N

N
N

HAL

open science

Cybersecurity Through Secure Software Development
Audun Jgsang, Marte Odegaard, Erlend Oftedal

» To cite this version:

Audun Jgsang, Marte Odegaard, Erlend Oftedal. Cybersecurity Through Secure Software Develop-
ment. 9th IFIP World Conference on Information Security Education (WISE), May 2015, Hamburg,

Germany. pp.53-63, 10.1007/978-3-319-18500-2_5 . hal-01334289

HAL Id: hal-01334289
https://hal.science/hal-01334289
Submitted on 20 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-01334289
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Cybersecurity through Secure Software Development

Audun Jgsang, Marte @degaard, and Erlend Oftedal

1 University of Osloj osang@fi . ui 0. no
2 BEKK Consulting,mar t e. odegaar d@ekk. no
3 nSenseer | end@f t edal . no

Abstract. Reports about serious vulnerabilities in critical IT components have
triggered increased focus on cybersecurity worldwide. Among they rimatia-
tives to strengthen cybersecurity itis common to see the establishmesttangth-
ening of CERTSs and other centers for cybersecurity. On the other, bardgth-
ening education in IT security and applying methods for secure systevetop-
ment are methods that receive much less attention. In this paper wénexpla

the lack of focus on security in IT education programs worldwide is a sogmifi
contributor to security vulnerabilities, and we propose an agile methoeéors
software design that requires team members to have received telsgaarity
education and training.

Keywords: Cybersecurity, Security education, Waterfall model, Agile model,
Secure agile, Secure software development

1 Introduction

Digitization of business processes and services entage bavings and increased ef-
ficiency. To be sustainable, this development must not asdmee time introduce se-
rious security vulnerabilities, but unfortunately it aftdoes. The exposure surface to
criminals and other malicious players increases by seweddrs of magnitude when
business processes migrate completely or partially tanerpiatforms. This global ex-
posure to security threats makes it natural to use the tebmarsgcurity in the sense
of protecting assets (information, systems and businesepses) that directly or indi-
rectly are connected to the Internet. Robust cybersecatigfl levels is necessary for
maintaining a balanced risk profile in a digital economy.

Achieving a secure ICT infrastructure obviously requitesttit is designed, built
and operated by people who understand the threats, knowc¢heity requirements and
have the skills to build and operate secure systems in genera

Security vulnerabilities in software are typically caudsdprogrammers or teams
with inadequate skills in secure software developmentoduahately, thousands of IT
designers and experts around the world are lacking secskilig precisely because
cybersecurity was not part of the study program they folkbwae the university. The
expanding ICT infrastructure worldwide is being built by ékperts with IT degrees
from universities and colleges, but unfortunately manyxpegts still have insufficient
security understanding and expertise. This is an unadoeptéduation.

As an analogy, it would of course be irresponsible and evéninkable to educate
building architects and civilly engineers without givifgetn adequate knowledge about
fire safety, otherwise the buildings in which we work and liveuld be full of firetraps.
Likewise it is irresponsible to offer IT programs at univies without compulsory
modules in information security. Unfortunately, still mdmany IT graduates leave
university and go into industry without any competence folimation security. Despite
their great skills in programming and IT design, withoutllskin security these IT
graduates will necessarily build vulnerable IT solutions.

This paper discusses how cybersecurity can be strengthapedthy investing in
more sophisticated attack detection and malware filterrogst but by ensuring that
the very foundation of the ICT infrastructure is designed huilt for strong security
and robustness. This can only be achieved by by ensuringétatre system design
becomes a natural element in all development projects, yeddnpuraging, stimulating
and maybe forcing technical colleges and universities tiegirate mandatory security
modules in the curriculum of their IT education programs.

2 Patterns of Cybersecurity

There are currently available on the market a large numbéoal$ and services for
strengthening cybersecurity. Vendors range from largehagtdy profiled companies to
small and relatively unknown companies. Some securityymrtsdare promoted to stop
APTs (Advanced Persistent Threats). Other products amaqued to detect and stop
singular zero-day attacks or to filter out malware. Introsietection and prevention
can be bought as a system or as a service. Security goverfraneeworks such as
COBIT#, ITIL®, ISO 27001 [6] and NIST SP-800-53 [8] can be adopted and egpli
by in-house security management staff or by external ctensisl to ensure that the
organisation is managed according to best practice withrdetp security. However,
none of these tools, services and frameworks — neither iatisn, nor in combination
— are sufficient to avoid serious cyber-vulnerabilitiesh# kind that e.g. Heartbleed,
Shellshock and BadUSB represent.

There seems to be no approach that can provide the level ofitseassurance
that governments and corporate managers aim for. In a rectcle it is argued that
the cybersecurity product market is different from otherkets where a few players
typically dominate the market [13]. However, for cybers@guhere is no single vendor
— not even a set of major vendors — who dominate the cybeigeouarket, and from
which general cybersecurity solutions can be bought. Tifviple analysis indicates that
cybersecurity does not lend itself to a packaged solutiGh [1

It is up to the CISO (Chief Information Security Officer) or endar executive
in organisations to set up and run the cybersecurity prograutiney see appropriate,
but since there is no commonly approved product, serviceagrpm that can provide
waterproof cybersecurity, this task is particularly ceatiing. Even when following
industry best practice there will be vulnerabilities thtthekers can exploit to mount

4 COBIT: Control Objectives for Information and Related Technology
5 ITIL: Information Technology Infrastructure Library

successful attacks. In this situation, when a serious #gdncident occurs, although
there often is little the CISO could have done to prevent tioident, the CISO is the
obvious target of blame anyway [12]. In a study by the Ponemmstitute focusing on
the role of the security manager within companies, many efGH50s who took part
in the study rated their position as the most difficult in thgamization. Most of CISOs
guestioned said their job was a bad one, or the worst job thdyelier had [5].

Vulnerability management is an important branch of segurianagement in or-
ganisations. Commonly known vulnerabilities are assigmddue identities under the
CVE (Common Vulnerabilities and Exposures) scheme stéoyddI TRE Corporation
in 1999, with funding from the National Cyber Security Diais of the US Department
of Homeland Security. CVE IDs are used in SCAP (Security €ohAutomation Pro-
tocol) which is a protocol used by vulnerability managenteots. A complete list of
CVE IDs can be found on MITRE's CVE system as well as in the USiddal Vul-
nerability Database. Prominent software vendors can be@@NA (CVE Numbering
Authority) for their products, and each CVE IDs is actualbgigned by a CNA. There
are three primary types of CNAs:

— The MITRE Corporation functions as Editor and Primary CNA.
— Various CNAs assign CVE IDs for own products (e.g. MicrosOiftacle, Red Hat).
— Red Hat also provides CVE numbers for open source projeatate not a CNA.

The original CVE-ID format had just four digits for numbegirulnerabilities per
year, such as CVE-2014-0160 which identifies the Heartbledaerability. Only al-
lowing 9,999 vulnerabilities per year was seen as a linuitgtso that from 2014 the
CVE-ID format can have five, six or more end digits to identfly arbitrarily large
number of vulnerabilities each year. Figure 1 shows the rarrobidentified vulnera-
bilities in the CVE scheme during the last 15 years.

of CVE IDs

9000
8000
7000
6000
5000
4000
3000
2000
1000

Fig. 1. Number of CVE IDs registered in the period 1999 - 2014

The trend seen on Figure 1 is that the number of vulneraslis increasing. There
is also a wide range of different vulnerability types, antbe$ have been made to
provide classifications, taxonomies and ontologies fonsgcvulnerabilities [11]. One
purpose of vulnerability classification is to identify weasses in the SDLC (Software
Development Lifecycle) in order to avoid vulnerabilitiesthe first place.

It is of course impossible to completely avoid generatingusiéy vulnerabilities
during system and software design. However, the state afreglourity can be signifi-
cantly improved by reducing both the number and the sevefigcurity vulnerabilities
generated. The question then is how best to work towardgtisis Several approaches
are already used to this end, such as automatic methodsathakoccode analysis and
fuzzing to discover and eliminate vulnerabilities befoedting code into production.
The most important approach is to follow principles for secsoftware development,
and to ensure that software designers have sufficient $gexpertise. We discuss the
latter approaches below.

3 Software Development Lifecycle

Several software development models or approaches hawepbeposed and applied
during the last 30 years. Each model has its charactetistitantages and disadvan-
tages, but common to them all is that they are typically nou&ing on security [4]
(p.1111). A selection of five prominent development modedstaiefly analysed and
compared in [9]. These are:

— Waterfall model

— lteration model

— V-shaped model

— Spiral model

— Agile model, aka. XP (Extreme Programming).

The waterfall model is the classical and most heavy-weigipt@ach to software
development, whereas the agile model is the most lightdwtedgd flexible approach.
We will briefly describe the waterfall and agile models, athepresent very different
approaches to secure programming. Figure 2 shows the athtaddel.

Implementation

Fig. 2. The waterfall model for software development

The basic idea behind the waterfall model is that the tasksaoh phase must be
fully completed before the next phase, which is symbolizedhe waterfall metaphor
where water only flows downwards. This also implies that th@plete set of require-
ments must be defined and fixed at the beginning of the prdojecase it is necessary to
revisit a previous stage, then a costly overhead is to becexpémetaphorically make
water flow upwards), so this should be avoided. However, tiypécally the case that
requirements have to be changed in the middle of a softwarelaf@ment project, so
that many software development projects based on the \aterddel have suffered
large blow-outs in cost and time.

As a reaction to the rigid structure of the waterfall modeksal other models have
been proposed, where the most recent and radical is themagdel (also known as XP:
eXtreme Programming) illustrated in Figure 3 below.

Project planning

Select user stories for Break down user stories
) Plan new release
L the next release into functional tasks

N

Develop, integrate &
Release new software ! R
test new functionality

Evaluate current system

Deploy system

Fig. 3. The agile model for software development

The basic idea behind the agile model is that new or evolvargiirements can
be specified in parallel with, or after already implementeduirements [1]. This is
possible by splitting the development into sepasitgieswhere each story covers a
set of requirements implemented as functions that can belajged and tested more or
less independently of other stories. Each cyclic iteratiothe agile model is gprint
which can be completed in only a few weeks. The major drawloétke agile model
is that it often does not scale well to large and complex dgrakent projects.

Specific security related tasks should be included in thewaphases of the SDLC,
whether the development follows the waterfall model, thieagnodel, or any other
model. Due to the radical difference between the waterfall@gile models, the devel-
opment team needs to adapt the specific approach to secwleptaent depending on
the model followed, as described in the next section.

6

4 Secure Software Development

4.1 Secure Software Development in the Waterfall Model

There are several recommended and ‘best practice’ modelssiare secure develop-
ment, including the NIST framework for Security Considamas in the System Devel-
opment Life Cycle [7], as well as Microsoft's Security Demement Lifecycle (SDL)
[2] illustrated in Figure 4 below. Both the NIST model and terosoft SDL model
are based on the waterfall model for SDLC.

Response

o Analyze e Dynamic ® Response © Response
security i security and / fuzz plan execution
and privacy risk testing e Final
privacy risk o Define quality Verify security

o Define analysis gates attack review
quality gates model / ® Release
threat archive

surface

Fig. 4. SDL: Microsoft Security Development Lifecycle [2]

The ¥ phase of Microsoft SDL is security training which emphasikew impor-
tant it is that programmers and other team members haveradgailequate security
skills for their job. Security training empowers develaptr have awareness for threats
and vulnerabilities and to create secure applications.

In Microsoft SDL, every phase of the waterfall model incladgecurity related
tasks, such as in the planning phase, requirements phasesigd phase. Risk analysis
is for example included in the design phase.

According to [4] (p.1102) most vulnerabilities emerge dgrcoding. Itis therefore
crucial that the programmer follows strict and secure meghaf secure programming.
By looking at the list of 25 most common software errors naimed by SANS, we see
that many of these are directly related to irresponsibléapps programming practice.

4.2 Security Software Development in the Agile Model

There are relatively few studies in the literature on seagite software development
models. In Wichers’ proposal [14] it is argued that secufenssre development in the
agile model needs a quite different approach to that of thenfiedl model.

In [14] it is recommended to identify all stakeholders anarify what their main
security concerns are. From this analysis a set of threatla@an be extracted which
in turn form the basis for stakeholder security stories.rnrtaring the development
phase, one has periodic security sprints in between théaredevelopment sprints. It
is also proposed to include a final security review befordayépg the final system.

6 http://www.sans.org/top25-software-errors/

Microsoft has presented a version of SDL for agile softwareetbpment [3]. The
Agile SDL model contains the same security steps as in therf@itSDL model, where
these steps are grouped in 3 categories:

— One-Time practices: Foundational security practicesnhat be established once
at the start of every new Agile project.

— Every-Sprint practices: Essential security practicesstpdrformed in every sprint.

— Bucket practices: Important security practices that mastdmpleted on a regular
basis but can be spread across multiple sprints during tijegbdifetime.

We find that Microsoft’s agiler SDL has merit. However, it Hasitations by not
separating between functional and non-functional sectejuirements.

We therefore propose an agile model for secure softwardamwent which is par-
tially inspired by the model described in [14] and by MicrfisoAgile SDL model, but
which is also an improvement over these because it does ace #ieir disadvantages
mentioned above. Our model is also inspired by previous wofkO].

Our approach to handling security in the agile model is basethe distinction
between what we call functional security controls and namefional security controls.

— Functional security controls reflect and implement usetiesdhat are directly re-
lated to security, such as when password management afidatgon is used as a
control to implement a user story for logon, or when ACLs (&ss Control Lists)
are used as a control for specifying and enforcing policegsuking various re-
sources within a domain.

— Non-functional security controls are applied in order tingtate or mitigate vul-
nerabilities in the implementation of other user storiagshsas when applying
secure programming techniques in order to avoid bufferftoverbugs, or when
applying input filtering when designing a front-end to an S@dtabase in order
to avoid SQL-injection. Software designer must understiiad any type of user
stories, both ordinary user stories as well as specific ggaetated user stories,
must be implemented in a secure way. The way to do that isgelgdhrough non-
functional security controls. The idea is that securitye#tis that are intrinsic to a
specific user story should be handled during the sprint f@istime user story.

A further example of non-functional security controls isemhimplementing a user
story about the logic for handling the check-out of a shogiasket on an e-commerce
website, where a threat could be that the customer is abliekdte system into chang-
ing the number of items after the price has been computetiasbé could receive many
items but only pay for one. This security concern must be leahduring the sprint that
implements the check-out of shopping baskets. Based oe ttessiderations we pro-
pose to introduce a new security phase into the sprint iterathis security phase fo-
cuses specifically on identifying threats against the cumiser stories. The new phase
should also specify how the threats can be controlled ogatigd, and should specify
tests for those mitigation controls. The implementationafi-functional security con-
trols is then handled in the ordinary phase that developsgiates and tests the new
functionality for the current sprint.

Finally, we propose to include a security review in the phafshe sprint iteration
cycle where the current version of the system is evaluateid.Modified phase, as well
as the two new phases that are specific to security, are tedigs yellow boxes in
Figure 5 which illustrates our proposed model for securieagiftware development.

Project planning

Collect stakeholder
securlty concerns

the next release

<

Evaluate current system
& review secunty

Break down user stories
.) Plan new release
into functional tasks

Develop, integrate &
Release new software f .
test new functionality

Identify threat
scenarios to control

Deploy system

[Select user storles for

HIIQQ

Fig. 5. Proposed model for secure agile software development

It may sometimes be unclear whether a security requirensefainctional or non-
functional, in which case there is a danger that securityirements are not handled
according to the model. The question is what happens whewtty handle functional
security as part of other user stories, or when trying to lanan-functional security as
a separate user story, which is the opposite of what the medeinmends. We analyse
these two irregular cases separately below.

— Handling an obvious non-functional security requiremenadunctional security
requirement would generate unnecessary overhead. Thég#ibe non-functional
security is an integral part of other user stories, so if fioretional security is
handled separately it would lead to re-iteration of thosr stories. Nevertheless,
the non-functional security requirements could be adedyiaaken care of. The
conclusion is that development efficiency would suffer, sexturity.

— In case as an obvious functional security requirementstibaadled as a separate
user story then the design team has no clear strategy fodihgrelich require-
ments. At the limit, such functional security requiremerasid be awkwardly in-
cluded as a sub-story of other user stories. Alternativiedyrequirements would
not be handled at all, which would be a serious design failure

If in doubt, it is always safe to consider a security requieatras a separate user
story. However, to optimize agility, clearly non-functadrsecurity requirements should
be integrated as part of other relevant user stories whepegsible.

5 Cybersecurity Training

Security design is challenging, and requires strong skiltget it right. It can therefore
not be expected that IT graduates without security traitiage the necessary skills
for developing secure systems. A typical approach to sgcddsign in the industry
is to let security specialists do a security review of systehat have been developed
by software designers without security skills. Howeveis #ipproach wastes time and
manpower. The right approach is to have system designenssedturity skills who are
able to identify vulnerabilities and threat scenarios wlyithe design and development.

It is interesting to notice that in the Microsoft SDL modet &ecure software de-
sign, the % phase focuses on security training. In other words, SDLmassthat the
design team has acquired security skills before the properldpment project starts.

In agile models for secure software design there is no stpptese for security
training, neither in the model presented [14] nor in our m@desented in Section 4.2.
For both models it is assumed that team members already haveduired knowledge
and skills to identify threat scenarios and to craft the esponding security controls
for mitigating those threats. In other words, without sé@gwskills among the develop-
ment team members, no agile model for secure software dewelot would be prac-
tical. Given that a large proportion of students followiriggrograms today still get
no or only limited exposure to cybersecurity it is obviouattpracticing agile mod-
els for secure development is problematic. For this reaseretare maturity models
for secure software development, where the most prominerBailding Security In
Maturity Model 2(BSIMM2) and OWASP'®Open Software Assurance Maturity Model
(OpenSAMM).

Governments or interest organisations in many countreea&are of this deficiency
and have therefore launched programs to strengthen seedtitation.

In the USA for example, NICE (National Initiative for Cyberaurity Education)
established in 2014 builds on the previous Comprehensivi@mNg Cybersecurity Ini-
tiative started in 2008 as an initiative to strengthen cgbeurity skills in the US federal
government sector. NICE has been extended to include theneocial sector, where
the goal is to strengthen cybersecurity skills from kinéergn through post-graduate
school. The goal of NICE is to establish an operational,anable and continually
improving cybersecurity education program for the natmnge sound cyber practices
that will enhance USA's security.

However, NICE is a US-based imitative and it is still too gad tell how it will
influence security education in university IT-programseTdiobal higher education
sector has not yet reached a common consensus that cylréyssicauld be an integral
part of IT education. In contrast to IT education, in the domaf architecture and
civilly engineering education it is obvious that studentsstracquire knowledge about
fire safety. Admittedly there is a difference between thesedomains. In architecture
and civilly engineering there are strict regulations relgay fire safety, whereas there
are no specific regulation for information security in IT tgr8s.

We think initiatives like NICE in the USA should be copied ither countries as
well, and could be supported by national computer societiektheir umbrella organi-
sation IFIP . National governments could also encouragéititeer education sector to
strengthen cybersecurity education as part of their IT atioic programs.

10

6 Conclusion

There is a consensus in the industry that security must lieptre software develop-
ment lifecycle. It is not a question of which development mlad used, but how well
the organisation is able to integrate security in the praces

A weak spot in all the models is that they all depend on the teembers having
adequate security skills. It can not be expected that evgignisation must provide se-
curity training to their own staff. Security training muletefore be part of IT education
programs in higher education. There is an urgent need togitren IT education pro-
grams worldwide with regard to cybersecurity. For this msgit would be interesting
to define a security education maturity model for the unitgrsector. If a university
offers an IT education program with insufficient securityen that university is part
of the problem of causing cybersecurity vulnerabilitigdsitime for all IT education
institutes to become part of the solution.

References

1. K. Beck et al. Manifesto for Agile Software Development. Online articte a

www.agilemanifesto.org, February 2001.

. Microsoft Corporation. SDL: Microsoft Security Development tifele. Version 4.1., 2009.
3. Microsoft Corporation. Security Development Lifecycle for Agilev@lpment. Ver. 1.0.,
30 June 2009.
http://www.microsoft.com/security/sdl/discover/sdlagile.aspx.
. Shon HarrisCISSP All-in-One Exam Guide, Sixth EditidcGraw-Hill, 2013.

5. Ponemon Institute. Understaffed and at Risk: Today’s IT Secugyattment. Technical
report, Ponemon Institute, January 2014.

6. ISO. ISO/IEC 27001:2013 - Information technology — Security Techniquegornhation
security management systems — Requirem¢é®@/IEC, 2013.

7. Richard Kissel et al. Security Considerations in the System DeveldptiferCycle — NIST
Special Publication 800-64, Rev. 2. Technical report, National Instdgfigtandards and
Technology, October 2008.

8. Joint Task Force Transformation Initiative; Computer Security Rimisinformation Tech-
nology Laboratory. Security and Privacy Controls for Federal rimftion Systems and
Organizations — NIST Special Publication 800-53 Rev.4. Technicalttddational Institute
of Standards and Technology, April 2013.

9. N.M.A. Munassar and A. A. Govardhan. A Comparison betwega Models of Software
Engineering.Int. Journal of Computer Science Issues (IJC3(p), September 2010.

10. Erlend Oftedal. Leveraging agile to gain better security: An agile dpg€etoperspective.
In OWASP AppSec Europoland, 2009.

N

i

11. Meunier PascalHandbook of Science and Technology for Homeland Security, Clagses o

vulnerabilities and attackswiley, 2007.

12. Nicole Perlroth. A Tough Corporate Job Asks One Question: CarHémk It? New York
Times Onling20 July 2014.

13. Stephen J. Ross. Whiz Bang 200BACA Journal6, 2014.

14. Dave Wichers. Breaking the Waterfall Mindset of the Security Itvglusn OWASP AppSec
USA New York, 2008.

