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Abstract. In wireless networks, the physical medium is the cause of
most of the errors and performance drops. Thus, an efficient predictive
estimation of wireless networks performance w.r.t. medium status by the
communication peers would be a leap ahead in the improvement of wire-
less communication. For that purpose, we designed a measurement bench
that allows us to accurately control the noise level on an unidirectional
WIFI communication link in the protected environment of an anechoic
room. This way, we generated different medium conditions and collected
several measurements for various PHY layer parameters on that link. Us-
ing the collected data, we analyzed the ability to predictively estimate the
throughput performance of a noisy wireless link from measured physical
medium parameters, using machine learning (ML) algorithms. For this
purpose, we chose two different classes of ML algorithms, namely SVR
(Support Vector Regression) [1] and k-NN (k-Nearest Neighbors) [2], to
study the tradoff between complexity and estimation accuracy. Finally,
we ranked the pertinence of the most common physical parameters for
estimating or predicting the throughput that can be expected by users
on top of the IP layer over a WIFI link.

1 Introduction

Wireless networks are of essential importance nowadays. Users are more and
more mobile and access the Internet thanks to mobile devices as laptops, smart
phones or tablets. Even when staying at home, users want to get rid of wires.
However, the wireless medium does not provide the same capabilities as wired
networks on copper or fiber. In wireless networks, the physical medium is lim-
ited in terms of capacity, and the cause of most of the errors and performance
drops. From a user or administrator point of view, the quality of wireless com-
munication can appear as very versatile and unpredictable. This makes wireless



networks very complex to manage, and users often experience communication
quality drops that are completely unexpected.

Monitoring wireless networks is then very difficult. Monitoring such networks
at the IP layer is very inefficient (whereas it is the way it is done in wired networks
with extremely good results). Some previous work tried to include the MAC level
in the monitoring of wireless networks [3], but none integrates the full monitoring
of the network from physical to network layers. We nevertheless argue that this
is the direction to follow, and propose our preliminary study to estimate the
relations between the physical signal parameters and the performance at the
network level. Physicists are doing very strong studies on the signal level, but do
not study the impact on upper layers [4]. In this paper, it is proposed to bridge
the gap between the signal and the digital world in wireless communication
networks.

This paper then presents a double contribution.

First, we designed and built a platform for benchmarking wireless communi-
cations. Many wireless testbeds, identified in the literature, already exist for that
purpose. However, the major trend is to build large grid of wireless nodes which
can be programmed individually to transmit, receive and/or measure data. Cus-
tom topologies can be made out of the grid by switching on and off nodes.
For example, Orbits [5] follows this approach. However, these platforms are
built in open environments and lack the isolation and environmental control
required to conduct an accurate cross-layer study on wireless networks. Con-
trary to these works, our testbed is built in an anechoic chamber to fully control
the experimental environment, and avoid external signals to disturb the behavior
of the communicating devices and the quality of the measurements. We used on
this platform the common digital communications devices that are widely used
(laptops, tablets, smart phones), as well as dedicated signal measurement tools
specifically designed for physicists. Anyway, because of space limit, this paper
concentrates on the study of a WIFI link.

Second, the paper presents the analysis of the relations between the PHY
parameters of the WIFI connection, and the performance parameters on top
of the IP layer. It aims at demonstrating that, at the opposite of wired net-
works, the monitoring of wireless network can not avoid monitoring the physical
level. It is shown that using a very limited number of signal parameters (one
or two), it is possible to very accurately estimate communication performance
and quality parameters as network level throughput, delay or loss ratio. With
a carefully selected and set ML algorithm, it is even possible to predict perfor-
mance drops at the scale of one second. For this purpose we rely on two kinds
of supervised ML algorithms: SVR and k-NN. Both of them are known to have
good prediction capabilities and to succeed in many domains as long as these
domains can provide accurate time series [2,6]. However their operational char-
acteristics are very different making them more prone to different usage and
applications. For example, SVR algorithms are strong learners whereas k-NN’s
learning is weak, thus making them unable to assimilate training data on the
fly because of the huge computational complexity. However, SVR algorithms



are more sophisticated than k-NN and so are more efficient to generalize data
and usually more accurate on the estimations [2]. Therefore, we will compare
the relative estimation performances obtained with SVR and k-NN as well as
their performance concerning their time of execution (learning and estimation
delays). Again, because of space limit, the paper only presents the results with
the most common physical signal parameters as SNR or RSS for estimating the
throughput obtained on top of the IP layer.

2 Machine learning algorithms

2.1 SVR theory

This section presents the basic theory behind SVR. More details can be found
in [7]. Given a set of training data {(x1, y1), ..., (xn, yn)} ∈ X × R with X the
input space. The purpose of SVR algorithm is to estimate a function f(x) with
the requirements of having at most ε deviations from the targets yi. Equations
(1) and (2) show respectively SVR approximation for linear and non-linear form,
with 〈., .〉 the notation for the dot product in X. In the linear case, SVR performs
a linear regression in the input space. In the non-linear case, no regression can
be done in the input space. Therefore, on a first hand, the SVR algorithm has
to map the data into some feature space F via the function φ : X → F. On a
second hand, the classical SV regression algorithm is applied in the new feature
space.

f(x) = 〈w, x〉+ b with w ∈ X and b ∈ R. (1)

f(x) = 〈w, φ(x)〉+ b with w ∈ X and b ∈ R. (2)

The second requirement for the regression is to maximize the ”flatness” of the
weights, here measured by ‖w‖2. Hence, in the non-linear case both coefficients
w and b are estimated by minimizing the regularized risk function given in (4). In
this equation, C is a user-defined constant which controls the trade-off between
the training error and the model flatness. Lε is the ε-insensitive loss function
defined by equation (3). This function allows the SVR algorithm to only penalize
estimation errors greater than ε.

Lε(yi, f(x(i), w) ={
|yi − f(x(i), w)| − ε if |yi − f(x(i), w)| ≥ ε.
0 otherwise.

(3)

R(f, C) = C

n∑
i=1

Lε(yi, f(x(i), w)) +
1

2
‖w‖2 . (4)

To complete the regression we need to solve a convex optimization problem,
which is more easily done by maximizing its dual form and introducing the



Lagrange multipliers (αi,α
∗
j ). The new optimization problem is given by (5) and

is subject to
∑n
i=1(αi − α∗i ) = 0 and α∗i ∈ [0, C].

Maximize − 1
2

∑n
i,j=1(αi − α∗i )(αj − α∗j )〈φ(xi, xj)〉

−ε
∑n
i=1(αi + α∗i ) +

∑n
i=1 y(i)(αi − αi∗).

(5)

Solving this leads to a new definition of (2) as f(x) =
∑n
i=1(αi−α∗i )〈φ(xi), φ(x)〉+

b.
At this point, this definition shows that the solution can be found by only

knowing 〈φ(xi), φ(x)〉 instead of explicitly knowing φ. A function k(x, x′) which
corresponds to a dot product in some feature space F as defined by k(x, x′) =
〈φ(x), φ(x′)〉 is called a kernel. This kernel function can be any symmetric func-
tion satisfying Mercer condition such as the Gaussian Radial Basis (RBF) which

is defined byK(xi, xj) = exp(−γ ‖xi − xj‖2). The Gaussian kernel is parametrized
by γ (γ > 0) which impacts the generalization capability of the regressor among
other things.

2.2 k-NN for continuous variables estimation theory

The learning approach of k-NN [8] is to memorize the entire training set. As
so, the algorithm belongs to the class of the so-called lazy learners as [9, 10] for
instance. Given a set of training data D = {(x1, y1), ..., (xn, yn)} ∈ X×R , with
X ⊆ R, the process followed by k-NN to estimate an object z = (x′, y′) can be
easily summed-up in three steps. Firstly, the algorithm computes the distance
d(x′, x) between z and every object (xi, yi) ∈ D. Secondly, the set F of the k
closest neighbors to z is selected. Thirdly, k-NN computes the estimation as ŷ =
1
k

∑k
i=1 xi with x ∈ F . Variants exist and concern essentially the method used to

compute the distance d(x, x′) such as the Manhattan, Euclidean or Minkowski
distance. The p-order Minkowski distance for two sets of points F = (x1, ...xn)

and G = (y1, ..., yn) ∈ Rn is defined by (
∑n
i=1 |xi − yi|)

1
p .

3 Experimental platform and dataset

3.1 Experimental conditions and measurement equipments

The implementation of a dedicated wireless testbed is a major requirement for
our work. First of all, experimentations must be reproducible, allowing compar-
ison between different sets of measurements and algorithms. This point is not
trivial when using wireless networks as the environment factors have a high im-
pact on the network performances. Secondly, part of the originality of this work
comes from the combination of measurements made at multiple network layers,
using electronics instruments and software tools. This was also a strong require-
ment to be able to monitor the physical layer (the wireless transmission), and
compare it to the higher layers, from the mac layer information given by the net-
work cards to the end-to-end layers as transport throughput for instance. The



hardware introspection requirement has an impact on the components choice
as explained below. Thirdly, the synchronization of all of these datasets was a
sticky point, but absolutely required to ensure a good behavior of the learning
algorithms.

3.2 Reproducibility requirement

Our wireless testbed was designed inside an anechoic room. An anechoic room is a
protected RF room which simulates free space conditions. Our model of chamber
is 4,10 meters long for 2,50 meters wide. Inside, walls are covered of microwave
absorbers materials that break and scatter any wireless signal that would come
from an inside source. The chamber is then free of any multi-path propagation.
There are different types of absorbers, each of them is defined for a specific
frequency range that allows us to use the anechoic chamber for different purposes
and frequencies. The absorbers protect also the inner environment of the room
from outside perturbations. This protected context minimizes the uncontrolled
parameters of our communication.

3.3 Introspection requirement and components choice

Inside the anechoic chamber we placed two WIFI nodes. The nodes are controlled
through a wired network to avoid interference with the wireless communication.
The nodes are Avila-GW2348-4 gateway platforms and run a Linux OpenWrt
OS. The boxes have an Intel Xscale processor, 64 MB of SDRAM and 16MBytes
of Flash memory. The WIFI network controllers are based on the AR5414 chip-
set from Atheros which uses the ath5k driver and are attached to an omni-
directional antenna. The choice of the wifi chipset and its driver was crucial
because they define the amount of metrics and the accuracy that it will be
possible to obtain. The ath5k driver is open-source and well documented thanks
to an active online community support. It has also a good integration within the
OpenWrt OS. The OpenWrt OS is flexible enough to allow the implementation
of new functionalities so that it accelerates the upgrade of the bench. In addition
and because we were unable to capture the noise strength of the received signal
with the Atheros hardware, we used an oscilloscope connected to the receiver
antenna. It records the amplitude of the received signal. The oscilloscope chosen
was a fast Lecroy WaveRunner which allows us to capture a maximum number
of frame signal with little loss and to record them on internal memory. The
precision of this instrument gives us the ground truth required by the training
methods used. It also embeds a large library of filters, and operators which can
be applied on the input signals. The oscilloscope is also synchronized by NTP.

Synchronization requirement As we used several equipments to get mea-
surements, it is needed to have their clock very accurately synchronized. This
was done with NTP by using a dedicated wired connection to a remote NTP
server (accuracy with a shared network bus is not sufficient).



Capture and measurement processes The configuration of the network
interfaces is done in promiscuous mode to capture any packets sensed by their
antenna. The packets are captured at the MAC layer using the PCAP library
and tools when they arrive at the kernel interface. The packets contain data from
link to application layers, such as the 802.11 channel number, the type of frame
at the MAC layer, or packet size at the network layer. Additionally, a packet
also contains a RADIOTAP header which gives radio level information such as
the received signal strength (RSS) reported by the ath5k driver. We modified
the ath5k drivers of the OpenWrt OS to permit, when possible, the propagation
of packets with frame check sequence (FCS) errors to the upper layers, while on
the original kernel they were discarded. The propagation is only possible if the
error corrupted the data but not the header fields. Following this modification
the RADIOTAP header now contains a flag specifying whether a FCS error was
detected when decoding the packet.

The Lecroy oscilloscope was set to capture and flush the data as soon as a
frame is detected on the input cable. This happens when the amplitude of the
sensed signal is above a specific threshold, set to be in between the current noise
floor and the minimal amplitude value of a frame. This threshold has to be set in
a way to prevent exceptional high noise values that could be incorrectly detected
as a frame.

3.4 Experimental protocol

Noise generation. One of the objectives of our environment is to minimize
the presence of these uncontrolled parameters on the communication. Another
objective is to generate and control selected parameters that will impact our
communications.

The noise and the interferences significantly impact the communication. We
then inject noise in the environment using a signal generator to perturb the
communication. The signal generator is a device which emits RF signals. It can
be configured to generate very realistic noise. Among the parameters of the
generated noise, two important elements have a crucial impact: on a first hand
the modulation used characterizes the main characteristics of the noise signal in
the time and frequency domains (i.e. it characterizes the spectral occupancy of
the generated signal, its fading or narrowness). On a second hand, the amplitude
of the signal also affects the measured level of noise on the receiver side. We
found that the AWGN (Adaptive White Gaussian Noise) noise modulation was
a good choice for our preliminary studies because of its simplicity. Moreover it
can be used to impact the entire bandwidth of a 802.11g channel contrary to
most other modulation schemes which produce narrow band noise. The noise
level was determined empirically by testing the effects on the communication.
Finally, a major element that affects the noise generated in the anechoic chamber
is the antenna. It characterizes the waveform, the direction and the amplitude of
the noise wave. In order to perturb only one side of the communication we used
a very directional antenna pointed to the receiving station. We use IPERF to



Table 1: Constitutions and characteristics of our training sets. Each vector rep-
resents 1 second of measurements

Training set Dataset definition

notation {Tx Power (dBm); Noise Power (dBm)}; {sample 2};...

Dataset1 (5323 vectors) {10;-20};{10;-17};{10;-15};{10;-13};{10;-10};{10;-7};{10;-5};

{20;-20};{20;-17};{20;-15};{20;-13};{20;-10};{20;-7};{20;-5}
Dataset2 (2661 vectors) {10;-20};{10;-17};{10;-15};{10;-13};{20;-20};{20;-17};{20;-15};{20;-13}
Dataset3 (1330 vectors) {10;-20};{10;-17};{10;-15};{10;-7};{10;-5};{20;-20};

generate traffic between the two peers. The traffic is a TCP flow with a constant
throughput of 24 Mb/s. The size of the packets is set to 1470 bytes.

Training and datasets We generated different samples with different noise
levels and different transmission powers. All the samples have the same duration
of 5 minutes and will be used to constitute our training datasets. Table 1 sums
up the characteristics of the different samples. The same experimental settings
(transmission power and noise) are used for training and testing. Therefore a
training dataset which contains all these samples will be considered as having
full knowledge about the possible use cases met in the test dataset. Hence, to
test the generalization capacity of our algorithm, we built three different training
datasets as described in table 1. These datasets differ by the quantities of samples
they are made of, and consequently by the level of knowledge they represent.

3.5 SVR features definitions

Atheros Received Throughput This is the performance metric of the com-
munication that we are considering in this paper. It is computed from the
PCAP captured at the receiver side of the transmission. It is defined by BWi =
n∑
k=1

L(pk) with k ∈ N. BWi is the computed throughput at second i, L(pk) is the

length of the payload at the network layer for packet pk such as pk ∈ Pi which is
defined as the set of the nth received packets without FCS error during second
i: Pi = {p1, ..., pn}.

Atheros RSS The Atheros RSS is extracted from the RSS field in the RADIO-
TAP headers of the packets included in the PCAP files. Given that RSS(pk) is
the RSS of packet pk such as pk ∈ Pi, and Ri is the set of RSS extracted from
packets captured during second i, it is defined as ATH RSSi = Ri with Ri =
{RSS(p1), ..., RSS(pn))} .



Lecroy noise In addition to the Atheros values, we extract different metrics
from the Lecroy datasets. These values are computed from the Root Mean Square
(RMS) values of the raw data. These RMS values can be split into three parts,
which are the data that are before, during and after the frame. The part of the
data before and after the frame are the noise values and therefore can be used
to extract the noise floor during the reception of that frame. We consider A and
C, the sets of these points. Therefore we compute the average noise floor of the
data during the reception of frame f with Nf = A ∪ C.

With Mi the set of noise levels extracted from the frames captured by the
Lecroy oscilloscope during second i, we compute the feature for the noise floor at
second i LECR NOISEi as LECR NOISEi = Mi with Mi = {Np1 , ..., Npn}
and pk ∈ Pi.

Lecroy RSS The RSS of the received frame is computed on the first 8 sym-
bols to comply with 802.11 standard (see http://standards.ieee.org/getieee802/ ).
These points constitute the set D. Thus, similarly to previous equations, the RSS
for a frame f is given by Rf = D and LECR RSSi = {Rp1 , ..., Rpn} , where
LECR RSSi is the feature of the Lecroy RSS at second i.

Lecroy SNR Finally we compute the SNR Sf for frame f as the difference be-
tween the noise floor and the RSS of the frame P and therefore, similarly to pre-
vious formulas: Sf = Rf−Nf and LECR SNRi = Wi with Wi = {Sp1 , ..., Spn}
and pk ∈ Pi.

4 Estimation of the relations between physical and
performance parameters in WIFI communications

4.1 ML based methodology

The 2nd contribution of this paper is the analysis of the relations linking the
PHY layer parameters and the upper layers performance.

SVR SVR algorithm has been used with RBF as a kernel function. As section 2.1
points it out, in our configuration SVR requires three user-defined parameters
(C, γ and ε) which can impact performance and therefore must be carefully
selected with regard to the application. For our estimations, we used a grid search
to select these SVR parameters. It is a common empirical method which consists
in an exhaustive test run of SVR training using generated settings combinations.
We then select the best combination of C, γ and ε among the results.

k-NN For the performance of k-NN, the value of k must be carefully selected.
Therefore, after several tests on the different datasets, we chose a value which
allows a good tradeoff between the estimation accuracy and the generalization



results. Hence, in the presented experimentation, we set the value of k to 3.
The distance method used is Minkowski with order 2 which corresponds to the
Euclidean distance recommended with the traditional version of the algorithm
[8].

Training and estimation delays measurements One part of the analysis
of the machine learning estimations concerns the computational time associated
with the training and estimations process. Our ML setup uses Python scikit-learn
implementation [11] of SVR and k-NN. The delays are computed by reading the
current clock using the ’time’ function. The clock is read twice: before and after
the measured process. The difference of the two measures constitutes the delay
for the measured process. For each estimation, we made 100 runs and then
computed the average and standard deviation of the delays. The CPU used to
conduct the measures is a 64 bits Intel Core 2 Duo (2x2.53 GHz) with 6 MB of
cache memory. The computer disposes of 4 GB of RAM memory. The operating
system is Debian Linux.

4.2 Estimation performance

To evaluate the estimations, two methods are used.

Mean Squared Error (MSE) Given that Ŷi, ..., Ŷn are estimations and Yi, ..., Yn
are the real values, the MSE is defined as MSE = 1

n

∑n
i=1(Ŷi − Yi)2.

Percentage of correct estimations We also use the percentage of correct
estimations noted P (e < d) and defined by P (e < d) = 1

n

∑n
i=1D(Ŷi, Yi, d).

This value is the percentage of estimations which differ from the corresponding
real values by less than a defined threshold d as shown on equation (6). These
estimations are then considered ’correct’. Given the maximum throughput of 24
Mbps and the size of the packets defined to be 1470 bytes, we set the value of
the threshold d to 1 Mbps. Indeed, this threshold corresponds to an error in
the estimation of 4% (89 packets over 2139 transmitted during one second). By
considering the preliminary measured performance of the algorithms this value
could be considered to be fair to assess the goodness of the algorithms.

D(Ŷi, Yi, d) =

1 if |Ŷi − Yi| < d.

0 if |Ŷi − Yi| ≥ d.
(6)



Table 2: Results of the estimations using physical layer metrics. D1, D2 and D3
stands respectively for Dataset1, Dataset2 and Dataset3.

(a) Scores of the estimations.

Physical layer parameter(s)
MSE (Mbps2) P(e < 1Mbps) (%)

SVR k-NN SVR k-NN

no D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

1 ATH RSS 11.24 11 10.17 23 33 34 35 33 34 24 22 14

2 LECR RSS 4.42 3.9 4.5 27 7.1 10 51 59 32 18 35 31

3 LECR NOISE 2.28 5.4 5.8 5 2.8 4.2 69 55 44 50 44 24

4 LECR SNR 1.69 1.6 1.6 4 2.3 2.8 64 66 62 48 50 45

5 ATH RSS + LECR NOISE 1.02 2.3 3.3 4 1.3 1.7 70 49 41 54 60 50

6 LECR RSS + LECR NOISE 0.88 2.0 2.53 2 1.2 2.2 75 57 49 64 63 46

(b) Pertinence of the estimations.

Physical layer parameter(s)
SVR Pertinence ranking k-NN Pertinence ranking

MSE P(e < 1Mbps) MSE P(e < 1Mbps)

no D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

1 ATH RSS 6 6 6 6 6 5 6 6 6 5 6 6

2 LECR RSS 5 4 4 5 2 6 5 5 5 6 5 4

3 LECR NOISE 4 5 5 3 4 3 4 4 4 3 4 5

4 LECR SNR 3 1 1 4 1 1 2 3 3 4 3 3

5 ATH RSS + LECR NOISE 2 3 3 2 5 4 2 2 1 2 2 1

6 LECR RSS + LECR NOISE 1 2 2 1 3 2 1 1 2 1 1 2

4.3 Estimation results

Table 2 contains the results of the throughput estimation based on 6 different
PHY or combinations of PHY parameters for respectivelyDataset1, Dataset2,
and Dataset3. The first column quotes the PHY parameters that have been used
for the SVR estimation of the IP throughput. Columns 2 to 4 show the figures
obtained for the MSE and the probability P (e < 1Mb) for both ML algorithms.
The four last columns give the ranking for the PHY parameters according to their
ability to allow good estimations of the throughput. A ranking of 1 corresponds
to the best result among the 6 PHY parameters considered.

For Dataset1, i.e. the full one, the best result is obtained with LECR RSS+
LECR NOISE for both families of algorithms. The estimations for SVR are
plotted on figure 1. This figure exhibits impressive matching between the real
and estimated values of the throughput, with just very few outliers appearing
(75% matchings). We got as impressive results for Dataset2, and Dataset3, but
this time, the best results for SVR have been obtained with the LECR SNR
parameter (60% matchings). The difference of the results when using a full trace
for the training compared to a sampled one exhibits the non empty intersection
between PHY parameters as SNR, RSS and NOISE. These 3 parameters are



Fig. 1: Throughput estimation results obtained with the LECR RSS +
LECR NOISE metric compared to the real throughput.

closely related. The results for k-NN improve with the use of Dataset2. Contrary
to SVR, the best estimations are obtained with the features 5 and 6 for every
training datasets. Generally speaking, SVR performs better than k-NN excepts
in the 2nd training dataset where k-NN outperforms SVR in terms of MSE. It
nevertheless clearly appears with these figures that SNR, RSS and NOISE can
help to perfectly estimate and predict (on a one second scale) the performance of
the network at layers 3 and 4. Nevertheless, a deeper analysis on larger datasets,
that still need to be produced, would allow a more accurate characterization
of the link between PHY parameters and network performance. Actually, it
appears that while the combined features metrics performance decreases, the
overall performance of the RSS metrics 1 and 2 increases or stays more or less
the same. This seems to suggest that the full training set was not adapted to
these metrics. This is even more visible in k-NN results, while MSE performances
improve impressively between Dataset1 and Dataset2.

The difference between the full and the reduced sets is that the samples
obtained with high noise are not present in the reduced datasets. This could
be caused by incoherent values existing in Dataset1 because of the bad and
noisy conditions. One possibility is that these values could deteriorate the model
issued from the training process. This hypothesis seems to be corroborated by
the results obtained with k-NN and the simplicity of its algorithm which makes
it more sensible to the general quality of the training dataset and the choice of
the feature. This aspect needs to be considered for improving our platform and
experiment protocol.

4.4 Training and estimation time performance

Table 3 presents the results of the measured delays for training and estimations
using SVR and k-NN. According to these numbers, the time taken by SVR to
train can be very high. Hence, with Dataset1 and the RSS metrics, the delays
goes up to the tens of seconds. Then the time decreases with the use of smaller
training sets. In the case of k-NN, no model are computed, the data are simply
memorized. Therefore the training is very fast and essentially depends on the size
of the training sets. As a consequence, k-NN values decrease geometrically by a



Table 3: Results of the measured delays for training and estimations using phys-
ical layer metrics. D1, D2 and D3 stands respectively for Dataset1, Dataset2
and Dataset3.

(a) Average delays observed for the training processes on 100 runs (values into brack-
ets are the standard deviation of the distributions. Due to space limitation, standard
deviation values are given in 103 unit).

Physical layer parameter(s) Time used for training (s)

SVR k-NN

no D1 D2 D3 D1 D2 D3

1 ATH RSS 5.39 (40) 1.40 (2) 0.36 (0.4) 0.048 (2) 0.023 (0.1) 0.012 (0.1)

2 LECR RSS 41.27 (300) 11.71 (7) 3.12 (2) 0.048 (1) 0.023 (0.2) 0.012 (0.1)

3 LECR NOISE 5.17 (10) 1.38 (1) 0.36 (0.8) 0.051 (6) 0.023 (0.2) 0.012 (0.1)

4 LECR SNR 11.54 (6) 3.87 (4) 1.35 (2) 0.048 (4) 0.023 (0.2) 0.012 (0.1)

5 ATH RSS + LECR NOISE 4.50 (4) 1.15 (2) 0.30 (0.2) 0.048 (0.6) 0.023 (0.1) 0.012 (0.1)

6 LECR RSS + LECR NOISE 4.72 (9) 1.23 (2) 0.31 (3) 0.046 (0.5) 0.023 (0.1) 0.012 (0.08)

(b) Average delays observed for the estimations processes on 100 runs (values into brack-
ets are the standard deviation of the distributions. Due to space limitation, standard
deviation values are given in 103 unit).

Physical layer parameter(s) Time used for estimation (s)

SVR k-NN

no D1 D2 D3 D1 D2 D3

1 ATH RSS 1.52 (10) 0.78 (6) 0.40 (3) 1.13 (10) 0.63 (1) 0.39 (0.6)

2 LECR RSS 1.58 (20) 0.81 (10) 0.42 (3) 0.61 (3) 0.44 (0.8) 0.29 (0.6)

3 LECR NOISE 1.47 (20) 0.76 (10) 0.42 (4) 0.96 (30) 0.35 (0.9) 0.08 (0.3)

4 LECR SNR 1.38 (30) 0.70 (10) 0.36 (3) 0.74 (60) 0.45 (0.8) 0.19 (0.3)

5 ATH RSS + LECR NOISE 1.34 (9) 0.67 (10) 0.35 (8) 0.32 (10) 0.15 (0.3) 0.06 (0.1)

6 LECR RSS + LECR NOISE 1.38 (1) 0.70 (4) 0.36 (3) 0.27 (0.4) 0.15 (0.2) 0.08 (0.1)

factor of 2 when changing from Dataset1 to Dataset2 and then from Dataset2
to Dataset3. According to section 2.1, SVR forces the estimated function to be
within an ε distance of the averaged data, a requirement which can be tedious
for the algorithm to fulfill. Hence, the high value for SVR model training are
explained by the usage of this ε parameter which affects greatly the training
accuracy as well as the delays. However, this affirmation would need more study
focused on the SVR parameters and these specific data. The time taken for the
estimation are higher when using SVR, than when using k-NN. The SNR delays
vary with the size of the training set. This result seems unintuitive since SVR
training model is based on regression. However, the results obtained with k-NN
are conform to its training model which is based on the memorization of the
entire training set. k-NN results are very good comparatively to the one of SVR.



By observing the global results, we see that k-NN can largely compete with SVR
when it comes to accuracy while at the same time being slightly faster.

5 Conclusions and future work

The main contribution presented in this paper deals with the design of a generic
platform for monitoring and analyzing wireless networks. This wireless testbed
is set in the RF protected environment of an anechoic room, allowing us to con-
trol the perturbation on the physical medium by generating noise. It also has
the originality to integrate pure physical signal measurement tools as Lecroy
oscilloscopes for very accurate measurements serving as ground truth. Based on
the collected data, the second contribution of the paper deals with exhibiting
the importance of PHY parameters on network communication performance.
The correlation between the physical environment and the communication per-
formance is so strong that it is possible by only monitoring the SNR and the
RSS of the signal to predict the performance level at the TCP/IP level. This
result has been demonstrated using different kinds of models, in particular the
SVR and k-NN models presented in this paper. Future work includes a large ex-
ploitation of our platform. Indeed, for this preliminary stage, we just set simple
scenarios with a single connection and simple noise model that can appear a bit
far from realistic situations. These first simplistic scenarios were manadatory to
validate the platform accuracy, and the monitoring and analysis tools, as well as
for gaining the required skills required for this multi-thematic work, especially
in the domain of the signal propagation and behaviour. We now plan to generate
large datasets with more complex and realistic scenarios, and this for different
kinds of wireless networks, including WIFI, UMTS, LTE, etc. We will also ex-
ploit this datasets by deeply analyzing them, understand how wireless networks
behave, and then trying to improve the way we use and manage them.
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