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Abstract. In this paper, a Computational Intelligence Approach and more
particularly a neural network is used to learn from data on the Black-Scholes
implied volatility. The implied volatility forecasts, generated from the Neural
Net, are converted to option price using the Black-Scholes formula. The neural
network option pricing capabilities are shown to be superior to the Black-
Scholes and the GARCH option-pricing model. The neural network has also
shown that it is able to reproduce the implied volatility well into the future
whereas the GARCH option-pricing model shows deterioration in the implied
volatility with time.
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1 Introduction

The Black-Scholes Option Pricing Model (BSOPM) published in 1973 (Black and
Scholes 1973) remains one of the most cited scientific papers in this field. The model
made a key contribution to option trading, allowing investors to calculate a fair value
for an option contract. This model has its limitations, which stem from the unrealistic
assumptions used in the derivation of the BSOPM. The wide success of this model
was due to its ability to produce an option price instantaneously. The formulation of
BSOPM was based on major assumptions which allowed for the derivation of this
model. These assumptions significantly impacted the model pricing capabilities which
are visible in the models pricing biases. The constant volatility assumption has
captured the attention of researchers, as it contradicts the volatility behaviour
observed in the underlying asset. Also, it was realised when the volatility was backed
out from the BSOPM for different strike prices, the implied volatility displays a U-
shape pattern (volatility smile) when plotted against the options moneyness.
Moneyness is defined as the relative position of the current or future price of the
underlying asset with respect to the option strike price. Nevertheless, implied
volatility is derived directly from the options data, which contains vital information as
it provides a forward looking view on how the market is anticipating movements in
the underlying asset. This is a different view to the conditional volatility calculated



from the stock returns which is a retrospective view. The other interesting feature of
the implied volatility is the deterioration of the volatility surface through time caused
by the changes in the implied volatility levels. Many models have emerged to
overcome the limitations of the BSOPM. In the present paper, we select the GARCH
option pricing model (GOPM hereafter) as it allows for the volatility to follow a
GARCH specification. This specification overcomes the constant volatility
assumptions and at the same time caters for key stylised facts in the underlying
returns series. This model has displayed superior improvements over other pricing
models. The major shortcoming for this model is the absence of a closed form
solution. This means the model parameters have to be optimised using a Monte Carlo
simulation, which is a computationally intensive process that limits its ability to be
applied to real-life problems.

Neural networks have been applied previously to option pricing problems
(Karaali, Edelberg et al. 1997), (Meissner and Kawano 2001), (Amilon 2003), (Yao,
Li et al. 2000), (Tino, Schittenkopf et al. 2001) and (Bennell and Sutcliffe 2004). The
majority of research papers rely on neural networks to provide a mapping from inputs
similar to the BSOPM to the option price. Training the neural network on the option
price is a cumbersome task. The option itself can suffer from many issues such as
stale prices due to infrequent trading (Rubinstein 1985). Therefore, using the option
price to guide the training of the neural network can be misleading as the neural
network will attempt to map the inputs to an output that has poor correlation with the
input. To overcome this limitation, many variations of this method have been
developed to improve the pricing accuracy. For instance, substantial pricing
performance gains are achieved when the training data set is partitioned by
moneyness and different neural networks are used for each of the training sets. Yet
there has been no attempt to evaluate the neural networks’ performance against more
advanced models. The reason for this is that the pricing capabilities of the neural
networks are inferior to those of more advanced pricing models such as the GOPM. In
(Hanke 1997), a neural network was constructed to give an approximate price to
GOPM. This was achieved by training the network on different input combinations
for the GOPM allowing the neural networks to approximate the GOPM, thereby
overcoming the numerical simulation issues of the GOPM. In (Mostafa and Dillon
2008), a new option pricing method was proposed by allowing the neural network to
learn the implied volatility behaviour of the option through time.

The main variable that can explain the option behaviour through time is the
implied volatility, since the implied volatility is considered to be a forward looking
view of the market anticipation. By allowing the neural network to capture the
implied volatility surface through time, the neural network will be able to forecast
future movements of the implied volatility across different strikes which can then be
converted to an option price. This method was demonstrated to have superior option
pricing over the Black-Scholes and GOPM. The option pricing of the neural network
and GOPM was discussed and analysed in (Mostafa and Dillon 2008), in this paper
we demonstrate the capabilities of neural networks in learning the implied volatility
surface through time and its impact on option pricing. We also validate this method
by studying how well the neural network can reproduce implied volatility into the
future relative to the GOPM. In section two, the option pricing models are reviewed;
in section three the data used in this paper is explained. In section four the



performance measuring criteria are explained, in section five the results from the
experiments are discussed. In section six we discuss and compare the implied
volatility forecast behaviour of the neural network and GOPM. We then conclude this
paper in section seven.

2 Option pricing models

In this section we review the option pricing models studied in this paper.

2.1 GARCH Option Pricing Model (GOPM)

It has been demonstrated by (Duan 1995) that under the Local Risk Neutral Valuation
Relationship (LRNVR) the conditional variance does not change. However, under
measure Q , the conditional expectation of rt is the risk free rate rf.
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To derive the GOPM, the risk neutral valuation relationship has to be generalized to
the LRNVR:
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The terminal asset price is then calculated using Monte Carlo simulation. A set of N
random path of residuals ),...,( *

,
*

,1 jTjt   is generated with J = 1 to N. The residuals
are used to calculate the asset prices ST,j. The final option price is then approximated
as follows:
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Empirical Martingale Simulation (EMS) of (Duan and Simonato 1998) has been used
which has been shown to accelerate the convergence of the Monte Carlo prices
estimates. The GOPM parameters were estimated for each day of the data sample.
This was achieved by minimizing the average sum squared error eqn. (21) (Aboura
2005) (Lehnert) over all options on day t, with parameters from day t-1 as the initial
values (Lehar, Scheicher et al. 2002).
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C and C are the model theoretical price and the actual call
price respectively. The number of Monte Carlo simulations was initially set to 15,000.
This was sufficient to generate stable estimates. In some cases, the number of
simulations had to be increased to 30,000.

2.2 The Black-Scholes Option Pricing Model (BSOPM)

The BSOPM theorem was first published in 1971 (Black and Scholes 1973). It is the
most widely used pricing model. The interest rate and volatility are constant; the call
option on the asset, expiring at time T and with strike price K will have the following
value at time t:
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N(x) is the cumulative probability distribution for a standard normally distributed
variable. The BSOPM delta is given by N(d1), which also measures the sensitivity to
the underlying asset.

2.2.1 Implied Volatility

The implied volatility is a volatility parameter, which equates the market price with
the price given by the BSOPM formula. The implied volatility,  TKBS

t , is a function
of K (Strike) and T ( time to maturity) (Hull 2003). The two most interesting features
of the volatility surface, which have been studied and analysed by researchers, are the
volatility smile (skew) and the term structure or the level of implied volatility changes
with time. The volatility smile is a key indicator of an unrealistic assumption of
constant volatility. Whereas, the changes in the implied volatility level with time is
seen by the deformation of the volatility surface with time. Therefore, the ability to
capture the implied volatility term structure will lead to accurate option pricing. (Cont
and da Fonseca 2001) have expressed mathematically the implied volatility surface as
follows:
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The value of the call option as a function of the volatility is a monotonic mapping
from [0,+[ to ]0,St-Ke-rt[. The implied volatility  TKBS

t , of a call option with
strike K and price maturity of T is dependent on K and T. If K and T are



fixed,  TKBS
t , can be generalised to follow a stochastic process. For a fixed t, the

value will depend on the options characteristics such as maturity and strike level K.
Equation 9 represents the volatility surface at time t.
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Where m is the moneyness, ),( mI t is the implied volatility function.
The two most important features of this surface are the volatility smile and the

changes in the volatility levels with time. Thus, the evolution in time of this surface
will reflect the evolution of market option prices.  Many previous studies have
attempted to explain the information contained in the implied volatility (Day and
Lewis 1992; Canina and Figlewski 1993; Christensen and Prabhala 1998; Blair, Poon
et al. 2001; Jiang and Tian 2005) where the majority of studies have shown that the
implied volatilities contain relevant measurement errors with quantifiable magnitude.
Earlier research shows the implied volatility to be an inefficient forecast of volatility
(Canina and Figlewski 1993). However, more recent studies such as (Jiang and Tian
2005) show that the implied volatility subsumes all information contained in the
historical volatility and is capable of providing an accurate forecast of future
volatility.  This information can be utilised in many aspects since the option prices
reflect the participant’s expectations of the market’s future movements. So, if the
option market is efficient such that all information is observed and the correct option
pricing model is specified, the implied volatility should subsume the information
contained in other variables in explaining future volatility. That is, the implied
volatility should be an efficient forecast of future trends over the life of the option.

There have been several theoretical explanations for the volatility smile such as the
distribution assumption and stochastic volatility (Poon 2005). There have been other
explanations proposed based on market microstructure, measurement errors and
investor risk preference. However, the BSOPM assumes the asset price to have a
lognormal distribution or the (logarithmic) returns to follow a normal distribution.
Given a high strike price the call option is deep out-of-the-money and the option has a
very low probability that it will be exercised. The leptokurtic right tail will give the
option a higher probability than the normal distribution for the asset price to exceed
the strike price, which means the call will be in-the-money at expiry. If we consider a
low strike price, the same argument applies as above but an out-of-the-money put
option is used instead. Due to the thicker left tail of the leptokurtic distribution, the
probability of the out-of-the-money put option to finish in-the-money will be higher
than that of the normal distribution. Therefore, the put option price should be greater
than the price given by the BSOPM. If the BSOPM is used to back out the implied
volatility, the BSOPM implied volatility will be higher than the actual volatility. This
causes the volatility smile where the implied volatility is much higher at very low
strike prices and low at high strike prices.  The implied volatility for different strikes
and maturities do not evolve independently and they are a highly correlated
multivariate system (Cont and Fonseca 2002).  To construct a model in terms of the
implied volatility rather than volatility of the underlying asset volatility may
complicate the modelling procedure.  However, there are advantages of modelling the



implied volatility directly. For instance, the implied volatility is observable and is
derived from the market data, whereas, the asset volatility is not directly observable.
The implied volatility gives an insight to the option markets which can be analysed by
the practitioners. The shifts in levels of implied volatility are highly correlated across
strikes and maturities, which allows for the modelling of the joint dynamics. The
implied volatility is now widely used by practitioners and especially with the
emergence of implied volatility indexes and derivative instruments (Cont and Fonseca
2002).

2.3 Artificial Neural Network (ANN)

The ANN consists mainly of an input layer, one more hidden layer and an output
layer. The layers are connected via a set of weights. The hidden layer and the output
layer consist of individual neurons. The inputs are multiplied by the weights and a
bias term is added which then constitutes the input to the activation function. This
then serves as the input to the following layer. The activation of the output layer is
given by:
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The activation functions of the neurons could be chosen to be linear or non-linear
functions. A sum of error-squared function is normally used as the objective function
for the training of the MLP. So the MLP is trained to minimize this function with
respect to the in-sample data.
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The MLP performance is dependent on the initial values of the weights.  To
overcome this issue, the neural network is trained 50 times using different initial
values for the weights. The weight set that introduces the least error is then adopted.

Given the limited success in applying neural networks to option pricing, we adopt
the same method used in (Mostafa and Dillon 2008) for training the neural network
with the intention of capturing the underlying asset dynamics of the instrument which
then can be translated to an option price using known market variables. This new
methodology allows the neural network to capture the dynamics of the underlying
asset and the changes in the volatility levels through time.  Using the option price to
train the neural network has been proven to be ineffective; therefore, instead of
training the neural network to price the option directly, we allow the neural network
to learn the implied volatility. So the neural network will be optimized on the implied
volatility, thereby allowing the neural network to forecast the implied volatility for
different maturities and moneyness.  Many studies have demonstrated that vital
information is contained in the implied volatility especially since the implied
volatility contains the market expectation of the underlying asset future movements.
To allow the neural network to capture the entire volatility surface, the data set was
not partitioned by moneyness, thereby allowing the neural network full visibility of
the volatility surface.  This approach is a mapping exercise described in equation 14.



The neural networks must be tested and verified on the training data set to overcome
key issues such as over-fitting (Mostafa and Dillon 2008). The neural network is
trained using the BSOPM implied volatility as the target output. This method allows
the neural network to predict the future implied volatility, which also means that the
neural network can produce the implied volatility surface over any trading horizon.
The implied volatility can be converted to an option price by plugging it into the
BSOPM. The neural networks were optimized by varying the number of inputs,
length of in-sample and validation sets, and the number of hidden units. The
combination that gives the lowest error is considered to be the optimal model and is
chosen accordingly. The initial weight values were initialized randomly, and to
eliminate the dependency on the initial weight values, this process was repeated 50
times.

After experimentation with the different inputs, the following combination was
selected for optimal performance. The in-sample and validation set were 20 and 5
days respectively, and the output sample was 1 day. The inputs used were moneyness
(index/strike), time to expiry and historical volatility. The target data set was the
BSOPM implied volatility.  Once the training of the ANN is completed, the implied
volatility produced by the ANN would be plugged into the Black-Scholes formula to
obtain an analytical price of the option. This model would be referred to as NNiv.

3 Data

The data used in this research consists of European call options on the FTSE 100
index traded at the London International Financial and Options Exchange (LIFFE).
The data for this research was obtained from SIRCA (http://www.sirca.org.au/),
which covered a two-year period starting from 2/1/2000 and ending on 31/12/2001.
The sample was made up of 63,094 call options and the daily Index value (adjusted
for dividends). The following constraints were applied to filter the data series:
moneyness (index/strike) outside [-1.01,0.9], maturity greater 175 days and less than
7 days and close price less than five where removed. The data series was then reduced
to 26533 options. GB Libor rates were used for the risk-free rate inputs to the models.
The parameters for the GOPM and BSOPM were estimated on a daily basis.
However, when optimising the ANN, the data was split into 3 sets: in-sample,
validation and out-of-sample. The in-sample set is used as input to the ANN, thus
impacting on the weights. The validation set is used to evaluate the error at each
epoch. The training of the network is terminated when the error of the validation
increases. The out-of-sample data set is used for evaluating the ANN model.

4 Performance Measure

To analyze the model’s performance, Absolute Relative Pricing Error (ARPE) was
calculated for each model. where

^

C and C is the model theoretical call price and the
actual call price. The errors are reported against maturity and moneyness. The models



pricing performance is further analyzed by running a regression analysis to study the
pricing behavior based on the moneyness and TTE (Time to Expiry).
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5 Results

Below the estimated mean values of the GOPM parameters are given in Table 1.

Table 1: GOPM average parameters

0
1 2  

3.109E-05 1.848E-01 3.184E-01 6.745E-01 22.37%

The risk premium is extracted from the option prices rather than from the index
time series. It was found to be a little weak which in turn will have a minor impact on
the option price. The annual volatility was found to be approx 22.37% which is a
close approximation to the historical volatility when estimated on the index prices
20.7%.

The ARPE figures are displayed in Table 2. On average, the performances of
GOPM and NNiv models increase with maturity. Again, the BSOPM performs the
worst on all accounts. On average, the NNiv has a slightly better performance than the
GOPM. The GOPM model performs slightly better for MT contracts and the NNiv
has a better performance for ST and LT contracts. All models have performed the
worst for ST-DOTM contracts. In addition, the GOPM performs the best for LT-
DITM, whereas the NNiv and BSOPM are at their best for ST-DITM contracts. The
NNiv seems to perform best for the MT-ITM contracts. The ARPE is regressed on
TTE (Time to Expiry) and Mon (Moneyness). The estimated coefficients are
displayed in Table 3. The coefficients R2 and F-test for NNiv and the GOPM are
similar. This indicates that the models price the options in a similar manner.  For all
models, the ARPE is smaller for longer maturities and increased moneyness.
Therefore, ITM options are priced more accurately than the OTM options and the
models price LT contracts with better accuracy than ST contracts

6 The Empirical Dynamics of the Volatility Smile

In this section, we study the behavior of the implied volatility of the GOPM and the
NNiv over time. The implied volatility of NNiv is given directly as the output of the
model, whereas the GOPM produces a theoretical option price. To extract the implied
volatility from the GOPM, the option prices are equated to the BSOPM formula and



the implied volatility is backed out. To study the volatility smile, a theoretical series is
generated by an out-of-sample fit of the GOPM parameters calculated on the previous
day. The implied volatility is then backed out for each option price using the BSOPM
formula. Figure 1 shows the first day out-of-sample forecast for the GOPM. It can be
seen that the volatilities are higher for the shorter maturities. As the option moves
from ITM to ATM, they converge and the slopes are reversed.

Table 2: ARPE for all models against the options time to maturity.

Moneyness Model

Time to Maturity

LT
(Long TTE)

MT
(Medium TTE)

ST
(Short TTE)

TOTAL

DOTM
(Deep Out of  the money)

GOPM 0.179 0.246 0.384 0.267

BSOPM 0.993 1.815 1.289 1.584

NNiv 0.167 0.269 0.358 0.273

OTM GOPM 0.105 0.157 0.272 0.202

(Out of The Money) BSOPM 0.502 0.713 0.984 0.809

NNiv 0.102 0.154 0.262 0.195

ATM GOPM 0.078 0.1 0.139 0.116

(At the money) BSOPM 0.274 0.262 0.277 0.27

NNiv 0.086 0.094 0.135 0.112

ITM GOPM 0.082 0.074 0.079 0.077

(In The Money) BSOPM 0.169 0.12 0.077 0.104

NNiv 0.081 0.071 0.075 0.074

DITM GOPM 0.039 0.061 0.05 0.053

(Deep In The Money) BSOPM 0.099 0.074 0.051 0.069

NNiv 0.098 0.066 0.058 0.068

All

GOPM 0.121 0.167 0.233 0.188

BSOPM 0.589 0.924 0.742 0.818

NNiv 0.119 0.172 0.222 0.185

This has been highlighted by (Aboura 2005), where this point is of importance
because the model is able to classify the volatilities according to their moneyness.
Figure 2 displays the implied volatility for the end of the month using the same
parameters as those for the first day of the month. The deformation of the smiles is
obvious. The short maturity has a higher implied volatility; however, the skew of the
longer maturities becomes more linear.

The theoretical volatilities calculated for NNiv at the first day of the month are
displayed in Figure 3. The volatility smile is apparent in the graph. The graph also
shows a similar behavior to the skews generated by the GOPM. For all maturities, the



slope of the skews changes as it moves from ITM to OTM.  So, as the option
approaches ATM, the volatilities across all maturities become similar. For the ITM -
LT option, the skew tends to be linear; then as it moves past the ATM point, the NN
gives higher volatilities. For ITM-ST options, the NN generates much larger
volatilities than the ITM-LT options. As ST option passes the ATM range, the slope
changes direction forming the smile. However, the volatilities are smaller than the LT
for OTM options.

Table 4: Regression results

NNiv GOPM BSOPM
C 2.097 2.052 13.931

(-46.116) (-45.072) (69.214)
A -0.327 -0.330 -0.769

(-26.065) (-26.306) (-13.869)
B -1.900 -1.851 -13.372

(-40.983) (-39.865) (-65.148)
R2 14.66% 13.71% 25.05%

F-test 1047.439 1014.297 2133.957

Figure 1: GOPM out-of-sample skews for
4/9/2000

Figure 2: GOPM out-of-sample skews for
28/9/2000

Figure 3: NNiv out of sample skews for
4/9/2000

Figure 4: NNiv out of sample skews for
28/9/2000



In Figure 4, there does not seem to be any deformation of the skews. The skews
also follow the same behavior as those in Figure 3. The deformation of the GOPM
skews through time displays that the model is sensitive to changes in the underlying
asset. The GOPM parameters are calibrated under LRNVR conditions by simulating
the underlying asset process and pricing the options at expiry accordingly. However,
the NNiv is designed and trained differently. The ability of the NNiv to price options
out-of-sample is a key indicator of the ability of the NN to capture the dynamics of
the options. The NNiv trained on mapping the input space (TTE, Moneyness,
Historical Volatility) to Black-Scholes implied volatility.  Due to the high number of
variables in the NN, 1 day of historical data was not sufficient to produce a stable
result. Hence, the NN was trained on 20 days of data, which contains substantial
information. Therefore, when the smiles are generated out-of-sample towards the
expiry of the options, the neural network is able to display the actual skew at that
point in time. This is a good indication that the NN is a suitable tool for long-term
forecasting.

7 Conclusion

The neural network was trained using the implied volatility as the target output of the
neural network rather than the options price. This method has shown to have superior
out-of-sample pricing performance over the BSOPM and GOPM. The neural
network’s performance was also compared to those of the GOPM and the BSOPM.
The regression analysis shows the neural network behaves in a similar manner to the
GOPM. This demonstrates the neural networks are capable of learning and
reproducing option prices accurately by learning the implied volatility. The neural
network was also shown to reproduce the implied volatility well into the future where
as the GOPM start to show deformation. This behavior of the neural network
demonstrates its capabilities to capture the underlying asset volatility structure and
volatility levels through time. This can contain vital information on future market
behaviors. In future research, this method will be further expanded and applied to
Value-at-Risk models.
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