takes a
step. As a result, the updates generated by node i are appended to the end of the
network queue. We use � to denote the list append operation. Rule DeQueue

applies when a node receives updates from the network. We write Q1 ` Q2

to denote a merge of two lists. Any node can dequeue updates sent to it and
append those updates to the update list in its local state. Here, we overload the
� operator, and write S �Q to denote a new state, which is the same as S, except
that the update list is the result of appending Q to the update list in S.

We omit the detailed rules for state transitions within a node. Instead, we ex-
plain it through examples. At a high-level, those rules either fire base rules—rules
that do not have a rule body—at initialization; or computes new updates based
on the program and the first update in the update list. Continue the example sce-
nario, node A dequeues +path(@A,C,2,[A,B,C]), and puts it into the unprocessed
update list UA (rule DeQueue). Node A then fires all rules that are triggered
by the update, and generates new updates Uin and Uext (Uin and Uext denote
updates to local (internal) states and remote (external) states respectively.) In
the resulting state, the local state of node A is updated: path(@A,C,2,[A,B,C]) is

C ÝÑ C1 Si ãÑ S 1
i,U @j P r1, ns ^ j � i, S 1

j � Sj
QB S1, � � �Sn ÝÑ Q � U B S 1

1, � � �S 1
n

NodeStep

Q � Q1 `Q1 � � � `Qn @j P r1, ns S 1
j � Sj �Qj

QB S1, � � �Sn ÝÑ Q1 B S 1
1, � � �S 1

n

DeQueue

Fig. 3. Operational Semantics



inserted into ΨA, and UA now includes Uin. The network queue is updated to
include Uext (rule NodeStep).

Incremental maintenance. Following the strategy proposed in [20], the local
database is maintained incrementally by processing updates one at a time. The
rules are rewritten into ∆ rules, which can efficiently generate all the updates
triggered by one update. For any given rule r that contains k body tuples, k ∆
rules of the following form are generated, one for each i P r1, ks.

∆ppagHq :� pν1pagB1q, ..., p
ν
i�1pagBi�1q, ∆pipagBiq,

pi�1pagBi�1q, ..., pkpagBkq, a1, ..., am
∆pi in the body denotes the update currently being considered. ∆p in the

head denotes new updates that are generated as the result of firing this rule. Here
pν denotes the set of tuples whose name is p and includes the current update
being considered. p is drawn only from the set of tuples that does not include
the current update. For example, the ∆ rules for sp2 are:

sp2a ∆pathp@z, d, c, pq :� ∆linkp@s, z, c1q, pathp@s, d, c2, p1q, c :� c1 � c2, p :� z::p1.
sp2b ∆pathp@z, d, c, pq :� linkνp@s, z, c1q,∆pathp@s, d, c2, p1q, c :� c1� c2, p :� z::p1.

Rules sp2a and sp2b are ∆ rules triggered by updates of the link and path relation
respectively. For instance, when node A processes +path(@A,C,2,[A,B,C]), only rule
sp2b is fired. In this step, pathν includes the tuple path(@A,C,2,[A,B,C]), while path

does not. On the other hand, linkν and link denote the same set of tuples, because
the update is a path tuple, and thus does not affect tuples with a different name.

Rule firing. Here we explain through examples how they work. Informally, a ∆
rule is fired if instantiations of its body tuples are present in the derived tuples
and available updates. The resulting rule head will be put into the update lists,
depending on whether it needs to be sent to another node, or consumed locally.

We revisit the example in Figure 2. Upon receiving +path(@A,C,2,[A,B,C]), A
will trigger∆ rule sp2b and generate a new update +path(@B,C,3,[B,A,B,C]), which
will be included in Uext as it is destined to a remote node B. The ∆ rule for sp3
will also be triggered and will generate a new update +bestPath(@A,C,2,[A,B,C]),
which will be included in Uin. After evaluating the ∆ rules triggered by the up-
date +path(@A,C,2,[A,B,C]), we have Uin � t+bestPath(@A,C,2,[A,B,C])u and Uext �
t+path(@B,C,3,[B,A,B,C])u. In addition, bestpathagg, the auxiliary relation that
maintains all candidate tuples for bestpath, is also updated to reflect that a new
candidate tuple has been generated. It now includes bestpathagg(@A,C,2,[A,B,C]).

Discussion. The semantics introduced here will not terminate for programs with
a cyclic derivation of the same tuple, even though set-based semantics will. Most
routing protocols do not have such issue (e.g., cycle detection is well-adopted in
routing protocols). Our prior work [23] has proposed improvements to solve this
issue. It is a straightforward extension to the current semantics and is not crucial
for demonstrating the soundness of the program logic we develop.

The operational semantics is correct if the results are the same as one where
all rules reside in one node and a global fixed point is computed at each round.
The proof of correctness is out of the scope of this paper. We are working on
correctness definitions and proofs for variants of PSN algorithms. Our initial



results for a simpler language can be found in [23]. SANDLog additionally al-
lows aggregates, which are not included in [23]. The soundness of our logic only
depends on the specific evaluation strategy implemented by the compiler, and is
orthogonal to the correctness of the operational semantics. Updates to the oper-
ational semantics is likely to come in some form of additional bookkeeping in the
representation of tuples, which we believe will not affect the overall structure of
the program logic; as these metadata are irrelevant to the logic.

3 A Program Logic for SANDLog

Inspired by program logics for reasoning about cryptographic protocols [12, 15],
we define a program logic for SANDLog. The properties we are interested in
are safety properties, which should hold throughout the execution of SANDLog
programs that interact with attackers.

Attacker model. We assume connectivity-bound network attackers, a variant
of the Dolev-Yao network attacker model. An attacker can send and receive
messages to and from its neighbors. We assume a symbolic model of the crypto-
graphic functions: an attacker can operate cryptographic functions to which it
has the correct keys, such as encryption, decryption, and signature generation.
This model does not allow an attacker to eavesdrop or intercept packets. This
makes sense in the application domain that we consider, as attackers are ma-
licious nodes in the network that participate in the routing protocol exchange.
All the links we consider represent dedicated physical cables that connect neigh-
boring nodes, which are hard to eavesdrop without physical intrusion.

This attacker model manifests in the formal system in two places: (1) the
network is modeled as connected nodes, some of which run the SANDLog pro-
gram that encodes the prescribed protocol and others are malicious and run
arbitrary SANDLog programs; (2) assumptions about cryptographic functions
are admitted as axioms in proofs.

Syntax. We use first-order logic formulas, denoted ϕ, as property specifications.
The atoms, denoted A, include predicates and term inequalities.

Atoms A ::� P p~tq@pι, τq | sendpι, tppP, ι1,~tqq@τ | recvpι, tppP,~tqq@τ
| honestpι, progpιq, τq | t1 bop t2

Predicate P p~tq@pι, τq means that tuple P p~tq is derivable at time τ by node
ι. The first element in ~t is a location identifier ι1, which may be different from
ι. When a tuple P pι1, ...q is derived at node ι, it is sent to ι1. This send action is
captured by predicate sendpι, tppP, ι1,~tqq@τ . Predicate recvpι, tppP,~tqq@τ denotes
that node ι has received a tuple P p~tq at time τ . honestpι, progpιq, τq means that
node ι starts to run program progpιq at time τ . Since predicates take time points
as an argument, we are effectively encoding linear temporal logic (LTL) in first-
order logic [18]. Using these atoms and first-order logic connectives, we can
specify security properties such as route authenticity (see Section 5 for details).

Logical judgments. The logical judgments use two contexts: context Σ con-
tains all the free variables and Γ contains logical assumptions.



Σ;Γ $ progpiq : ti, tb, teu.ϕpi, tb, teq

@p P hdOfpprogq, ϕp is closed under trace extension
@r P rlOfpprogq, r � hp~vq :� p1p~s1q, ..., pmp~smq, q1p~u1q, ..., qnp~unq, a1, ..., ak
Σ;Γ $ @i,@t,@~y©

jPr1,ks

rajs^
©

jPr1,ms

ppjp~sjq@pi, tq^ϕpj pi, t, ~sjqq^
©

jPr1,ns

recvpi, tppqj , ~ujqq@t

� ϕhpi, t, ~vq where ~y � fvprq

Σ;Γ $ progpiq : ti, yb, yeu.
©

pPhdOfpprogq

@t,@~x, yb ¤ t   ye ^ pp~xq@pi, tq � ϕppi, t, ~xq
Inv

Σ;Γ $ ϕ Σ;Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq Σ;Γ $ honestpι, progpιq, tq

Σ;Γ $ @t1, t1 ¡ t, ϕpι, t, t1q
Honest

Fig. 4. Selected Rules in Program Logic

(1) Σ;Γ $ ϕ (2) Σ;Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq

Judgment (1) states that ϕ is provable given the assumptions in Γ . Judgment
(2) is an assertion about SANDLog programs. We write ϕp~xq when ~x are free in
ϕ. ϕp~tq denotes the resulting formula of substituting ~t for ~x in ϕp~xq. Recall that
prog is parametrized over the identifier of the node it runs on. The assertion
of an invariant property for such a program is parametrized over not only the
node ID i, but also the starting point of executing the program (yb) and a later
time point ye. Judgment (2) states that any trace T containing the execution of
program prog by a node ι, starting at time τb, satisfies ϕpι, τb, τeq for any time
point τe later than τb. Intuitively, the trace contains several threads running
concurrently, only one of them runs the program and the other threads can be
malicious. Since τe is any time after τb (the time prog starts), ϕ is an invariant
property of prog . For example, ϕpi, yb, yeq could specify that whenever i derives
a path tuple, every link in the path must have existed in the past.

Inference rules. The inference rules of our program logic include all standard
first-order logic ones (e.g. Modus ponens), omitted for brevity. We explain two
key rules (Figure 4) in our proof system.

Rule Inv derives an invariant property of a program prog . The invariant
property states that if a tuple p is derived by this program, then some property
ϕp must be true; formally: @t,@~x, yb ¤ t   ye ^ pp~xq@pi, tq � ϕppi, t, ~xq, where p
is the tuple name of a rule head of prog , and ϕppi, t, ~xq is an invariant property
associated with pp~xq. For example, p can be path, and ϕppi, t, ~xq be that every
link in argument path must have existed in the past. Rule Inv states that the
invariant of the program is the conjunction of all the invariants of the tuples it
derives.

We require that the invariants ϕp be closed under trace extension (the first
premise of Inv). Formally: T ( ϕpι, t, ~sq and T is a prefix of T 1 then T 1 (
ϕpι, t, ~sq. For instance, the property that node ι has received a tuple P before
time t is closed under trace extension; the property that node ι never sends P to
the network is not closed under trace extension. This restriction has not affected



our case studies: the invariants used in verification only assert what happened
in the past, or facts independent of time (e.g., arithmetic constraints).

Intuitively, the premises of Inv need to establish that (1) when p is a base
tuple—its derivation is independent of any other tuples—ϕ holds; and (2) when
p is derived using other tuples, ϕ holds. The last (second) premise of Inv does
precisely that. It checks every rule in prog and proves that the body tuples and
the invariants associated with the body tuples together imply the invariant of
the head tuple. For example, for sp1, to show that the invariant associated with
path is true, we can use the fact that there is a link tuple, that the invariant
associated with that link tuple is true, and that the constraint p � rs, ds is true.
This is sound because we are inducting over the derivation tree of the head tuple.

This premise looks complicated because the body tuples need to be treated
differently depending on whether they are derived locally, received from the
network, or constraints. For each rule r in prog , we assume that the body of r
is arranged so that the first m tuples are derived by prog , the next n tuples are
received from the network, and constraints constitute the rest of the body. The
right-hand-side of the implication of the last (second) premise is the invariant
associated with tuple h. A rule head is only derivable when all of its body tuples
are derivable and constraints satisfied. For tuples that are derived earlier by
prog (denoted pj), we can safely assume that their invariants hold at time t. All
received tuples (qj) should have been received prior to rule firing. Finally, the
atoms (constraints, denoted aj) should be true. Here, rx :� fp~tqs rewrites the
assignment statement into an equality check x � fp~tq. The left-hand-side of that
implication is a conjunction of formulas denoting the above conditions. When
r only has a rule head, this premise is reduced to the right-hand-side of that
implication, which is what case (1) mentioned above.

The last (second) premise of Inv can be automatically generated given a
SANDLog program and all the corresponding ϕps. In Section 4, we detail the
implementation of the verification condition generator for Coq.

The Honest rule proves properties of the entire system based on invariants of
a SANDLog program. If ϕpi, yb, yeq is the invariant of prog , and a node ι runs the
program prog at time tb, then any trace containing the execution of this program
satisfies ϕpι, tb, teq, where te is a time point after tb. SANDLog programs never
terminate: after the last instruction, the program enters a stuck state.

Soundness. We prove the soundness of our logic with regard to the trace se-
mantics. First, we define the semantics for our logic and judgments in Figure 5.
Formulas are interpreted on a trace T . We elide the rules for first-order logic
connectives. A tuple P p~tq is derivable by node ι at time τ , if P p~tq is either an
internal update or an external update generated at a time point τ 1 no later than
τ . A node ι sends out a tuple P pι1,~tq if that tuple was derived by node ι. Be-
cause ι1 is different from ι, it is sent over the network. A received tuple is one that
comes from the network (obtained using DeQueue). Finally, an honest node ι
runs prog at time τ and the local state of ι at time τ is the initial state with an
empty table and update queue.



T ( P p~tq@pι, τq iff Dτ 1 ¤ τ , C is the configuration on T prior to time τ 1,
pι, Ψ,U , progpιqq P C, at time τ 1, pι, Ψ,U , progpιqq ãÑ pι, Ψ 1,U 1 � Uin, progpιqq,Ue,

and either P p~tq P Uin or P p~tq P Ue

T ( sendpι, tppP, ι1,~tqq@τ iff C is the configuration on T prior to time τ ,

pι, Ψ,U , progpιqq P C, at time τ , pι, Ψ,U , progpιqq ãÑ S 1,Ue and P p@ι1,~tq P Ue

T ( recvpι, tppP,~tqq@τ iff Dτ 1 ¤ τ , C τ 1

ÝÑ C1 P T ,

Q is the network queue in C, P p~tq P Q, pι, Ψ,U , progpιqq P C1 and P p~tq P U
T ( honestpι, progpιq, τq iff at time τ , node ι’s local state is (ι, [], [], prog (ι))

Γ ( progpiq : ti, yb, yeu.ϕpi, yb, yeq iff Given any trace T such that T ( Γ ,
and at time τb, node ι’s local state is (ι, [], [], progpιq)
given any time point τe such that τe ¥ τb, it is the case that T ( ϕpι, τb, τeq

Fig. 5. Trace-based semantics

The semantics of invariant assertion states that if a trace T contains the
execution of prog by node ι (formally defined as the node running prog is one
of the nodes in the configuration C), then given any time point τe after τb, the
trace T satisfies ϕpι, τb, τeq. This definition allows prog to run concurrently with
other programs, some of which may be controlled by the adversary.

The program logic is proven to be sound with regard to the trace semantics.
Theorem 1 (Soundness) 1. If Σ;Γ $ ϕ, then for all grounding substitution

σ for Σ, given any trace T , T ( Γσ implies T ( ϕσ;
2. If Σ;Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq, then for all grounding substitution

σ for Σ, Γσ ( pprogqσpiq : ti, yb, yeu.pϕpi, yb, yeqqσ.

4 Verification Condition Generator

As a step towards automated verification, we implement a verification condition
generator (VCGen) to automatically extract proof obligations from a SANDLog
program. VCGen is implemented in C++ and fully integrated to RapidNet [26],
a declarative networking engine for compiling SANDLog programs. We target
Coq, but other interactive theorem provers such as Isabelle HOL are possible.

More concretely, VCGen generates lemmas corresponding to the last premise
of rule Inv. It takes as inputs: the abstract syntax tree of a SANDLog program
sp, and type annotations tp. The generated Coq file contains the following:
(1) definitions for types, predicates, and functions; (2) lemmas for rules in the
SANDLog program; and (3) axioms based on Honest rule.

Definition. Predicates and functions are declared before they are used. Each
predicate (tuple) p in the SANDLog program corresponds to a predicate of the
same name in the Coq file, with two additional arguments: a location speci-
fier and a time point. For example, the generated declaration of the link tuple
linkp@node, nodeq is the following

Variable link: node Ñ node Ñ node Ñ time Ñ Prop.
For each user-defined function, a data constructor of the same name is gen-

erated, unless it corresponds to a Coq’s built-in operator (e.g. list operations).
The function takes a time point as an additional argument.



linkp@n, n1q there is a link between n and n1.
routep@n, d, c, p, slq p is a path to d with cost c.

sl is the signature list associated with p.
prefixp@n, dq n owns prefix (IP addresses) d.
bestRoutep@n, d, c, p, slq p is the best path to d with cost c.

sl is the signature list associated with p.
verifyPathp@n, n1, d, p, sl, a path p to d needs verifying against signature list sl.

pOrig, sOrigq p is a sub-path of pOrig, and s is a sub-list of sOrig.
signaturep@n,m, sq n creates a signature s of message m with private key.
advertisementp@n1, n, d, p, slq n advertises path p to neighbor n1 with signature list sl.

Fig. 6. Tuples for progsbgp

Lemmas. For each rule in a SANDLog program, VCGen generates a lemma in
the form of the last premise in inference rule Inv (Figure 4). Rule sp1 of example
program in Section 2.1, for instance, corresponds to the following lemma:

Lemma r1: forall(s:node)(d:node)(c:nat)(p:list node)(t:time),

link s d c s t Ñ p = cons (s (cons d nil)) Ñ p-path s t s d c p t.

Here, cons is Coq’s built-in list appending operation. and p-path is the in-
variant associated with predicate path.

Axioms. For each invariant ϕp of a rule head p, VCGen produces an axiom of the
form: @i, t, ~x,Honestpiq � pp~xq@pi, tq � ϕppi, ~xq. These axioms are conclusions of
the Honest rule after invariants are verified. Soundness of these axioms is backed
by Theorem 1. Since we always assume that the program starts at time �8, the
condition that t ¡ �8 is always true, thus omitted.

5 Case Studies

We investigate two secure routing protocols: S-BGP and SCION. Due to space
constraints, we present in detail the verification of one property of S-BGP. All
SANDLog specifications and Coq proofs can be found online at http://netdb.
cis.upenn.edu/forte2014/.

Encoding. Secure Border Gateway Protocol (S-BGP) provides security guaran-
tees such as origin authenticity and route authenticity over BGP through PKI
and signature-based attestations. Our SANDLog encoding includes all neces-
sary details of S-BGP’s route attestation mechanisms. S-BGP requires that each
node sign the route information it advertises to its neighbor, which includes
the path, the destination prefix (IP address), and the identifier of the intended
neighbor. Along with the advertisement, a node sends its own signature as well
as all signatures signed by previous nodes on the subpaths. Upon receiving an
advertisement, a node verifies all signatures.

Key tuples generated at each node executing progsbgp are listed in Figure 6.
Here n is the parameter representing the identifier of the node that runs progsbgp.
All tuples except advertisement are stored at node n. An advertisement tuple en-
codes a route advertisement that, once generated, is sent over the network to
one of n’s neighbors. We summarize progsbgp encoding in Table 1.



Empirical evaluation. We use RapidNet [26] to generate low-level implemen-
tation from SANDLog encoding of S-BGP and SCION. We validate the low-level
implementation in the ns-3 simulator [1]. Our experiments are performed on a
synthetically generated topology consisting of 40 nodes, where each node runs
the generated implementation of the SANDLog program. The observed execu-
tion traces and communication patterns match the expected protocol behavior.
We also confirm that the implementation defends against known attacks such as
adversely advertising non-existent routes.

Property specification. We focus on route authenticity, encoded as ϕauth1

below. It holds on any execution trace of a network where some nodes run S-
BGP, and those who do not are considered malicious.
ϕauth1 =@n,m, t, d, p, sl,

Honestpnq ^ advertisementpm,n, d, p, slq@pn, tq � goodPathpt, p, dq
Formula ϕauth1 asserts a property goodPathpt, p, dq on any advertisement tuple

generated by an honest node n. goodPathpt, p, dq defined below asserts that all
links in path p reaching the destination IP prefix d must have existed at a time
point no later than t. This means that every pair of adjacent nodes n and m in
path p had in their databases: tuple link(@n, m) and link(@m, n) respectively.

Honestpnq � Dt1, t1 ¤ t ^ prefixpn, dq@pn, t1q

goodPathpt, n :: nil , dq

Honestpnq � Dt1, t1 ¤ t ^ linkpn, n1q@pn, t1q goodPathpt, n :: nil , dq

goodPathpt, n1 :: n :: nil , dq

Honestpnq � Dt1, t1 ¤ t ^ linkpn, n1q@pn, t1q ^ Dt2, t2 ¤ t ^ linkpn, n2q@pn, t2q
goodPathpt, n :: n2 :: p2, dq

goodPathpt, n1 :: n :: n2 :: p2, dq

The base case is when p has only one node, and we require that d be one
of the prefixes owned by n (i.e., the prefix tuple is derivable). When p has two
nodes n1 and n, we require that the link from n to n1 exist from n’s perspective,
assuming that n is honest. The last case checks that both links (from n to n1

and from n to n2) exist from n’s perspective, assuming n is honest. In the last
two rules, we also recursively check that the subpath also satisfies goodPath. By
varying the definition of goodPath, we can specify different properties such as

Rule Summary Head Tuple

r1: Generate a route for prefix of own. routep@n, d, c, p, slq

r2: Generate a best route for destination. bestRoutep@n, d, c, p, slq

r3: Receive advertisement from neighbor. verifyPathp@n, n1, d, p, sl, pOrig, sOrigq

r4: Recursively verify signature list. verifyPathp@n, n1, d, p, sl, pOrig, sOrigq

r5: Generate a route for verified path. routep@n, d, c, p, slq

r6: Generate a signature for new route. signaturep@n,m, sq

r7: Send route advertisement to neighbors. advertisementp@n1, n, d, p, slq

Table 1. Summary of progsbgp encoding



one that requires each subpath be authorized by the sender. ϕauth1 is a general
topology-independent security property.

Verification. To use the authenticity property of the signatures, we include
the following axiom Asig in the logical context Γ . This axiom states that if s is
verified by the public key of n1, and the node n1 is honest, then n1 must have
generated a signature tuple. Predicate verifypm, s, kq@pn, tq, generated by VCGen
when function f verify in SANDLog returns true, means that node n verifies at
time t that s is a valid signature of message m according to key k.

Asig = @m, s, k, n, n1, t, verifypm, s, kq@pn, tq ^ publicKeyspn, n1, kq@pn, tq ^
Honestpn1q � Dt1, t1   t ^ signaturepn1,m, sq@pn1, t1q

We first prove that progsbgp has an invariant property ϕI :

(a) �; � $ progsbgppnq : ti, yb, yeu.ϕIpi, yb, yeq

with ϕIpi, yb, yeq �
�
pPhdOfpprogsbgpq

@t ~x, yb ¤ t   ye ^ pp~xq@pi, tq � ϕppi, t, ~xq.

Here, every ϕp in ϕI denotes the invariant property associated with each
head tuple in progsbgp, and needs to be specified by the user. For instance, the
invariant associated with the advertisement tuple is denoted ϕadvertisement:

ϕadvertisementpi, t, n
1, n, d, p, slq � goodPathpt, p, dq.

The proof of (a) is carried out in Coq; we manually discharged all lemmas
generated by VCGen. Next, applying the Honest rule to (a), we can deduce
ϕ � @n t,Honestpnq � ϕIpn, t,�8q. ϕ is injected into the assumptions (Γ ) by
VCGen, and is safe to be used in subsequent proof steps. Finally, ϕ � ϕauth1 is
also proven in Coq by applying standard first-order logic rules.

We explain interesting steps of proving (a). Similar to verifying (a), using Inv,
Honest and keeping the only clause related to signature, we derive the following:

(a2) �; � $@n,@t,Honestpnq ^ signaturepn,m, sq@pn, tq �
Dn1, d,m � d :: n1 :: p ^ ϕlink2pp, n, d, n

1, tq

Formula ϕlink2pp, n, d, n
1, tq states that n is the first node on the path p, the link

from n to the next node on p exists, and the link between n and the receiving
node n1 also exists. This matches the non-recursive conditions in the definition
of goodPath.

ϕlink2pp, n, d, n
1, tq= linkpn, n1q@pn, tq ^

Dp1, p � n :: p1 ^ pp1 � nil � prefixpn, dq@pn, tqq
^ @p2,m1, p1 � m1 :: p2 � linkpn,m1q@pn, tq

Now (a2) has connected an honest node’s signature to the existence of links
related to it. Combining (a2) and Asig, each time a signature sig of a node n is
properly verified in progsbgp, the invariant link2 (link tuples existed) holds under
the assumption that n is honest.

Defining the invariant for tuple verifyPath is technically challenging. The di-
rection in which we check the signature list is different from the direction in
which the route is created. The invariant needs to convey that part of a path
has been verified, and part of it still needs to be verified. The solution is to use



implication to state that if the path to be verified satisfies goodPath, then the
entire path satisfies goodPath.

6 Related Work

Cryptographic protocol analysis. Analyzing cryptographic protocols [12,
27, 17, 25, 14, 6, 4, 15] has been an active area of research. Compared to crypto-
graphic protocols, secure routing protocols have to deal with arbitrary network
topologies and the protocols are more complicated: they may access local storage
and commonly include recursive computations. Most model-checking techniques
are ineffective in the presence of those complications.

Verification of trace properties. A closely related body of work is logic for
verifying trace properties of programs (protocols) that run concurrently with
adversaries [12, 15]. We are inspired by their program logic that requires the
asserted properties of a program to hold even when that program runs concur-
rently with adversarial programs. One of our contributions is a general program
logic for a declarative language SANDLog, which differs significantly from an
ordinary imperative language. The program logic and semantics developed here
apply to other declarative languages that use bottom-up evaluation strategy.

Wang et al. [29] have developed a proof system for proving correctness prop-
erties of networking protocols specified in NDLog. Built on proof-theoretic se-
mantics of Datalog, they automatically translate NDLog programs into equiv-
alent first-order logic axioms. Those axioms state that all the body tuples are
derivable if and only if the head tuple is derivable. One main difference is that
unlike theirs, we made explicit in our semantics, the trace associated with the
distributed execution of a SANDLog program. Another important difference is
that we verify invariants associated with each derived tuple in the presence of
attackers, which are not present in their system. Therefore, their system cannot
be directly used to verify the security properties of secure routing protocols.

Networking protocol verification. Recently, several papers have investigated
the verification of route authenticity properties on specific wireless routing pro-
tocols for mobile networks [2, 3, 11]. They have showed that identifying attacks
on route authenticity can be reduced to constraint solving, and that the security
analysis of a specific route authenticity property that depends on the topolo-
gies of network instances can be reduced to checking these properties on several
four-node topologies. In our own prior work [8], we have verified route authen-
ticity properties on variants of S-BGP using a combination of manual proofs
and an automated tool, Proverif [7]. The modeling and analysis in these works
are specific to the protocols and the route authenticity properties. Some of the
properties that we verify in our case study are similar. However, we propose a
general framework for leveraging a declarative programming language for verifi-
cation and empirical evaluation of routing protocols. The program logic proposed
here can be used to verify generic safety properties of SANDLog programs.

There has been a large body of work on verifying the correctness of vari-
ous network protocol design and implementations using proof-based and model-
checking techniques [5, 16, 13, 29]. The program logic presented here is customized



to proving safety properties of SANDLog programs, and may not be expressive
enough to verify complex correctness properties. However, the operational se-
mantics for SANDLog can be used as the semantic model for verifying protocols
encoded in SANDLog using other techniques.

7 Conclusion and Future Work

We have designed a program logic for verifying secure routing protocols specified
in the declarative language SANDLog. We have integrated verification into a
unified framework for formal analysis and empirical evaluation of secure routing
protocols. As future work, we plan to expand our use cases, for example, to
investigate mechanisms for securing the data (packet forwarding) plane [22]. In
addition, as an alternative to Coq, we are also exploring the use of automated
first-order logic theorem provers to automate our proofs.

8 Acknowledgments

The authors wish to thank the anonymous reviewers for their useful suggestions.
Our work is supported by NSF CNS-1218066, NSF CNS-1117052, NSF CNS-
1018061, NSF CNS-0845552, NSFITR-1138996, NSF CNS-1115706, AFOSR Young
Investigator award FA9550-12-1-0327 and NSF ITR-1138996.

References

1. ns 3 project: Network Simulator 3, http://www.nsnam.org/
2. Arnaud, M., Cortier, V., Delaune, S.: Modeling and verifying ad hoc routing pro-

tocols. In: Proceedings of CSF (2010)
3. Arnaud, M., Cortier, V., Delaune, S.: Deciding security for protocols with recursive

tests. In: Proceedings of CADE (2011)
4. Bau, J., Mitchell, J.: A security evaluation of DNSSEC with NSEC3. In: Proceed-

ings of NDSS (2010)
5. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for

distance vector routing protocols. J. ACM 49(4) (2002)
6. Blanchet, B.: Automatic verification of correspondences for security protocols. J.

Comput. Secur. 17(4) (Dec 2009)
7. Blanchet, B., Smyth, B.: Proverif 1.86: Automatic cryptographic protocol verifier,

user manual and tutorial, http://www.proverif.ens.fr/manual.pdf
8. Chen, C., Jia, L., Loo, B.T., Zhou, W.: Reduction-based security analysis of inter-

net routing protocols. In: WRiPE (2012)
9. Chen, C., Jia, L., Xu, H., Luo, C., Zhou, W., Loo, B.T.: A program logic for

verifying secure routing protocols. Tech. rep., CIS Dept. University of Pennsylvania
(February 2014), http://netdb.cis.upenn.edu/forte2014

10. CNET: How pakistan knocked youtube offline, http://news.cnet.com/

8301-10784_3-9878655-7.html

11. Cortier, V., Degrieck, J., Delaune, S.: Analysing routing protocols: four nodes
topologies are sufficient. In: Proceedings of POST (2012)

12. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol Composition Logic (PCL).
Electronic Notes in Theoretical Computer Science 172, 311–358 (2007)



13. Engler, D., Musuvathi, M.: Model-checking large network protocol implementa-
tions. In: Proceedings of NSDI (2004)

14. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the
NRL protocol analyzer: grammar generation. In: Proceedings of FMSE (2005)

15. Garg, D., Franklin, J., Kaynar, D., Datta, A.: Compositional system security with
interface-confined adversaries. ENTCS 265, 49–71 (September 2010)

16. Goodloe, A., Gunter, C.A., Stehr, M.O.: Formal prototyping in early stages of
protocol design. In: Proceedings of ACM WITS (2005)

17. He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular correct-
ness proof of IEEE 802.11i and TLS. In: Proceedings of CCS (2005)

18. Kamp, H.W.: Tense Logic and the Theory of Linear Order. Phd thesis, Computer
Science Department, University of California at Los Angeles, USA (1968)

19. Kent, S., Lynn, C., Mikkelson, J., Seo, K.: Secure border gateway protocol (S-
BGP). IEEE Journal on Selected Areas in Communications 18, 103–116 (2000)

20. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis,
P., Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative Networking: Language,
Execution and Optimization. In: SIGMOD (2006)

21. Loo, B.T., Condie, T., Garofalakis, M., Gay, D.E., Hellerstein, J.M., Maniatis, P.,
Ramakrishnan, R., Roscoe, T., Stoica, I.: Declarative networking. In: Communi-
cations of the ACM (2009)

22. Naous, J., Walfish, M., Nicolosi, A., Mazieres, D., Miller, M., Seehra, A.: Verifying
and enforcing network paths with ICING. In: Proceedings of CoNEXT (2011)

23. Nigam, V., Jia, L., Loo, B.T., Scedrov, A.: Maintaining distributed logic programs
incrementally. In: Proceedings of PPDP (2011)

24. One Hundred Eleventh Congress: 2010 report to congress of the u.s.-china economic
and security review commission (2010), http://www.uscc.gov/annual_report/

2010/annual_report_full_10.pdf

25. Paulson, L.C.: Mechanized proofs for a recursive authentication protocol. In: Pro-
ceedings of CSFW (1997)

26. RapidNet: A Declarative Toolkit for Rapid Network Simulation and Experimenta-
tion: http://netdb.cis.upenn.edu/rapidnet/

27. Roy, A., Datta, A., Derek, A., Mitchell, J.C., Jean-Pierre, S.: Secrecy analysis in
protocol composition logic. In: Proceedings of ESORICS (2007)

28. Wan, T., Kranakis, E., Oorschot, P.C.: Pretty secure BGP (psBGP). In: Proceed-
ings of NDSS (2005)

29. Wang, A., Basu, P., Loo, B.T., Sokolsky, O.: Declarative network verification. In:
Proceedings of PADL (2009)

30. White, R.: Securing bgp through secure origin BGP (soBGP). The Internet Pro-
tocol Journal 6(3), 15–22 (2003)

31. Zhang, X., Hsiao, H.C., Hasker, G., Chan, H., Perrig, A., Andersen, D.G.: Scion:
Scalability, control, and isolation on next-generation networks. In: Proceedings of
IEEE S&P (2011)


