N

N

Advanced or Not? A Comparative Study of the Use of
Anti-debugging and Anti-VM Techniques in Generic and
Targeted Malware
Ping Chen, Christophe Huygens, Lieven Desmet, Wouter Joosen

» To cite this version:

Ping Chen, Christophe Huygens, Lieven Desmet, Wouter Joosen. Advanced or Not? A Comparative
Study of the Use of Anti-debugging and Anti-VM Techniques in Generic and Targeted Malware. 31st
IFIP International Information Security and Privacy Conference (SEC), May 2016, Ghent, Belgium.
pp.323-336, 10.1007/978-3-319-33630-5_22 . hal-01369566

HAL Id: hal-01369566
https://inria.hal.science/hal-01369566

Submitted on 21 Sep 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01369566
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Advanced or not? A comparative study of the
use of anti-debugging and anti-VM techniques in
generic and targeted malware

Ping Chen, Christophe Huygens, Lieven Desmet, and Wouter Joosen

iMinds-DistriNet, KU Leuven
3001 Leuven, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract Malware is becoming more and more advanced. As part of
the sophistication, malware typically deploys various anti-debugging and
anti-VM techniques to prevent detection. While defenders use debuggers
and virtualized environment to analyze malware, malware authors de-
veloped anti-debugging and anti-VM techniques to evade this defense
approach. In this paper, we investigate the use of anti-debugging and
anti-VM techniques in modern malware, and compare their presence in
16,246 generic and 1,037 targeted malware samples (APTs). As part of
this study we found several counter-intuitive trends. In particular, our
study concludes that targeted malware does not use more anti-debugging
and anti-VM techniques than generic malware, although targeted mal-
ware tend to have a lower antivirus detection rate. Moreover, this paper
even identifies a decrease over time of the number of anti-VM techniques
used in APTs and the Winwebsec malware family.

1 Introduction

In recent years, a new category of cyber threats, known as Advanced Persist-
ent Threat (APT), has drawn increasing attention from the industrial security
community. APTs have several distinguishing characteristics which make them
quite different from traditional threats [7]. For example, APTs target mostly
companies in critical sectors and governmental institutions [11]; the threat act-
ors in APT attacks are highly-organized and well-resourced group, and can even
be state-sponsored [17], and they use stealthy techniques, stay low and slow to
evade detection.

APT attacks are widely assumed to be more advanced than traditional at-
tacks, mainly because the threat actors are highly organized, working in a co-
ordinated way, and are well-resourced, having a full spectrum of attack tech-
niques. However, it is unclear whether the targeted malware (malware used in
APT attacks) are also more advanced than generic malware (malware used in
traditional attacks) or not. To better understand APT attacks, we investigate
the difference between targeted malware and generic malware, in order to an-
swer the research question: “Is targeted malware more advanced than generic

malware?” In particular, we focus on comparing the usage of anti-debugging
and anti-VM techniques in targeted and generic malware.

To defend against malware, defenders have turned to the collection and ana-
lysis of malware as mechanisms to understand malware and facilitate detection
of malware. In response to this, malware authors developed anti-debugging and
anti-VM techniques to avoid being analyzed, hence increasing the difficulty of
detection. In this paper, we use the presence of anti-debugging, the presence of
anti-VM techniques and the antivirus detection rate as metrics to measure the
malware’s ability to evade malware analysis and antivirus products. All three
measurements can be achieved via static analysis on the malware samples.

By analyzing 1,037 targeted malware samples, as well as 16,246 generic mal-
ware samples from 6 different families, we report the usage of anti-debugging and
anti-VM techniques in malware. We then compare the presence measurements
between targeted and generic malware, and correlate them with their antivirus
detection rate, and we examine their evolution over time.

As part of this study we found several counter-intuitive trends. In particular,
our study concludes that targeted malware does not use more anti-debugging and
anti-VM techniques than generic malware. Moreover, this paper even identifies
a decrease over time of the number of anti-VM techniques used in APTs and the
Winwebsec malware family.

The contributions in this paper are as follows:

— We report on the presence of anti-debugging and anti-VM techniques on
17,283 malware samples, and their associated antivirus detection rate (Sec-
tion 4)

— We analyse and discuss the presence of anti-debugging and anti-VM tech-
niques over time (Section 5.2)

— We analyse and discuss the correlation between the presence of anti-debugging
and anti-VM techniques and the antivirus detection rate (Section 5.3)

2 Overview

2.1 Research Questions

In this paper, we compare the targeted malware and generic malware by invest-
igating the following research questions:

Q1: Does targeted malware use more anti-debugging techniques?
Q2: Does targeted malware use more anti-VM techniques?
Q3: Does targeted malware have lower antivirus detection rate?

Since APT attacks are more advanced and sophisticated, one might expect
that the targeted malware (the weapons of APT attacks) may use more anti-
debugging and anti-VM techniques to evade defensive analysis, and have lower
antivirus detection rate. We describe the details about these three metrics in Sec-
tion 3, and present the analysis result on these questions in Section 4.

Additionally, we are interested about the evolution of the usage of anti-
debugging and anti-VM techniques, and how does the use of anti-debugging
and anti-VM techniques impact antivirus detection. More specifically, we test
the following hypotheses:

H1la: The use of anti-debugging techniques in malware is increasing over time

H1b: The use of anti-VM techniques in malware is increasing over time

H2a: The use of anti-debugging techniques has negative effect on antivirus
detection

H2b: The use of anti-VM techniques has negative effect on antivirus detection

While defenders put more and more effort to fight against malware, we as-
sume malware authors are using more and more anti-debugging and anti-VM
techniques to thwart the defense, in other words, the use of anti-debugging and
anti-VM techniques in malware might increase over years. And the use of these
evasive techniques might help malware to evade some antivirus products. To test
the hypotheses, we present correlation analysis in Section 5.

2.2 Dataset

The targeted malware samples used in our study are collected from various pub-
licly available reports on APT attacks [17,24,15,9,14,19]. These reports are pub-
lished by security companies such as FireEye and Kaspersky, to provide technical
analysis over various APT attacks, and they typically include the hashes of the
discovered targeted malware. With the malware hashes, we then use VirusTotal
Private API [2] to search and download these samples.

In this way, we collected 1,037 targeted malware samples ranging from 2009
to 2014. The date information of a malware is extracted from the timestamp
attribute in a PE file. For our comparative study, a dataset of more than 16,000
malware samples that belong to 6 generic malware families was collected from
VirusTotal. For each malware family and each year (from 2009 to 2014), we use
VirusTotal Private API to search for maximum 600 malware samples.

Compared to targeted malware, these malware families are more popular
and well understood in the industry. The number of samples belonging to each
malware family and the corresponding brief description are shown in Table 1.

3 Metrics

In this paper, we use the presence of anti-debugging, the presence of anti-VM
techniques and the antivirus detection rate as metrics to measure the malware’s
ability to evade malware analysis and antivirus products.

We only focus on these three metrics that can be detected through static
analysis. While there are other metrics that can be used to measure the sophist-
ication of malware, such as stealthy network communication, self-deleting exe-
cution, they require executing the malware in a targeted environment. Since it is
difficult to determine the targeted environment for executing malware, we leave
out the dynamic analysis.

Malware family |Discovered year|# of samples|Brief description

Sality 2003 2926 general and multi-purpose [5]
Zbot 2007 3131 banking trojan

Winwebsec 2009 2741 rogueware, fake antivirus [6]
Ramnit 2010 2950 information stealer [4]
Zeroaccess 2011 1787 botnet, bitcoin mining [22]
Reveton 2012 1711 ransomware [25]

Targeted (APT)‘ 2009 ‘ 1037 ‘targeted malware

Table 1: Overview of malware dataset

3.1 Anti-debugging techniques

In order to thwart debuggers, malware authors use anti-debugging techniques to
detect the presence of debuggers and compromise the debugging process. There
are many anti-debugging techniques, we focus on detecting the anti-debugging
techniques that are known in literature [10]. Since the complete list of anti-
debugging techniques is too verbose, we only show those are detected in our
malware dataset, as shown in Table 2.

The anti-debugging techniques that are found in our study can be categor-
ized into three types. The use of Windows APIs is the easiest way to detect a
debugger. Additionally, malware can check several flags within the PEB (Process
Environment Block) structure and the process’ default heap structure to detect
debuggers. The third way to use some instructions that trigger characteristic
behavior of debuggers (e.g., use RDTSC to measure execution time).

Type Name

IsDebuggerPresent, SetUnhandledExceptionFilter, FindWindow,
CheckRemoteDebuggerPresent, NtSetInformationThread,
NtQueryInformationProcess, GetProcessHeap, GetTickCount,
NtQuerySystemInformation, OutputDebugString, BlockInput,
QueryPerformanceCounter, VirtualProtect, SuspendThread,
WaitForDebugEvent, SwitchDesktop, CreateToolhelp32Snapshot
PEB fields (NtGlobalFlag, BeingDebugged)

Heap fields (ForceFlags, Flags)

Instructions |RDTSC, RDPMC, RDMSR, ICEBP, INT3, INT1

Windows APIs

Flags

Table 2: Popular anti-debugging techniques

To detect these anti-debugging techniques in a malware sample, we first look
for the Windows APIs in the import address table (IAT) of the PE file. Next, we
use IDA [1] to automatically disassemble the sample and generate an assembly
listing file, and then search for the specific instructions in the assembly listing
file to detect the use of flags and instructions. If any of these techniques are

found in the IAT or the assembly listing file, we consider the malware sample
use anti-debugging techniques.

3.2 Anti-VM techniques

There are mainly three types of VM detection techniques [20,21]: (1) Interaction
based. Sandboxes emulate physical systems, but without a human user. Malware
detects VM by checking common human interactions such as mouse movement
and mouse clicks. (2) Artifacts based. Virtual machines may have unique artifacts
such as service list, registry keys, etc. And some CPU instructions such as SIDT
have characteristic results when executed inside virtual machines. Malware can
leverage these differences to detect sandboxing environment. (3) Timing based.
Due to the large number of file samples to examine, sandboxes typically monitor
files for a few minutes. Malware authors can configure the malware to execute
only after some sleeps, or after a given date and time, in order to avoid being
analyzed. Table 3 shows the anti-VM techniques that are found in our malware
samples. Details about these techniques can be found in [20,21].

Type Name

GetCursorPos, Sleep, NtOpenDirectoryObject, NtEnumerateKey
GetSystemFirmwareTable, NtQueryVirtualMemory, NtQueryObject
Instructions SIDT, SLDT, SGDT, STR, IN, SMSW, CPUID

Strings ‘sbiedl1.d11l’, ‘dbghelp.dll’, ‘vmware’

Windows APIs

Table 3: Popular anti-VM techniques

To detect these anti-VM techniques in a malware sample, we follow the same
method for detecting anti-debugging techniques. Additionally, we extract strings
from a PE file, in order to search for the specific strings. If any of these techniques
are found, we consider the malware sample use anti-VM techniques.

3.3 Antivirus detection rate

Since the adoption of AV products, malware authors are consistently trying to
evade them. There are various techniques and tools [18] to build malware that
can bypass common AV products.

In this paper, we use antivirus detection rate as a metric to compare mal-
ware’s ability to bypass AV products. We get the detection results from 56 AV
engines provided in VirusTotal. Since AV engines frequently update their signa-
tures in order to detect malware samples that are not previously spotted by their
engines, the reports in VirusTotal might not reflect the current status of these
AV engines. To compare the AV detection rate of different malware families,
we rescanned all malware samples within two days in December 2014 by using
VirusTotal’s API [2] to get the most recent detection results.

4 General Findings

4.1 The usage of anti-debugging and anti-VM techniques

To answer questions Q1, Q2, we first calculate the percentage of samples that
use anti-debugging and anti-VM techniques for each malware family. As shown
in Table 4, the majority of samples use either anti-debugging or anti-VM tech-
niques. 68.6% targeted malware samples use anti-debugging techniques, which
is less than most generic malware families, and 84.2% targeted malware samples
use anti-VM techniques, which is more than all generic malware families. Thus
by simply comparing the percentage of samples in each family, we can see that
anti-debugging techniques are less popular in targeted malware, and anti-VM
techniques are more commonly found in targeted malware.

Family % Anti-debug.|% Anti-VM ||Family % Anti-debug.|% Anti-VM
Sality 89.6% 76.2% Ramnit 85.8% 71.6%

Zbot 72.9% 39.7% Zeroaccess|41.6% 50.4%
Winwebsec 80.0% 52.9% Reveton |74.8% 62.8%
Targeted (APT)|68.6% 84.2%

Table 4: Percentage of samples using anti-debugging/anti-VM techniques in each
malware family

We then calculate the average the number of detected anti-debugging/anti-
VM techniques in each family, and compare the average numbers of generic
malware family to targeted malware using Z-test. Z-test is a statistical function
that can be used to compare means of two samples. With a Z value bigger than
2.58 and p-value smaller than 1%, we can say that the means of two samples are
significantly different.

As shown in Table 5, the average number of detected anti-debugging tech-
niques in targeted malware is neither smallest nor biggest. Since all the Z values
are bigger than 2.58, with p-values smaller than 1%, we can accept all the hypo-
theses that the average number of detected anti-debugging in targeted malware
is significantly different to all generic malware families. In other words, targeted
malware do not necessarily use more anti-debugging techniques than generic
malware. Thus the answer to question Q1 is still negative.

As for the use of anti-VM techniques, it is the same case as the use of anti-
debugging techniques. Targeted malware do not necessarily use more anti-VM
techniques than generic malware. Hence the answer to question Q2 is also neg-
ative. The results can be better illustrated in box plots. As shown in Figure 1,
the average number of anti-debugging/anti-VM techniques in targeted malware
is less than some generic malware family.

Malware Family Anti-debugging Anti-VM

of techniques|Z value, p-value |# of techniques|Z value, p-value
Sality 3.59 11.4,4.17 x 10739[1.25 8.4,3.60° 17
Zbot 2.05 6.2,6.34 x 10~ 19 [0.48 15.9,5.837°7
Winwebsec 1.75 11.4,2.63 x 10739]0.71 8.8,1.06~ %
Ramnit 3.76 13.3,2.57 x 10~"°[1.30 10.2,1.57 2
Zeroaccess 0.96 20.3,2.27 x 107°{0.17 40.0,0
Reveton 1.78 7.5,4.80 x 10717 10.48 15.2,2.45 "2
Targeted (APT)[2.57 [Not Applicable [0.94 [Not Applicable

Table 5: Average number of anti-debugging/anti-VM techniques in each family

14 8

-
[~}
~

=

1)
o
¥

+
+
+ +
+ —_ + +

w
¥
.

@

00040l 9055020

+
I
+ ! +
+ 1
|
- \
!
i
sality zbot winwebsec ramnit zeroaccessreveton apt sality zbot winwebsec ramnit zeroaccessreveton apt

o

w
+
+
.

&

Number of anti-vm techniques
-
.
N
N

il
|
|
|

Jr B

~N

Number of anti-debugging techniques

=

Figure 1. Number of detected anti-debugging/anti-VM techniques in each sample in
each family

4.2 Antivirus detection rate

To answer question Q3, we calculate the average number of antivirus detections
from 56 AV scanners for each malware family, and then compare the average
numbers of generic malware family to targeted malware using Z-test. As shown
inTable 6, targeted malware has the smallest average number of antivirus detec-
tions. And the Z-test results shows that all the Z values are bigger than 2.58,
with p-value smaller than 1%. So we accept the hypothesis that targeted mal-
ware has significant lower antivirus detections than generic malware, and the
the answer to question Q3 is positive.

Family # detections|Z value, p-value Family # detections|Z value, p-value
Sality 45.7 20.2, 1.35 x 10~ |[Ramnit |49.8 37.8,0

Zbot 44.6 15.3, 8.49 x 10°7 [[Zeroaccess|47.9 36.0, 3.0477%*
Winwebsec|46.7 35.5, 4.39 x 10~ °"[[Reveton |44.5 16.5, 1.717°1
APT 39.5 Not Applicable

Table 6: Average number of antivirus detections for each malware family

To better illustrate the result, we made a box plot to show the number of AV
engines that detected each sample in each family (in Figure 2). We can clearly
observe that targeted malware have a lower antivirus detection rate, compared
to generic malware. Figure 2 shows that all box plots have long whiskers (with
the exception of the Reveton malware), which indicates some malware samples
(0.8%) are only detected by a few antivirus engines (less than 10).

60
- e B = e T
Y : !_l_\ " | -
N — | |
= ! |
c - T | |
v 40+ I ! ! ‘ 1
w I P — | |
E | —_ | T
A | | !
2 30L i % e !]
E‘ % + $!
© + |
[+ + }_ .
)
20 § s T]
= + +
g + I
% + +
= + +
10 | . 1
$ § . 41» ;JE +
+ i +
] T i t ‘ ¥
sality zbot winwebsec ramnit zeroaccess reveton apt

Figure 2. Number of AV engines that detected each sample in each family

As for the evolution of antivirus detection rate (in Figure 3), we can observe
that the detection rate tends to decrease over years. This is because malware
samples that have been discovered earlier are well populated in antivirus repos-
itories, and being analyzed more often than newly discovered malware samples.
Compared to generic malware, targeted malware samples have lower detections
for most of the time. We would expect older malware samples to have high detec-
tions, but there are still about 13 antivirus engines that cannot detect targeted
malware that already discovered in 2009 and 2010.

5 Correlation Analysis

In order to test hypothesis Hla, H1b, H2a, H2b, we use Spearman’s rank
correlation to investigate the evolution of the use of anti-debugging and anti-VM
techniques, and the correlation between the use of anti-debugging (or anti-VM)
techniques and antivirus detection rate.

5.1 Spearman correlation

Spearman’s rank correlation coefficient is a nonparametric measure of the mono-
tonicity of the relationship between two variables. It is defined as the Pearson

55

w
=]
T
4
/

=~
u

401

= sality + -+ zeroaccess
I = zbot reveton
¢ o winwebsec «—a apt \
¢ o ramnit

Number of antivirus engines

2009 2010 2011 2012 2013 2014

Figure 3. Evolution of antivirus detection rate

correlation coefficient between the ranked variables. However, unlike the Pear-
son correlation, the Spearman correlation does not assume that both variables
are normally distributed. It is a nonparametric statistic, which do not rely on
assumptions that the dataset is drawn from a given probability distribution.
The result of Spearman correlation varies between —1 and +1, and a positive
coeflicient implies that as one variable increases, the other variable also increases
and vice versa. When using Spearman correlation to test statistical dependence,
we set the significance level to 5%. The p-value is calculated using Student’s
t-distribution. We accept the hypothesis only if the p-value is smaller than the
significance level.

5.2 Evolution of the use of anti-debugging and anti-VM techniques

To test hypothesis Hla, H1lb, we use Spearman correlation to measure the
correlation between the number of anti-debugging/anti-VM techniques found in
malware and the time when the malware is created. The build date of a malware
sample is extracted from the timestamp attribute in the PE file. While the
timestamp attribute might be incorrect, since malware authors can set arbitrary
value for it, there is little incentive for them to do this.

Table 7 shows the Spearman correlation coefficient and p-value for each mal-
ware family. We can observe that there is positive correlation for most malware
families, which implies that malware authors tend to use more and more anti-
debugging techniques over years. The Winwebsec and Zbot family also have a
positive correlation coefficient, but the p-values are bigger than the significance
level, thus we reject the hypothesis for Winwebsec and Zbot family.

While for the use of anti-VM techniques, only four malware families have
a positive correlation coefficient, the others do not show a positive correlation
between the use of anti-VM techniques and build date. The Winwebsec and APT

family have negative correlation coefficients, and the p-values are smaller than
the significance level, which implies that the use of anti-VM techniques decreases
over years. We think this decrease may be attributed to the great increase in
the usage of virtualization. Some malware authors are starting to realize that
the presence of a virtual machine does not necessarily mean the malware is
being analyzed, since more and more organizations are adopting virtualization
technology.

.,__|anti-debugging vs. time| anti-VM vs. time

Malware Family coefficient |p-value coefficient |p-value
Sality 0.23 9.1 x 107 0.31 1.9 x 10759
Zbot 0.31 0.08 —0.01 0.39
Winwebsec 0.02 0.36 —0.43 6.7 x 10729
Ramnit 0.29 6.1 x 10-%% [0.26 1.7x 10728
Zeroaccess 0.56 4.3 x 107 {0.52 8.2 x 107177
Reveton 0.45 2.2 x 1075 0.54 2.1 x 107
Targeted (APT)[0.29 1.1x107% [-0.26 4.6 x 1071°

Table 7: Spearman correlation between the use of anti-debugging (or anti-VM)
techniques and build date

To better illustrate the evolution of the use of anti-debugging and anti-VM
techniques, we group malware samples by the year in which they are compiled
and then calculate the percentage of samples using anti-debugging (or anti-VM)
techniques in each group. As shown in Figure 4 and Figure 5, the percentage
of samples using anti-debugging techniques in APT malware tend to go up,
while the percentage of samples using anti-VM techniques decrease over years.
The evolution trends are consistent with the Spearman correlation coefficients
in Table 7.

5.3 Correlation between the use of anti-debugging (or anti-VM)
techniques and antivirus detection rate

To test hypothesis H2a, H2b, we use Spearman correlation to measure the cor-
relation between the number of anti-debugging (or anti-VM) techniques found in
malware and the number of positive detections. As shown in Table 8, most mal-
ware families (except the Winwebsec malware) show negative correlation between
the use of anti-debugging techniques and antivirus detection rate, which implies
that the use of anti-debugging techniques might help malware to evade antivirus
products. While for the use of anti-VM techniques, there are four malware fam-
ilies having a negative correlation coefficient. The Winwebsec and APT malware
show positive correlation between the use of anti-VM techniques and antivirus
detection rate, this might due to the decreasing use of anti-VM techniques in
both families, as shown in the previous section.

10

100%

Percentage of malware samples

30% = sality ~-+ zeroaccess ||
B = zbot reveton
20% | ,// ¢ winwebsec +— apt
< oo ramnit
10% ! . n n
2009 2010 2011 2012 2013 2014

Figure 4. Evolution of the use of anti-debugging techniques

100%

Percentage of malware samples

= sality +~-+ zeroaccess
~— zbot reveton
¢ winwebsec +— apt
¢ o ramnit
oo 2010 2011 2012 2013 2014

Figure 5. Evolution of the use of anti-VM techniques

Malware Family detection rate vs. anti-debugging|detection rate vs. anti-VM
coefficient |p-value coefficient |p-value

Sality —0.1 81x107° —0.07 [52x10°°

Zbot —0.17 [33x 107 —0.20 3.8 x 10 %0

Winwebsec 0.05 0.004 0.29 3.7 x 107°7

Ramnit —-0.13 1.6 x 10713 0.004 0.80

Zeroaccess —0.63 1.1 x 10718 —0.61 8.7 x 107183

Reveton —0.22 [7.2x107 7 —0.30 [3.5x 1077

Targeted (APT)|-0.26 1.2x 10710 0.13 1.6 x 10°°

Table 8: Spearman correlation between the use of anti-debugging (or anti-VM)
techniques and antivirus detection rate

11

5.4 Summary

We summarize the hypotheses testing results in Table 9. For the use of anti-
debugging techniques, hypothesis Hla and H2a are accepted for targeted mal-
ware and most generic malware (except the Winwebsec and Zbot family), which
indicates that both targeted and generic malware are increasing use anti-debugging
techniques and the use of anti-debugging techniques might help malware to evade
antivirus products.

For the use of anti-VM techniques, we observe two different trends. Some
malware families (Sality, Ramnit, Reveton) accept hypothesis Hlb and H2b,
while targeted malware and Winwebsec malware reject hypothesis H1lb and
H2b. There are two possible explanation for the decreasing usage of anti-VM
techniques in targeted malware and Winwebsec malware: (1) Some targeted ma-
chines are increasingly using virtualization technology, thus malware authors
discard anti-VM techniques in order to target these machines. (2) Malware au-
thors are using new anti-VM techniques which we cannot detect.

Family Hla |[H1lb ||{H2a |H2b ||Family Hla |[H1lb ||H2a |H2b
Sality A A A A Ramnit |A R A NA
Zbot NA NA A A Zeroaccess|A A A A
Winwebsec|NA R R R Reveton |A A A A
APT A R A R

A: Accepted, NA: Not Accepted due to a bigger p-value
R: Rejected, the opposite hypothesis is accepted

Table 9: Hypotheses testing results with Spearman correlation

6 Related work

APT attacks. Research on targeted attacks and APTs are mostly from indus-
trial security community. Security service providers (e.g., FireEye, Symantec)
periodically publish technical reports that various APT attacks [17,24,15,9,14,19].
Recently, this topic also become hot in academia. In [23], Thonnard et al. con-
ducted an in-depth analysis of 18,580 targeted email attacks, showing that a
targeted attack is typically a long-running campaign highly focusing on a lim-
ited number of organizations. In [16], Le Blond et al. presented an empirical
analysis of targeted attacks against a Non-Governmental Organization (NGO),
showing that social engineering is an important component of targeted attacks.

Giura and Wang [12] introduced an attack pyramid model to model tar-
geted attacks, and implemented a large-scale distributed computing framework
to detect APT attacks. Hutchins et al. [13] proposed a kill chain model to track
targeted attack campaigns and proposed an intelligence-driven strategy to adapt
defense based on the gathered intelligence.

12

Anti-debugging and anti-VM in malware Chen et. al. developed a de-
tailed taxonomy for anti-debugging and anti-VM techniques [8], and they also
proposed a novel defensive approach to mislead the attacker, by disguising the
production systems as monitoring systems. A recent survey of the use of anti-
debugging and anti-VM techniques in malware is presented by Branco et. al. [3],
in which they introduced various static detection methods for anti-debugging
and anti-VM techniques, and run an analysis over 4 million samples to show the
state of evasion techniques in use.

7 Conclusion

In this paper, we have analyzed the presence of anti-debugging and anti-VM
techniques in 17,283 malware samples, by using static analysis. As part of this
analysis, we have compared the presence measurements between targeted and
generic malware, we have correlated them with their antivirus detection rate,
and we have examined their evolution over time.

As expected, we have observed that both targeted malware and generic mal-
ware often use anti-debugging and anti-VM techniques. The analysis results also
confirmed the hypotheses that the number of anti-debugging techniques used
tend to increase over years, and that their presence has a negative correlation
with the antivirus detection rate.

At the same time, this study revealed two counter-intuitive trends: (1) The
study concluded that targeted malware does not use more anti-debugging and
anti-VM techniques than generic malware, whereas targeted malware tend to
have a lower antivirus detection rate; (2) This paper identified a decrease over
time of the number of anti-VM techniques used in APTs and the winwebsec
malware family. This conflicts with the original hypothesis that APTs try to
evade analysis and detection by using anti-VM techniques, and strongly contrasts
with other malware families where the opposite trend holds.

Acknowledgements We would like to thank VirusTotal for providing us a
private API, and the anonymous reviewers for their comments. This research is
partially funded by the Research Fund KU Leuven, iMinds, IWT, and by the
EU FP7 projects WebSand, NESSoS and STREWS. With the financial support
from the Prevention of and Fight against Crime Programme of the European
Union (B-CCENTRE).

References

1. IDA. https://www.hex-rays.com/products/ida/.

VirusTotal Private API. https://www.virustotal.com.

3. Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto.
Scientific but Not Academical Overview of Malware Anti-Debugging, Anti-
Disassembly and Anti-VM. Blackhat, 2012.

N

13

10.
11.
12.
13.
14.

15.
16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

Microsoft Malware Protection Center. Win32/Ramnit. http://www.microsoft.
com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Ramnit.
Microsoft Malware Protection Center. Win32/Sality. http://www.microsoft.
com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32/Sality.
Microsoft Malware Protection Center. Win32/Winwebsec. http:
//www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?
Name=Win32/Winwebsec.

Ping Chen, Lieven Desmet, and Christophe Huygens. A Study on Advanced Per-
sistent Threats. In Proceedings of the 15th IFIP TC6/TC11 Conference on Com-
munications and Multimedia Security, 2014.

Xu Chen et al. Towards an understanding of anti-virtualization and anti-debugging
behavior in modern malware. In IEEE International Conference on Dependable
Systems and Networks, pages 177-186, 2008.

Cylance. Operation Cleaver. 2014.

Peter Ferrie. The Ultimate Anti-Debugging Reference. 2011.

FireEye. FireEye Advanced Threat Report: 2013. 2014.

Paul Giura and Wei Wang. Using large scale distributed computing to unveil
advanced persistent threats. SCIENCE, 1(3), 2013.

E. M. Hutchins et al. Intelligence-Driven Computer Network Defense Informed by
Analysis of Adversary Campaigns and Intrusion Kill Chains. In Proceedings of the
6th International Conference on Information Warfare and Security, 2013.
Kaspersky. The Icefog APT: A Tale of Cloak and Three Daggers. 2013.
Kaspersky. Energetic Bear - Crouching Yeti. 2014.

Stevens Le Blond, Adina Uritesc, Cédric Gilbert, Zheng Leong Chua, Prateek
Saxena, and Engin Kirda. A look at targeted attacks through the lense of an
ngo. In Proceedings of the 23rd USENIX conference on Security Symposium, pages
543-558. USENIX Association, 2014.

Mandiant. APT1: Exposing One of China’s Cyber Espionage Unit. 2013.
Debasis Mohanty. Anti-Virus Evasion Techniques Virus Evasion Techniques
Virus Evasion Techniques and Countermeasures. http://repo.hackerzvoice.
net/depot_madchat/vxdevl/papers/vxers/AV_Evasion.pdf.

Arbor Networks. Illuminating the Etumbot APT Backdoor. 2014.

N. Rin. Virtual Machines Detection Enhanced. http://artemonsecurity.com/
vmde . pdf, 2013.

Abhishek Singh and Zheng Bu. Hot Knives Through Butter: Evading File-based
Sandboxes. 2014.

Symantec. Trojan.Zeroaccess. http://www.symantec.com/security_response/
writeup. jsp?docid=2011-071314-0410-99.

Olivier Thonnard et al. Industrial espionage and targeted attacks: Understanding
the characteristics of an escalating threat. In Proceedings of the 15th Symposium
on Research in Attacks, Intrusions, and Defenses, pages 64—-85. Springer, 2012.
Nart Villeneuve et al. Operation Ke3chang: Targeted Attacks Against Ministries
of Foreign Affairs. 2013.

Wikipedia. Ransomware -Reveton. http://en.wikipedia.org/wiki/Ransomware#
Reveton.

14

