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Abstract. Extracting good representations from images is essential for many 
computer vision tasks. While progress in deep learning shows the importance of 
learning hierarchical features, it is also important to learn features through 
multiple paths. This paper presents Multipath Convolutional-Recursive Neural 
Networks(M-CRNNs), a novel scheme which aims to learn image features from 
multiple paths using models based on combination of convolutional and 
recursive neural networks (CNNs and RNNs). CNNs learn low-level features, 
and RNNs, whose inputs are the outputs of the CNNs, learn the efficient high-
level features. The final features of an image are the combination of the features 
from all the paths.  The result shows that the features learned from M-CRNNs 
are a highly discriminative image representation that increases the precision in 
object recognition. 
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1 Introduction 

Visual recognition is a major focus of research in computer vision and machine learn-
ing. In the past few years, many works have been done on visual descriptors [1-4]. 
These methods have shown robustness against visual complexities, such as changes in 
scale, illumination, affine distortions, and pose variations [5]. For example the SIFT 
operator [1], which can be understood and generalized as a way to go from pixels to 
patch descriptors, applies oriented edge filters to small paths and determines the dom-
inant orientation through a winner-take-all operation. Finally, the resulting sparse 
vectors are added over large patches to form local orientation histograms. Designing 
algorithms to get meaningful features is important but requires deep domain 
knowledge, and it is often difficult to expand the scope and ease of its applicability. 

To overcome this weakness of feature engineering, feature learning learns trans-
formations of the data that make it easier to extract useful information when building 
classifiers or other predictors [6]. There are a variety of works about feature learning, 
such as hierarchical sparse coding [7], deep autoencoders [8], convolutional deep 



belief networks [9], and convolutional neural networks [10]. These approaches learn 
image features from raw pixels through multiple feature transforms layers. 

Recent work on convolutional-recursive deep learning [11] is very efficient. Com-
bining CNNs to extract low-level features from RGB and depth image, and RNNs to 
map the learned features into a lower dimensional feature space, the result of the 
model outperforms a lot of designed features and algorithms. Compared to standard 
feed forward  neural networks with layers of similar size, CNNs have much fewer 
connections and parameters, thus being easier to train, while their theoretically-best 
performance is likely to be the same [12]. A single convolutional neural network layer 
provides useful translational invariance of low level features such as edges and allows 
part of an object to be deformable to some extent. Recursive neural networks, com-
bine convolution and pooling into one efficient and hierarchical operation, project 
inputs into a lower dimensional space through multiple layers. 

 
Fig. 1. Architecture of M-CRNNs 

Concerned about the multi-facet nature of visual structures, Bo et al. [13] proposed 
multipath hierarchical matching pursuit. Discriminative structures, which we want to 
extract in feature learning procedures, may appear at varying scales with varying 
amounts of spatial and appearance invariance. Multipath hierarchical matching pur-
suits capture the heterogeneity, and build it into the learning architecture. 

Motivated by this, and using the simplicity and high efficiency of convolution-
recursive neural networks (CRNNs), we propose multipath convolutional-recursive 
neural networks (M-CRNNs). The overview of this framework is illustrated in Fig. 1. 



A single path M-CRNNs is built upon a single-path CRNNs and learns features 
through many pathways on multiple bags of patches of varying size, by encoding each 
patch through multiple paths with a varying number of layers. The M-CRNNs archi-
tecture is important as it significantly and efficiently expands the richness of the im-
age representation and contributes to improvement to image classification.  

The remainder of this paper is organized as follows. In section 2, we propose M-
CRNNs model and present learning procedures in detail. In section 3, experiment 
results are presented and discussed. Finally we conclude the paper in section 4. 

2 Multipath convolutional-recursive neural networks 

In this section, we describe our multipath convolutional-recursive neural networks. 
We first learn CNNs filters and then feed image patches into CNNs layers. The invar-
iant features extracted from CNNs are given to recursive neural networks. RNNs learn  
higher order features that represent the image. All features from different paths are 
concatenated to form the final features that can then be used to classify images. 

2.1 Convolutional neural networks 

The main idea of CNNs is to convolve filters over the input image to extract distinc-
tive features. We convolve an image of size (height and width) Ld with N square fil-
ters of size Pd , resulting in N filter responses, each of dimensionality 1L Pd d  . We 
then pool them with square regions of size ld  and a stride size of s, to obtain a pooled 
response with width and height equal to ( 1 ) / 1L P lr d d d s     . So the output Y 
of the CNNs layer applied to one image is a N r r  dimensional 3D matrix. We 
apply this same procedure to both RGB images and grayscale images separately. 

The structure of our layer of CNNs is similar to the one proposed by Jarrett et al. 
[14]. Different systems use different strategies to construct filters to extract features 
from images. For single layer models, filters sometimes are hard-wired, such as Gabor 
Wavelets [15]. For multi-stage vision systems, there is no prior knowledge that would 
conduct us to design sensitive filters for the second or higher layers. Hence filters are 
learned using supervised or unsupervised methods in many models. We use Predictive 
Sparse Decomposition (PSD) [16] and k-means to learn the filters.  

A single stage of CNNs model includes four layers: filter bank layer, rectification 
layer, local contrast normalization layer and average pooling and subsampling layer. 
In the filter bank layer, the input is a 3D array with 1n 2D feature maps of size 2 3n n . 
Each element is denoted as ijtx , and each map is denoted as ix . The filter bank has N 
filters. Each filter ijk has a size of 1 2l l , and transforms the input feature map ix  into 
the output feature map iy . The module computes： 
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where f  is a nonlinear function such as tanh,   is the 2D discrete convolutional 
operator and jg is a trainable scalar coefficient. The output of the filter bank layer is a 
3D array y  composed of N feature maps of size 1 2m m . We have

1 2 1 2 3 21, 1m n l m n l      . The rectification layer simply applies the function: 
| |ijk ijky x . The third layer performs local subtractive and divisive normalizations, 

enforcing a sort of local competition between adjacent features in a feature map, and 
between features at the same spatial location in different maps. The objective of aver-
age pooling and subsampling layer is to build robustness to small distortions, which 
plays the same role as the complex cells. Output value is , ,ijk pq pq i j p k qy w x    , 
where pqw is uniform weight window (“boxcar filter”). Each output is then subsam-
pled spatially by size S horizontally and vertically. 

For multi-layer CNNs models, the higher layer feature extractor is fed with the re-
sults of its prior layer. The feature extraction procedure is the same as in the single-
layer model. 

2.2 Recursive neural networks 

Recursive neural networks have been used in natural language parsing [18]. The main 
idea of RNNs is to learn hierarchical feature representations by repeatedly applying 
the same neural network recursively in a tree structure. 

Unlike previous works, the structure of the RNNs we use allows each layer to 
merge blocks of adjacent vectors instead of only pairs of vectors. Each image is de-
noted as a 3D matrix X  K  r   r, and the columns are K-dimensional. We define a 
block to be a list of adjacent column vectors which are merged into a parent vector 
p K. In our work, we only consider square blocks. Blocks are of size K w w  . 

For example, if we merge vectors in a block with 5w  , the input of one merging 
procedure is a structure of total size 5 5K   . In general, we have w 2 vectors in each 
block. The neural network for computing the parent vector is: 
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where the parameter matrixW
2

K b K , f is a nonlinear function such as tanh. Eq. 
(2) will be applied to all blocks of vectors in X with the same weights W. The struc-
ture of recursive neural networks is illustrated in Fig. 2. In our work N RNNs are 
used, each of which output a k-dimensional vector. So the output of RNNs is a NK -
dimensional vector. 



2.3 Multipath convolutional-recursive neural networks 

In many visual recognition models, images were regarded as unordered collections of 
small patches, such as in the bag-of-features model. These traditional models do not 
consider the spatial positions of patches and relationships between patches, which are 
useful for visual recognition. The spatial pyramid pooling strategy overcomes this 
drawback by organizing patches into spatial cells at multiple levels and then concate-
nating them to a long feature vector [19]. The compelling advantages of spatial pyra-
mid model are: 

─ The pyramid model generates a larger number of features and decreases the chance 
of overfitting. 

─ Adds local invariance and stability of the learned features using spatial pooling. 
─ It can capture invariant structures at multiple levels, because of different pooling 

sizes in the pyramid. 

A single path convolutional-recursive neural network has the first two advantages. To 
combine the advantage of multiple patch sizes and the strength of hierarchical archi-
tectures, our multipath convolutional-recursive neural networks learn image features 
in multiple pathways, varying patch sizes and number of layers. Different paths with 
different receptive fields can capture different features. This combination of layers 
contains more information.  

  
Fig. 2. Recursive neural network 

The overview framework can be seen in Figure 1. Images of different size are put 
into CNNs to get low-level features. Each path corresponds to a specific patch size 
and number of layers. The final layer of each path is a feature vector for the whole 
image. All the features are then concatenated and used by a svm classifier for object 
recognition. The inputs of P1 and P3 are grayscale images, and the inputs of P2 and 
P4 are RGB images, so the features we finally get not only contain gray information, 
but also contain color information. 

3 Experimental results 

In this section, we report the result of M-CRNNs for object category recognition. All 
our experiments are carried out on Caltech-101. The dataset contains 9,144 images of 
101 object categories and one background category. Following the standard experi-



ment setting, we trained models on 30 images and tested on no more than 50 images 
per category. 

For the grayscale path, we first pre-process images with a procedure similar to 
[20]. First, we convert the image to grayscale and resize it with its largest dimension 
set to 151 pixels, while preserving its aspect ratio. Second, we subtract its mean de-
viation. Third, we apply divisive normalization. Finally, the image is zero-padded to 
143143 pixel. For the RGB path, the image was resized to 143143. 

3.1 Random filters and unsupervised learned filters 

While convolutional pooling architectures can be inherently frequency selective and 
translation invariant, even with random weights [17], the filters in our model can be 
set to random values and kept fixed. In our framework, the filters convoluted with the 
RGB images are learned by k-means, and the ones convoluted with the grayscale 
images are learned by PSD. We compared the performance of learned filters and ran-
dom-fixed filters in Table 1.  

We estimate the accuracies of random filters and filters learned by PSD on the 
model. PP1 denotes: one-layer CNNs with 256 filters of size 99, 1010 boxcar, 5
5 down-sampling (ds), and three-layer RNNs. PP2 denotes two-layer CNNs, the 
same configuration as P3 (as described in 3.2). Prefix R denotes the filters are ran-
domly initialized, and PSD means the filters are learned in an unsupervised way using 
of PSD. As we can see in Table 1, for one-layer CNNs, the performance of the leaned 
filters and the randomly initialed one are nearly the same, but in two-layer CNNs, the 
learned ones are much better. So, the filters in our work are leaned through unsuper-
vised training. 

Table 1. Random filters and filters learned 

R-PP1 52.6995 R-PP2 56.9440 

PSD-PP1 52.5976 PSD-PP2 65.7046 

3.2 Architecture of M-RCNNs 

We outline the four paths used in our experiment with multipath convolutional-
recursive neural networks in our experiments.  

Path one (P1) is done on gray images. First images are pre-processed, two stages of 
CNNs and two stages of RNNs are performed to extract the features. The first CNN 
stage has 64 filters of size 99, 1010 boxcar filter, and 55 ds. The second CNN 
stage is composed of 256 output feature maps, each of which combines a random 
subset of 16 feature maps from the first one. So the total number of convolutional 
filters is 25616=4096. The average pooling model uses 6x6 boxcars filter with a 4
4 downsampling step. The output of a 3D matrix of size 25644 is fed to a two- 
layer CNN with 128 RNNs. The final output of P1 is a 256128 vector. 



Path two (P2) is done on RGB images. First, 400000 random patches of size 99
 3 are extracted. Then the patches are normalized and whitened. Pre-processed 
patches are clustered into 256 centers by running k-means. The boxcar filter and ds of 
the one layer CNNs are both 55. The output feature of size 2562727 is fed to a 
three layers RNNs. The size of the filters is 993 pixels (see Fig. 3). 

Path three (P3) has two layers CNNs and three layers RNNs. The first stage of 
CNNs is with 64 filters of size 1717, 77 boxcar and 55 ds. The second stage of 
CNNs is with 25616=4096 filters of size 77, 33 boxcar and 22 ds. 

Path four (P4) has one stage CNNs and two stages of RNNs. The size of filters is 
19193. 

The filters in our architecture are shown in Figure 3. Left are the 64 filters of P1 in 
the first CNNs layers. In the middle, there are 64 filters in path P3 of the first CNNs 
layers. Right are the 256 filters in P2. 

   
Fig. 3. Visualization of filters 

The final features of an image are the concatenated features extracted from all the 
paths. The accuracy of different paths is shown in Table 2. Generally speaking, P1 
works well for object classification due to its hierarchical architecture. Compared 
with the accuracy 65.5 of [14], the architecture of P1 illustrates that CRNNs works 
slightly better than single CNNs. Different paths can capture visual invariant features 
at different scales. By concatenating the entire paths, the combined features have 
higher accuracy than each single path. 

Table 2. Accuracy of each path 

P1 66.9610 P4 56.9779 

P2 56.1290 P2+P3 71.4092 

P3 65.7046 P1+P2+P3+P4 72.1902 

3.3 Comparison to other methods 

In this section we compare our model to related models in literature in Table 3. SVM-
KNN [19] is a hybrid of SVM and NN which focus on shape and texture. Soft thresh-
old coding (SIFT+T) [21] and spatial pyramid matching [22] approaches based on 



SIFT features. Invariant predictive sparse decomposition (ISPD) [23], convolutional 
deep belief networks (CDBN) [9], convolutional neural networks (CNNs) [14], and 
deconvolutional networks (DN) [24] are approaches of hierarchical feature learning. 
Our method outperforms many SIFT-based approaches as well as hierarchical feature 
learning methods. 

Table 3. Classification accuracy on Caltech-101 

SIFT+T 67.7 CDBN 65.4 

SPM  64.4 CNNs 65.5 

SVM-KNN 66.2 DN 66.9 

IPSD 65.5 M-CRNNs 72.1 

4 Conclusion 

We have proposed multiple path convolutional-recursive neural networks to learn 
meaning full representations from raw images. The proposed method combines con-
volutional neural networks and recursive neural networks, and learns the filters in an 
unsupervised way, which allows for parallelization and high speeds. Learning features 
through several pathways with varying number of layers, makes the visual features 
capture invariances at different scales. The architecture feeds grayscale patches and 
RGB patches to the CNNs, so it contains gray information and color information. Our 
future work will aim at the combination of multiple paths and deep convolutional 
neural networks. 
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