
HAL Id: hal-01370380
https://inria.hal.science/hal-01370380

Submitted on 22 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Context-Aware Multifactor Authentication Based on
Dynamic Pin

Yair H. Diaz-Tellez, Eliane L. Bodanese, Theo Dimitrakos, Michael Turner

To cite this version:
Yair H. Diaz-Tellez, Eliane L. Bodanese, Theo Dimitrakos, Michael Turner. Context-Aware Multifac-
tor Authentication Based on Dynamic Pin. 29th IFIP International Information Security Conference
(SEC), Jun 2014, Marrakech, Morocco. pp.330-338, �10.1007/978-3-642-55415-5_27�. �hal-01370380�

https://inria.hal.science/hal-01370380
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

CONTEXT-AWARE MULTIFACTOR
AUTHENTICATION BASED ON DYNAMIC PIN

 Yair Diaz-Tellez1, Eliane L. Bodanese1, Theo Dimitrakos2, Michael Turner2

 1School of Electronic Engineering and Computer Science, Queen Mary University of London,
 London, United Kingdom

 {y.diaz-tellez, eliane.bodanese}@qmul.ac.uk
 2Security Futures Practice, BT Innovate and Design, British Telecommunications

Ipswich, United Kingdom
{theo.dimitrakos, michael.turner}@bt.com

Abstract. An innovative context-aware multi-factor authentication scheme
based on a dynamic PIN is presented. The scheme is based on graphical
passwords where a challenge is dynamically produced based on contextual
factors and client device constraints while balancing security assurance and
usability. The approach utilizes a new methodology where the cryptographic
transformation used to produce the Dynamic PIN changes dynamically based
on the user input, history of authentications, and available authentication factors
at the client device.

Keywords: authentication, dual ciphers, context-aware, dynamic PIN

1 Introduction

User authentication is a means of identifying a user and verifying his identity. Dif-
ferent authentication methods exist, e.g. token-based, biometric-based, and
knowledge-based. Each method has its own properties, (dis)advantages, and applica-
tions. Text passwords are a widely used method because of convenience and usability;
however, they are vulnerable to key logging, shoulder-surfing, dictionary, and social
engineering attacks. Graphical passwords are an alternative as they can mitigate the
abovementioned attacks. One approach to increase assurance is multi-factor authenti-
cation. However, not all transactions require the same assurance level. An adequate
level depends on criticality, sensitivity, context, and the risk involved. Additionally,
there are trade-offs among variables such as assurance, performance, and usability.

This work proposes an innovative context-aware multi-factor authentication
scheme based on a Dynamic PIN. The scheme produces a graphical challenge based
on context, client device constraints, and risk associated, while balancing assurance
and usability. Also, a methodology is proposed where the crypto-function used to
produce the Dynamic PIN changes dynamically. A PIN is generated without any pre-
dictable backward and forward correlation making practically infeasible for an attack-
er to predict the next PIN. The approach leverages on the fact that users commonly

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

mailto:eliane.bodanese%7d@qmul.ac.uk
mailto:michael.turner%7d@bt.com

use various types of client devices that incorporate authentication factors (e.g. SIM
cards, biometric readers, etc.), sensors, and APIs, which can be integrated in the au-
thentication process to modulate security assurance, and to optimize it using context.

Section 2 presents related work. The scheme consists of two functional phases:
registration and setup: the user creates an account and registers different infor-
mation (section 3); and challenge and dynamic PIN: a challenge and Dynamic PIN
are generated (section 4). Section 5 presents the conclusions and future work.

2 Related Work

The proposed scheme considers how the properties of graphical passwords[1] can
be adjusted at runtime balancing assurance vs. usability. In [2], a PIN-based mecha-
nism is presented that uses a secret sequence of objects to analyze security vs. usabil-
ity. This work does not consider the use of contextual information to influence the
generation of the challenge. Several frameworks have been proposed that make use of
context [3, 4]. [5] introduces the notion of implicit authentication that consists in au-
thenticating users based on behavioral patterns. [6] presents a framework that com-
bines passive factors (e.g. location) and active factors (e.g. tokens) in a probabilistic
model for selecting an authentication scheme that satisfies security requirements;
however, it does not consider client device constraints.

Security tokens, implementable on hardware[7] and software[8], typically generate
a one-time-password (OTP)[9] in response to the user typing a PIN. Several token-
based systems feature a fixed function that outputs the OTP [10-14]. The proposed
system is effectively a software-based security token that produces an OTP, i.e. the
Dynamic PIN; and additionally, the crypto-function used changes itself dynamically
improving the pseudo-randomness of the scheme.

3 Registration and Setup

Registering authentication factors. The scheme uses authentication factors that
may be available on the client device, e.g. SIM number, or fingerprint. For each fac-
tor, the server creates a record and associates a secret seed generated random-
ly, � 𝑎𝑎𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 , 𝑎𝑎𝑓𝑓𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 � with 𝑎𝑎𝑎𝑎𝑖𝑖 an authentication factor. For example,
(IMSI, 464989052765867, 4596). A vector of secret seeds is pushes into the device.
An authentication token is computed by 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� (𝑎𝑎𝑓𝑓𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 + 𝑎𝑎𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖)�). PBKDF2, a Key Derivation Function, is
used to derive a key strong against brute force attacks. A token vector is defined
as 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1,𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2, …𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 , where
𝑚𝑚 is the number of authentication factors registered for a device. The client must
recreate the same token calculated at the server side. Notice that the value 𝑎𝑎𝑓𝑓𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖 is
obtained at runtime.

Registering the image-based password(s). The user is presented with a selection of
image categories, ℂ = {𝐶𝐶1,𝐶𝐶2,𝐶𝐶3, . . . } . Each category consists of image objects

grouped by common characteristics easy to understand, e.g. icons. Let category C=
(𝑜𝑜1, 𝑜𝑜2, 𝑜𝑜3, . . 𝑜𝑜𝑛𝑛) ∈ ℂ be a set of 𝑛𝑛 objects. A seed is randomly generated for each
object 𝑜𝑜𝑖𝑖 . Let 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3, . . 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛) be the vector of seeds
with (𝑜𝑜𝑖𝑖 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖) ∈ (𝐶𝐶 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). Each 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 is of 2 bytes length and repre-
sented as 4 hexadecimal digits (0-F). The user selects a subset of objects as his secret
password: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⊂ 𝐶𝐶 . For |𝑛𝑛| ≫ |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠| a brute force attack
can become increasingly difficult as the number of combinations and permutations
increases.

Registering device parameters. This includes form factor parameters about the de-
vice(s): type of device, display size, authentication interfaces – e.g. biometrics. These
are used to specify at runtime an adequate customization of the image challenge.

4 Challenge and Dynamic PIN Generation

Overview. Steps: (i) the server generates a random pin string (RPS) and the graph-
ical challenge. The RPS is used as part of the dynamic pin generation algorithm. The
challenge is constructed by combining a subset of secret and non-secret images based
on device constraints, context, and level of assurance required. Due to lack of space, it
is assumed the communication channel between client and server is secured. A key
exchange protocol, e.g. Diffie Hellman, can be easily incorporated in the scheme. (2)
the user is asked to recognize the subset of secret images; (3) a crypto-function is
computed dynamically based on different variable elements of information including
user input, authentication factors, and history of authentication attempts; (4) the cryp-
to-function is then used to generate the dynamic pin; (5) the client device sends the
dynamic pin to the server for validation.

4.1 Generation of the RPS and the context-based image challenge.

In this section, first the random pin string (RPS) and the image challenge are intro-
duced. Then, a rules-based mechanism used to parameterize and generate the chal-
lenge based on runtime context information, device constraints, and risk is presented.

Random pin string (RPS). The RPS is a synchronization value used during the

computation of the dynamic pin. The RPS is a pseudo-randomly generated string of
160 bytes in length: 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅1𝑅𝑅𝑅𝑅𝑅𝑅2𝑅𝑅𝑅𝑅𝑅𝑅3 …𝑅𝑅𝑅𝑅𝑅𝑅159, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.

Image challenge. The image challenge is the set 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∪ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁),𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 |𝑞𝑞 + 𝑝𝑝| where: (i)
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⊂ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 |𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆| = 𝑞𝑞 , a sub-
set of images selected from the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⊂ 𝐶𝐶 that contains the image pass-
word objects selected by the user at registration; and (ii) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐶𝐶 ∖
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 |𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁| = 𝑝𝑝, , where the relative
complement of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in 𝐶𝐶 is the set of elements in 𝐶𝐶 , but not
in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 𝐶𝐶 ∖ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 = {𝑜𝑜 ∈ 𝐶𝐶 ┤|𝑜𝑜 ∉ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}.

Security strength of the challenge and usability. Fig. 1(a) shows an example of a
challenge represented as a grid of icons where 𝑞𝑞 = 5, 𝑝𝑝 = 20, and 𝑛𝑛 = 25 (the greyed
images represent the secret).

Fig. 1. (a) Example of an image challenge, (b) Combination vs. Permutation Functions

The security strength of the challenge depends on the values of p and q, and on the
mode in which the user is asked to recognize the secret images. In the combination
mode images are recognized in any order: 𝑛𝑛!/(𝑛𝑛 − 𝑞𝑞)! (𝑞𝑞)!. In permutation mode
images are recognized according to the sequence registered: 𝑛𝑛!/((𝑛𝑛 − 𝑞𝑞)!). In both
cases, 𝑛𝑛 = 𝑞𝑞 + 𝑝𝑝. Fig. 2(b) illustrates, in logarithmic scale, the speed at which the
number of possible combinations (and therefore the security strength) for a challenge
with 𝑞𝑞 = 5 increases for different values of p (1 < 𝑝𝑝 < 35) for the permutation and
combination modes. As illustrated, permutation mode provides higher security over
combination mode. However, such increase in security is inversely proportional to
usability since it is easier for the user to recognize the 5 secret images without having
to recall the exact sequence. Table 1 compares the modes for different p and q.

Table 1. Comparison combination vs. permutation for different 𝑝𝑝 and 𝑞𝑞

Rules-based challenge generation, usability vs security assurance. A challenge is

generated at runtime taking into account: client device constraints, contextual factors
and risk associated, the level of authentication assurance required, and usability.

Client device constraints. A client device constraint is defined as a tu-

ple (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑖𝑖𝑖𝑖, 𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝) where p (see Table 1) is an estimate of the size of the
challenge. For instance, a laptop has a larger screen than a smartphone and can dis-
play a challenge with a larger number of image objects 𝑛𝑛 = 𝑞𝑞 + 𝑝𝑝,

1. (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 5 inch, 20)

Contextual rules. This refers to contextual factors that carry a level of risk. A con-
textual rule is defined as a tuple �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟1 , … , 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑖𝑖𝑠𝑠𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is a value between 0 and 1. For example, consider an employee au-
thenticating to a corporate server and the following contextual rules:

2. (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴, 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0.5)

In the proposed system, the level of risk defines the strength of the challenge –
challenge rules; and the number of authentication factors required –authentication
factor rules.

Challenge rules. A challenge rule is defined as a tuple

(𝑞𝑞, 𝑝𝑝, 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙). where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is a value between 0
and 1 For example consider the following rules for 𝑝𝑝 = 20 (see Table 1):

3. (5, 20,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.3)
4. (6, 20,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.5)
5. (4, 20,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.5)

Notice that rules 4 and 5 are given the same 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 . This is because the
number of possible combinations and permutations for these two rules are of similar
order of magnitude, 230230 and 255024(see Table 1).

Authentication factor rules. An authentication factor rule is defined as a tuple

�𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙� and indicates the number of authentication
factors required given some risk level. For instance:

6. �𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿𝐿𝐿𝐿𝐿 = 0.2�
7. �𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2, 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0.5�

Example. Assume rules (1) and (2) are applicable. In such case, then rules (4) and
(5) would hold true, i.e. p=20 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≥ 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 . And between (4) and
(5), (4) would be the optimal choice since it mitigates the present level of risk and
provides the best option in terms of usability, i.e. unordered recognition mode. Rule
(4) enforces p=20 and q=6 to generate the challenge. Similarly, rule (7) would hold
true, i.e. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≥ 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , and enforces the use of at least two authentica-
tion factors, i.e. the challenge itself, and an additional factor, e.g. IMSI.

4.2 User response to the challenge.

The user responds to the challenge by selecting the secret images. The algorithm
then retrieves the secret images’ seeds and performs an XOR operation over them
whose result is a pin of 4 hexadecimal digits (ℎ𝑒𝑒𝑒𝑒𝑖𝑖) in length: 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1′ ⊕
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2′ ⊕ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠3′ ⊕ …⊕𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠| = ℎ𝑒𝑒𝑒𝑒1ℎ𝑒𝑒𝑒𝑒2ℎ𝑒𝑒𝑒𝑒3ℎ𝑒𝑒𝑒𝑒4 , where each element
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖′ corresponds to an element 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (i.e. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖′

𝑓𝑓
→ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖). The val-

ue 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 along with the value 𝑅𝑅𝑅𝑅𝑅𝑅 are taken as input parameters to the crypto-
graphic transformation that calculates the dynamic pin.

4.3 Computation of the cryptographic transformation function.

A Substitution Box (S-Box) is a component used in cryptosystems to perform sub-
stitutions in a way that relations between output and input bits are highly non-linear.
This protects against cryptanalysis. An S-Box designed to be resistant to linear and
differential cryptanalysis is the Rijndael S-Box[15]. The design was made balancing
security and computational efficiency. The security strength of crypto-algorithms
based on S-Boxes can be improved by changing the S-Box dynamically (e.g. Blow-
fish). This makes more difficult to carry out an attacks without knowing what S-Box
to associate to a given output. To increase the pseudo-randomness of the dynamic
PIN, it is proposed to use an S-Box that can be obtained dynamically, complies with
strong security design criteria and crypto-properties, and that can be generated using a
deterministic technique based on parameters known to both client and server. Barkan
et al. [16] show that by replacing the irreducible polynomial and the affine transfor-
mation in the Rijndael S-Box it is possible to produce dual ciphers with the same
cryptographic properties of the original S-Box. This result is used here to propose an
indexing technique that allows selecting different dual ciphers, i.e. S-Boxes. In the
next subsections the mathematical definitions that support the formulation of the in-
dexing technique are presented along with the proposed indexing function(s).

Rijndael S-box[15]. The Rijndael S-box is an algebraic operation that takes in an
element of the Galois Field 𝐺𝐺𝐺𝐺(28) and outputs another element of 𝐺𝐺𝐺𝐺(28) ,
where 𝐺𝐺𝐺𝐺(28) is viewed as the finite field 𝐺𝐺𝐺𝐺(2)[𝑋𝑋]

(𝑋𝑋8+𝑋𝑋4+𝑋𝑋3+𝑋𝑋+1)
 of polynomials over the

finite field 𝐺𝐺𝐺𝐺(2) reduced modulo by the polynomial 𝑋𝑋8+𝑋𝑋4 + 𝑋𝑋3 + 𝑋𝑋 + 1 . The
operation has 2 steps: (i) find the multiplicative inverse of the input over 𝐺𝐺𝐺𝐺(28) (0 is
sent to 0); and (ii) apply the affine transformation 𝐴𝐴𝐴𝐴 + 𝑏𝑏 where 𝑥𝑥 is the result of the
first step, (in Rijndael) 𝐴𝐴 is a specific 8 × 8 matrix with entries in 𝐺𝐺𝐺𝐺(2) and 𝑏𝑏 is a
specific vector with 8 entries in 𝐺𝐺𝐺𝐺(2), both specifically chosen to make it resistant to
linear and differential cryptanalysis. Elements in 𝐺𝐺𝐺𝐺(28) are represented as bytes and
transformations can be pre-computed and represented as a lookup matrix.

Dual Ciphers[16]. Two ciphers 𝐸𝐸 and 𝐸𝐸′ are called Dual Ciphers if they are iso-
morphic, that is to say there exists three invertible transformations 𝑓𝑓,𝑔𝑔, ℎ such
that 𝐸𝐸𝐾𝐾(𝑃𝑃) = 𝑓𝑓(𝐸𝐸′𝑔𝑔(𝐾𝐾)�ℎ(𝑃𝑃)�) ∀𝑃𝑃,𝐾𝐾, where P is the plain text and K is the key.
Different cipher can be created from an original cipher while keeping the original's
algebraic properties because of the isomorphism.

Square Dual Cipher of the Rijndael S-box[16]. If the constants of the Rijndael S-
box (denote the Rijndael S-box 𝐸𝐸) are replaced such that: (i) it is replaced 𝐴𝐴 with 𝐴𝐴2
where 𝐴𝐴2 is not simply the square of the matrix, it is equal to 𝑄𝑄𝑄𝑄𝑄𝑄−1 where Q is
an 8 × 8 matrix chosen such that 𝑄𝑄𝑄𝑄 = 𝑥𝑥2 for all 𝑥𝑥. As a side result this also means
that 𝑄𝑄𝑄𝑄𝑄𝑄−1𝑥𝑥 = (𝐴𝐴𝐴𝐴)2; and (ii) 𝑏𝑏 is replaced with 𝑏𝑏2 . Hence it can be shown that
these transformations result in a dual cipher (let it be denoted 𝐸𝐸2). It can be seen that
𝐴𝐴2𝑥𝑥 + 𝑏𝑏2 = 𝑄𝑄𝑄𝑄𝑄𝑄−1𝑥𝑥 + 𝑄𝑄𝑄𝑄 = 𝑄𝑄(𝐴𝐴(𝑄𝑄−1𝑥𝑥) + 𝑏𝑏) . Hence making these transfor-
mations (and creating the square dual cipher) is equivalent to applying a pre and post
matrix multiplication on the original Rijndael S-box. This same transformation can be
applied to 𝐸𝐸2 to obtain 𝐸𝐸4 and similarly for 𝐸𝐸8,𝐸𝐸16,𝐸𝐸32,𝐸𝐸64 and 𝐸𝐸128 (𝐸𝐸256 = 𝐸𝐸).

Modifying the polynomial of the Rijndael S-box[16]. Recall that the first opera-
tion of the Rijndael S-box is to find the multiplicative inverse of the input
over 𝐺𝐺𝐺𝐺(28). There are a total of 30 irreducible polynomials of degree 8, of which the
Rijndael selected 𝑋𝑋8+𝑋𝑋4 + 𝑋𝑋3 + 𝑋𝑋 + 1 . As different fields 𝐺𝐺𝐺𝐺(2)[𝑋𝑋]/𝑓𝑓(𝑋𝑋) for
different irreducible polynomials 𝑓𝑓(𝑋𝑋) of the same degree are isomorphic, there exist
a linear transformation which can be represented as a binary matrix 𝑅𝑅 such that 𝑅𝑅
takes an element of the Rijndael case and outputs an element of the new case with the
changed polynomial. The matrix 𝑅𝑅 is of the form 𝑅𝑅 = (1, 𝑎𝑎 , 𝑎𝑎2,𝑎𝑎3, 𝑎𝑎4, 𝑎𝑎5,
𝑎𝑎6, 𝑎𝑎7) where 𝑎𝑎𝑖𝑖′𝑠𝑠 are computed modulo the new irreducible polynomial. Hence 𝑅𝑅
can be used in the same way as 𝑄𝑄 was used in the previous: applying a pre and post
matrix multiplication on the original Rijndael S-box 𝑅𝑅(𝑆𝑆(𝑅𝑅−1𝑥𝑥)). As there are 30
irreducible polynomials, each of which has the 8 squared ciphers this totals 8 × 30 =
240 different dual ciphers. In the book of Rijndaels [17] the 240 dual ciphers of
Rijndael are presented including the matrices 𝑅𝑅𝑠𝑠 and the 𝑅𝑅−1𝑠𝑠. Here they are used in
the following way on the original Rijndael S-box to create a new S-box: 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛(𝑋𝑋) =
 𝑅𝑅 × 𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅−1 × 𝑋𝑋), with 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 the original Rijndael S-Box matrix.

Indexing the dual ciphers of the Rijndael S-box. In the proposed scheme, an in-
dexing technique is used for the 240 distinct dual ciphers of Rijndael (in [18] the
number of possible dual ciphers has been extended to 9120). An indexing function is
defined, i.e. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑒𝑒𝑤𝑤 , to determine what dual cipher, out of the 240, to use to gener-
ate a new S-Box, i.e. 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛(𝑋𝑋) . 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 takes as input authentication to-
kens 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 , the seeds associated to 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,
and the index value of the last successful authentication. The proposed indexing func-
tion has two variants dependent recognition mode: permutation or combination.

Let 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �(𝑅𝑅1,𝑅𝑅1−1), (𝑅𝑅2,𝑅𝑅2−1), … , (𝑅𝑅240,𝑅𝑅240−1)� be the vector
of Dual Ciphers’ matrices (𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−1) where 0 ≤ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 240. The two index-
ing function are defined as follows: (combination mode) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +
∑ 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑙𝑙
𝑖𝑖=1 + ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) 𝑚𝑚𝑚𝑚𝑚𝑚 240 ; and (per-

mutation mode) 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + ∑ 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑙𝑙
𝑖𝑖=1 + ∑ 𝑘𝑘 ×𝑞𝑞=|𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|

𝑘𝑘=1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 + ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) 𝑚𝑚𝑚𝑚𝑚𝑚 240, with 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡.

In permutation mode each 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 is multiplied by the index 𝑘𝑘 forcing the result to
depend on order. Both variants of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 output an integer between 0 and 239 that
is used to select (𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛

−1) ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, and to determine
the new S-Box transformation: 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛(𝑋𝑋) = 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 × 𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛

−1 × 𝑋𝑋).
𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛(𝑋𝑋) takes as input a byte and outputs another byte.

4.4 Generation of Dynamic PIN (𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫).

The dynamic pin, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, is generated by performing iterative substitutions
through the transformation function, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛(𝑋𝑋), using the values 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 and 𝑅𝑅𝑅𝑅𝑅𝑅.

Recall that 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = ℎ𝑒𝑒𝑒𝑒1ℎ𝑒𝑒𝑒𝑒2ℎ𝑒𝑒𝑒𝑒3ℎ𝑒𝑒𝑒𝑒4, where0 ≪ ℎ𝑒𝑒𝑒𝑒𝑖𝑖 ≪ 𝐹𝐹, is 2 bytes long,
that is, each hexadecimal digit ℎ𝑒𝑒𝑒𝑒𝑖𝑖 is a nibble (half byte), and that 𝑅𝑅𝑅𝑅𝑅𝑅 =
 𝑅𝑅𝑅𝑅𝑅𝑅1𝑅𝑅𝑅𝑅𝑅𝑅2𝑅𝑅𝑅𝑅𝑅𝑅3 …𝑅𝑅𝑅𝑅𝑅𝑅159 , is 160 bytes long. Each byte 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 is composed by a

more significant and a less significant part, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝐿𝐿 . The
dynamic pin is defined 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏4.

Each 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 digit is computed as the result of a chain of 7 substitutions between
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (2 bytes long) and 2 bytes of 𝑅𝑅𝑅𝑅𝑅𝑅 , and 7 iterations through the s-box
 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛(𝑋𝑋). Fig. 2 shows the sequence of substitutions to produce 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏1. In the diagram
each arrow indicates one iteration through 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛(𝑋𝑋). During each iteration, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛(𝑋𝑋)
takes as input one byte consisting of two nibbles: a hexadecimal digit of 𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
and a nibble of 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖; and outputs a new byte, hereafter 𝑆𝑆𝑖𝑖 . The following are the 7
iterations performed to generate 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏1:

Fig. 2. Chain of substitutions and S-Box iterations to generate 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏1 of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

The same process is repeated for the other digits, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏4, but using
a different starting byte of 𝑅𝑅𝑅𝑅𝑅𝑅 for each digit. To achieve this, the RPS is split into 4
quarters (each one 40 bytes long), and the previous digit (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖−1) of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
viewed as an integer, 0 to 255, and reduced modulo 40, is used to determine a starting
byte in 𝑅𝑅𝑅𝑅𝑅𝑅 . The starting byte in 𝑅𝑅𝑅𝑅𝑅𝑅 for 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 is calculated as follows: 𝑍𝑍 =
(40 ∗ 𝑗𝑗) + 𝑌𝑌, where 𝑌𝑌 = |(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖−1)10|40. Z is the starting byte in the RPS used to calcu-
late 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 (𝑗𝑗 = 1), 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏3(𝑗𝑗 = 2), 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏4(𝑗𝑗 = 3) . Thus the starting byte in the
RPS is randomized within each quarter block of the RPS. Once all the digits are com-
puted, the dynamic pin is sent to the server for validation. The server executes the
same algorithm and verifies the dynamic pin sent by the user.

5 Conclusions and Future Work

This paper presented a context-based multi-factor authentication system based on a
dynamic PIN. A novel crypto-function has been proposed that changes dynamically
based on the user input, history of authentications, and authentication factors at the
client device. The dynamic aspect of the crypto-function increases the pseudo-
randomness of the scheme and provides strong protection against cryptanalysis. The
scheme generates a challenge based on context, takes into account risk and tunes as-
surance vs. usability criteria. In addition to the standard client-server workflow sce-
nario, the proposed scheme has been implemented as a software security token that
displays the Dynamic PIN and the user types it on a web interface. The synchroniza-
tion between client and server via the web interface uses QR-Codes and the client
device’s camera. The prototype is being validated.

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛�ℎ𝑒𝑒𝑒𝑒1,𝑅𝑅𝑅𝑅𝑅𝑅0𝐻𝐻 � = 𝑆𝑆1

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛�𝑆𝑆1𝐻𝐻,𝑅𝑅𝑅𝑅𝑅𝑅0𝐿𝐿 � = 𝑆𝑆2

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛�𝑆𝑆2𝐿𝐿, ℎ𝑒𝑒𝑒𝑒2 � = 𝑆𝑆3

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛�𝑆𝑆3𝐻𝐻,ℎ𝑒𝑒𝑒𝑒3 � = 𝑆𝑆4

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛�𝑆𝑆4𝐿𝐿,𝑅𝑅𝑅𝑅𝑅𝑅1𝐻𝐻 � = 𝑆𝑆5

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛�𝑆𝑆5𝐻𝐻,𝑅𝑅𝑅𝑅𝑅𝑅1𝐿𝐿 � = 𝑆𝑆6

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛�𝑆𝑆6𝐿𝐿, ℎ𝑒𝑒𝑒𝑒4 � = 𝑆𝑆7 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏1

References

1. Xiaoyuan, S., Ying, Z., Owen, G.S.: Graphical passwords: a survey. In: Computer
Security Applications Conference, 21st Annual, pp. 10 pp.-472. (Year)
2. Catuogno, L., Galdi, C.: A Graphical PIN Authentication Mechanism with
Applications to Smart Cards and Low-Cost Devices. In: Onieva, J., Sauveron, D., Chaumette,
S., Gollmann, D., Markantonakis, K. (eds.) Information Security Theory and Practices. Smart
Devices, Convergence and Next Generation Networks, vol. 5019, pp. 16-35. Springer Berlin
Heidelberg (2008)
3. Bardram, J., Kjær, R., Pedersen, M.: Context-Aware User Authentication –
Supporting Proximity-Based Login in Pervasive Computing. In: Dey, A., Schmidt, A.,
McCarthy, J. (eds.) UbiComp 2003: Ubiquitous Computing, vol. 2864, pp. 107-123. Springer
Berlin Heidelberg (2003)
4. Corner, M.D., Noble, B.D.: Protecting applications with transient authentication.
Proceedings of the 1st international conference on Mobile systems, applications and services,
pp. 57-70. ACM, San Francisco, California (2003)
5. Jakobsson, M., Shi, E., Golle, P., Chow, R.: Implicit authentication for mobile
devices. Proceedings of the 4th USENIX conference on Hot topics in security, pp. 9-9.
USENIX Association, Montreal, Canada (2009)
6. Hayashi, E., Das, S., Amini, S., Hong, J., Oakley, I.: CASA: context-aware scalable
authentication. Proceedings of the Ninth Symposium on Usable Privacy and Security, pp. 1-10.
ACM, Newcastle, United Kingdom (2013)
7. http://www.safenet-inc.com/products/data-protection/two-factor-authentication/gold-
challenge-response/
8. Aloul, F., Zahidi, S., El-Hajj, W.: Two factor authentication using mobile phones. In:
Computer Systems and Applications, 2009. AICCSA 2009. IEEE/ACS International
Conference on, pp. 641-644. (Year)
9. Lamport, L.: Password authentication with insecure communication. Commun. ACM
24, 770-772 (1981)
10. Dodson, B., Sengupta, D., Boneh, D., Lam, M.: Secure, Consumer-Friendly Web
Authentication and Payments with a Phone. In: Gris, M., Yang, G. (eds.) Mobile Computing,
Applications, and Services, vol. 76, pp. 17-38. Springer Berlin Heidelberg (2012)
11. Gianluigi, M., Pirro, D., Sarrecchia, R.: A mobile based approach to strong
authentication on Web. In: Computing in the Global Information Technology, 2006. ICCGI '06.
International Multi-Conference on, pp. 67-67. (Year)
12. Wen-Bin, H., Jenq-Shiou, L.: Design of a time and location based One-Time
Password authentication scheme. In: Wireless Communications and Mobile Computing
Conference (IWCMC), 2011 7th International, pp. 201-206. (Year)
13. Soare, C.A.: Internet Banking Two-Factor Authentication using Smartphones (2012)
14. Eldefrawy, M.H., Khan, M.K., Alghathbar, K., Kim, T.-H., Elkamchouchi, H.:
Mobile one-time passwords: two-factor authentication using mobile phones. Security and
Communication Networks 5, 508-516 (2012)
15. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. submitted to the Advanced
Encryption Standard (AES) contest (1998)
16. Barkan, E., Biham, E.: In How Many Ways Can You Write Rijndael? In: Zheng, Y.
(ed.) Advances in Cryptology — ASIACRYPT 2002, vol. 2501, pp. 160-175. Springer Berlin
Heidelberg (2002)
17. Barkan, E., Biham, E.: The book of Rijndaels. Cryptology ePrint Archive, Report
2002/158 (2002), http://eprint.iacr.org/2002/158
18. Raddum, H.: More Dual Rijndaels. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.)
Advanced Encryption Standard – AES, vol. 3373, pp. 142-147. Springer Berlin Heidelberg
(2005)

http://www.safenet-inc.com/products/data-protection/two-factor-authentication/gold-challenge-response/
http://www.safenet-inc.com/products/data-protection/two-factor-authentication/gold-challenge-response/
http://eprint.iacr.org/2002/158

	1 Introduction
	2 Related Work
	3 Registration and Setup
	4 Challenge and Dynamic PIN Generation
	4.1 Generation of the RPS and the context-based image challenge.
	4.2 User response to the challenge.
	4.3 Computation of the cryptographic transformation function.
	4.4 Generation of Dynamic PIN (𝑫𝒚𝒏𝑷𝑰𝑵).

	5 Conclusions and Future Work
	References

