
HAL Id: hal-01318290
https://inria.hal.science/hal-01318290

Submitted on 19 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Cloud Resources-Events-Agents Model: Towards
TOSCA-Based Applications

Soheil Qanbari, Vahid Sebto, Schahram Dustdar

To cite this version:
Soheil Qanbari, Vahid Sebto, Schahram Dustdar. Cloud Resources-Events-Agents Model: Towards
TOSCA-Based Applications. 3rd Service-Oriented and Cloud Computing (ESOCC), Sep 2014, Manch-
ester, United Kingdom. pp.160-170, �10.1007/978-3-662-44879-3_12�. �hal-01318290�

https://inria.hal.science/hal-01318290
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Cloud Resources-Events-Agents Model:

Towards TOSCA-based Applications

Soheil Qanbari1, Vahid Sebto2 and Schahram Dustdar1

1 Technical University of Vienna
{qanbari,dustdar}@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at
2 Baha'i Institute for Higher Education (BIHE)

{vahid.sebto}@bihe.org

http://www.bihe.org

Abstract. The dilemma for domain experts and developers during de-
sign time of a cloud application is ensuring the sufficient programming
abstractions between them in mapping the business requirements to
cloud specifications. Thus, a modeling language is needed to capture
and express the business requirements. Resources-Events-Agents (REA)
is a well-known business requirement modeling language that decomposes
the information system into three constituents with the set of compliant
binary collaborations called, Duality. This study is a preliminary attempt
to employ REA for developing cloud applications. In this study, we de-
fine a conceptual mapping between REA model and OASIS Topology
and Orchestration Specification for cloud Applications (TOSCA) poli-
cies, plans and templates. Based on that, we proceed with the process
of building business-driven cloud applications. In support of our model,
we implement a cloud REA Modeling tool referred to as CREAM, where
business requirements are specified in REA, then corresponding cloud
application is composed and built. We describe the underlying mapping
strategy as well as the details of our tool in support of the proposed
approach.

Keywords: Cloud application, Resources-Events-Agents (REA), TOSCA,
Business requirements

1 Introduction

The cloud abstraction model delivers a shared pool of configurable computing
resources (processors, storage, applications, etc.) that can be dynamically and
automatically provisioned and released [1]. This elastic delivery of cloud re-
sources improves business agility by enabling the providers to respond faster to
the demanding needs of the markets. Firms benefit from this as an enabler in de-
veloping adaptive business models built upon cloud applications that meet both
business and customer needs. Thus, they can orchestrate processes, (de)allocate
resources, (de)provision services and seamlessly adapt to the constantly changing

http://dsg.tuwien.ac.at
http://www.bihe.org


2 Qanbari et al.

requirements of their clients. Cloud adaptive business modeling, poses challenges
of performing an ongoing assessments to ensure compliance and alignment be-
tween business requirements and system specifications.

In architecting cloud applications, the cloud market-leader, Amazon web ser-
vices (AWS), offers a CloudFormation3 service where we can create a stack to
seamlessly provision the collection of resources required by applications. We can
deploy CloudFormation’s templates4 or create our own templates to describe the
AWS resources with associated dependencies or runtime parameters, required to
run our applications. The cloud management platform, OpenStack provides a
service called Heat5 to orchestrate multiple composite cloud applications using
the AWS CloudFormation template format, through both an OpenStack-native
REST API and a CloudFormation-compatible Query API. The Heat engine’s
main responsibility is to orchestrate the launching of templates and provide
events back to the API consumer. On a similar service, the Ubuntu open-source
community, provides Ubuntu JuJu6, a service orchestration management tool
where we can define the technical requirements and specifications of our cloud
application and proceed with its deployment. Similarly, the openTOSCA7 pro-
vides a container where we can define and run our TOSCA-based cloud applica-
tion implementation artifacts composed into the cloud Service Archive (CSAR)
file which includes the service topology and its implementation plans.

Suffice to say that these initiatives are more focused on capturing technical
requirements rather than business models. Such solutions are appropriate for
cloud application developers and pose limitations for business developers who
know the domain knowledge best but with limited programming skills. There
are several well-established business modeling frameworks,including e3-value [3],
Resource-Event-Agent (REA) [4] and the Business Modeling Ontology (BMO)
[5]. These models allow shorter development cycles and faster time to products
and value. However, at the moment, to the best of our knowledge, there is no
engagement between the current business modeling frameworks and cloud com-
puting business models. In this paper, we provide this mapping and ultimately,
show how effective our tooling is. In summary, our contribution is twofold as
follows:

– Analyzing the contemporary business modeling frameworks on which firms
base their service identification, specification, and realization strategies.

– The mapping rules between the REA model and the TOSCA model. We
implement a tool in support of these compliance rules.

The paper continues with a background in the cloud REA model in section
2 in support of proper positioning of the CREAM tool. Section 3 introduces the
REA business modeling framework as an input model. In section 4 TOSCA spec-
ifications as an output model are detailed. Section 5 presents the actual contribu-
tion of the paper, the conceptual mapping rules together with their supporting

3 http://aws.amazon.com/cloudformation/
4 http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
5 https://wiki.openstack.org/wiki/Heat
6 https://juju.ubuntu.com
7 http://www.iaas.uni-stuttgart.de/OpenTOSCA/indexE.php



CREAM: Cloud Resources-Events-Agents Model 3

facts. Next, the CREAM tool architecture is presented in section 6 and a sample
use-case scenario is given to support the efficiency and utilization of our tool.
Subsequently, section 7 surveys some scientific related work. Finally, section 8
concludes the paper and presents an outlook on future research directions.

2 Related work

In relation to our approach, there are some prominent approaches for defining the
cloud value chain reference model[7], like an i∗8, a goal-oriented social modeling
framework for linking business models to their supporting services and process
models by Jaap et al[8] and Ramel et al[9]. In their approach, first, the business
requirements are modeled with the i∗ notation and then business services are
derived. In the second phase, the identified services are refined according to these
requirements using UML activity and class diagrams. On a similar approach,
Gailly et al[10] defined a set of business rules to transform the REA meta-model
into a UML class diagram with accompanying OCL constraints. Schuster et
al[11] leverages model driven development and provide a mapping from REA to
UMM. In support of this mapping, Sonnenberg et al[12], developed a domain
specific modeling language called REA-DSL. Another more conceptual approach
exploiting service science perspective on REA business modeling is introduced by
Roelens et al[13]. The authors specify six design criteria to evaluate the ability of
REA business model to create service interaction model. Poels et al[14] propose
the Resource-Service-System model adapted from REA as a conceptual model
for service science that emphasizes the service systems interaction through the
exchange of resource for more utilization. To the best of our knowledge, the
existing approaches do not address the cloud computing business models as we
aim to do by a mapping from REA modeling language to cloud TOSCA model.
Next, we explore each of them as an input and an output models of our mapping
process.

3 REA - the input model

The REA (Resources-Events-Agents) model focuses on the value of business ob-
jects exchanged among parties and abstracts away the implementation details of
the system to business developers. Figure 1, illustrates the core concepts of REA.
Now we delve into the core concepts, their meanings and interdependencies:

♦ Economic Resource is a thing that has utility for Agents. In fact, users
need to deploy, monitor, and utilize the resources. For instance, economic re-
sources can be products, tools, services and humans as well.

♦ Economic Agent is a stakeholder or organization capable of having con-
trol over economic resources, with an interest in it. Agents deal on resources
upon their established service level agreements. Examples of economic agents

8 http://www.cs.toronto.edu/km/istar



4 Qanbari et al.

Fig. 1. Excerpt of the REA meta-model and core concepts.

are consumers, vendors, employees, and third-party enterprises.

♦ Economic Event represents either an increment or a decrement in the
value of economic resources. Some economic events are demand, supply of re-
sources. Events can be classified into two poles of Take and Give. At least one
take event and one give event exist for each resource. When the event occurs,
the provider loses rights to the resource, and the consumer receives the rights.

♦ Economic Commitment is a promise or obligation of an economic Agent
to perform an economic Event in the future. For example, line items on a sales
order represent commitments to sell goods. Lack of resources leads to unmet de-
mands and, while reflecting the SLA violations, leads to financial consequences
and penalties.

♦ Economic Contract is a collection of increment and decrement com-
mitments and terms. Thus, the contract can specify what should happen if the
commitments are not fulfilled.

In REA, business processes are the orchestration of events that can be trig-
gered by agents affecting the resources. Resources are exchanged through these
processes. The notion of stockflow is used to specify in what way an economic
event affects a resource. REA identifies five stockflows: Produce, Use, Consume,
Give and Take. For instance, the Deployment process of the Vendor specifies an
outflow of Resources and inflow of Cash to the Vendor. The model of the Usage
process from the perspective of the client agent is a mirror image of the ven-
dor’s Deployment process. The Usage pattern of the client specifies the inflow

of Resource and outflow of Cash from the client.

4 TOSCA - the output model

The Topology Orchestration Specification for cloud Applications (TOSCA) lan-
guage introduces a grammar for describing service templates by means of Topol-
ogy Templates and Plans. The root of a TOSCA service is the Service Template.
The Service Template contains a directed graph that represents the structure of



CREAM: Cloud Resources-Events-Agents Model 5

the service called a Service Topology. Every service template has at least one
service topology. The topology graph is composed of nodes and edges. Edges in
a directed graph are links with a direction from node to node. The edges in a
Service Topology graph are binary relationships between nodes. The nodes rep-
resent the logical components of the service. These nodes and relationships are
templates that are patterns for the real nodes and relationships instantiated in
a deployed service. Plans orchestrate various aspects of a service life cycle. The
TOSCA specification defines Build plans and Termination plans. Build Plans
orchestrate the deployment and installation of a service. Termination Plans or-
chestrate decommissioning of a service. Designers of TOSCA-based applications
can add plan types as needed. The designers can benefit by work-flow notations
such as BPMN or BPEL. In our CREAM model, TOSCA embodies the cloud
composite application design and its elasticity specifications directly derived
from the business requirements model using REA.

5 Mapping REA to TOSCA

In this section we describe the mapping from a REA model to TOSCA artifacts.
Before we delve into the details of modeling and implementation, it is reasonable
to focus on the underlying approaches as we have taken on the mapping process
to provide a holistic view about the source model (REA) and target (TOSCA)
artifacts. Our approach is twofold: first, we proceed with the conceptual mapping
from a meta-level perspective. Second, we define the mapping rules of the two
models supported by their implementation scripts in the tool.

5.1 Conceptual Mapping

A mapping from the REA business modeling language to the TOSCA artifacts
is a first step in the progress of developing business-oriented cloud applications.
This section formulates such a mapping. To define a mapping, we first discover
the most suitable matches for REA concepts in TOSCA, then we formulate this
connection in rules which will be formalized further in the tooling. We start with
the eight concepts derived from the REA as core concepts. As listed in Table 1,
we identified the following eight rules.

Table 1. Mapping Rules from REA model to TOSCA artifacts

No Rules REA Concepts TOSCA Concepts

1 Resource Economic Resource Node Tempalate
2 Event Economic Event Interface Operation
3 Exchange Economic Exchange Relations / Plans
4 Entity Economic Agent Roles
5 Contract Contract / Commitment Policy Types
6 Duality Exchange Duality Relation Types
7 Links Stockflow, Inflow, Outflow Relations Types
8 Pack Typification, Grouping Service Templates



6 Qanbari et al.

5.2 Mapping Rules (M.R.)

♦M.R.1:Resource, indicate things that are affected or exchanged in processes.
For cloud applications, software services or infrastructure resources express the
same semantics. It can be specified by nodeTemplate and nodeType elements in
TOSCA. For instance, a nodeType of ApacheWebServer can be instantiated by
a nodeTemplate of MoodleAppServer.

♦ M.R.2: Event, is nested within an economic Exchange. These events are ini-
tiated by Agents affecting a Resource. In TOSCA, the nodeTypes has element
of Interfaces in which each interface includes some Operations. For instance, re-
leasing or allocating storage resource unit from/to a VM.

♦ M.R.3: Exchange, is a value or resource Exchange with pair of economic
Events linked by Duality relationship. It is mapped to TOSCA relationType and
plans which defines the process models that are used to manage the application
life-cycle. In TOSCA, a plan is a set of operations exposed in a sequence flow by
the service template. Both concepts contain the business transactions, resource
exchange, events, and agents that are necessary to fulfill the business goal. The
typical TOSCA plans are buildPlans, terminationPlans and can be extended to
modificationPlans.

♦ M.R.4: Entity, is basically an economic unit or an Agent representing an
actor and therefore mapped to Role in TOSCA plans. The mapping is logical
since both concepts share the same semantics. TOSCA roles are oriented on
three actors of cloud service Developer, Provider and Consumer. An economic
agent in REA and a role in TOSCA are both actors with an interest in a col-
laboration. TOSCA typeArtifact, artifactDeveloper and applicationArchitect are
the specialization of the service developer role. Cloud service provider hosts and
operates the application to be used by the service consumer.

♦ M.R.5: Contract, details an agreement reflected in an economic Event. The
resource delivery is governed by an associated Contract, composed of set of
Commitments. An economic contract comprises agreements, rights and terms
made among agents. Commitment fulfills the exchange-reciprocity application.
In TOSCA, the commitments can be declared by the use of Policy Types and
AppliesTo element. A policy type can express the resource intended behavior or
the Quality of Service (QoS) that a nodeType is about to expose. A TOSCA Pol-
icy can also express diverse things like monitoring behavior, payment conditions,
scalability, or availability, for instance. Policies can inherit and apply properties
by derivedFrom and appliesTo elements. Thus a relevant policy type can show
the specified behavior of a resource in a Contract.

♦ M.R.6: Duality, also nested within an economic Exchange and the Event

holding this association triggers the resource exchange. Duality can be used to
model many-to-many relationships between any two resources. This allows Give

& Take operations to increase or decrease the amount of resource allocation.



CREAM: Cloud Resources-Events-Agents Model 7

Duality implements the elasticity behavior of the cloud application. Thus, the
messaging among the resources should be paired via a duality relationship to
bind events together with the resource exchange. For instance, Request & Re-

sponse, Demand & Allocate, Service Acquisition & Service Provision and Pay -

per resource usage can be considered as cloud use-cases of Duality concepts.
In this sense, Duality is mapped to TOSCA relationType that identifies the
corresponding relation of a service provisioning event to a specific request and
payment subsequently.

♦ M.R.7: Link, denotes the semantics behind the links among service encom-
passed components. The Stockflow association denotes the flow of resource ex-
change triggered by an economic events like increment or decrement resource
allocation. The relationship between an increment event and a resource is called
inflow and the relationship between a decrement and a resource is called outflow.
For instance, in vendor’s sales process, the exchange will represent an outflow of
resource and an inflow of cash in return. In TOSCA, the relationship specifies
the semantics between nodes of sourceElement and targetElement in a topology
template. The REA relations can be mapped to the TOSCA relationTypes like
dependsOn, hostedOn and deployedOn concerning the context.

♦ M.R.8: Pack, is a course or principle of composition action, adopted by
Grouping and Typification abstractions in the REA application model. Typi-
fication implements a-kind-of element, grouping realizes a-member-of applica-
tions. This forms a composite application which will be deployed under certain
policies. Hybrid association of Types and Groupings defines the Policy Layer

on top of the Operation Layer in the model. In TOSCA, a policy type defines
the constraints of a property, i.e. data types, allowed values, obligations and
authorization requirements in a corresponding template.

6 Implementation: CREAM Tool Support

The aim of this toolkit is to provide a framework to facilitate the modeling and
deployment of cloud based applications. Our toolkit provides a web interface
which hides and abstracts away the cloud implementation details to business
developers. CREAM captures the system requirements and their relationships,
then builds the cloud application topology in TOSCA. The CREAM is a Java-
based web application which is developed in WSO2 Developer Studio9. We used
Maven to resolve its dependencies and deployed CREAM on WSO2 Application
Server. Cloud resources are stored in WSO2 Governance Registry in compliance
with TOSCA standard. All resources and artifacts are located in ”/cream” path
in the registry and categorized in two collections: (i) TOSCA Templates: this
collection contains cloud and REA resources. For instance, Instructor is mapped
to a TOSCA NodeType which is located in human resources category (HuaaS).
For each resource and collection in ”/cream/ToscaTemplates”, a title is set in

9 http://wso2.com/products/developer-studio



8 Qanbari et al.

registry that will be displayed in CREAM Tool canvas, otherwise the name of the
resource will be used. (ii) CSAR: the cloud topologies designed by business and
application developers will be stored in this collection. Each designed topology
is a TOSCA XML file named with a UUID and contains a ServiceTemplate. This
contains all required information about services and resources requested by the
user.

6.1 CREAM Architecture

Fig. 2. Cloud REA Model (CREAM) architecture.

Now, we detail the architecture. We developed the CREAM Toolkit based
on a Model-View-Controller (MVC) design pattern. MVC framework is designed
around a DispatcherServlet that dispatches requests to handlers. In CREAM,
Dispatcher servlet is responsible to handle requests and responses. It delegates re-
quests to controller (i.e., class CloudApplicationDesignerController). Controller
class is identified by @Controller annotation and has methods to handle incoming
requests. Each URL is mapped to a method annotated with @RequestMapping.
This method executes the user requests, generates a model object and returns it
to dispatcher. Dispatcher send models to view template which is responsible to
render response. Finally dispatcher returns rendered response to user. For the
sake of brevity, we only describe the packages and classes to clarify the CREAM
architecture as illustrated in Fig 2.

6.2 Package description

In this section, we describe the packages, their bundled classes, and implemented
interfaces to support the CREAM architecture.



CREAM: Cloud Resources-Events-Agents Model 9

♦ Package org.cream.commons:
This package includes exception classes, simple classes for Jakson ObjectMap-

per and other helper classes which are common in whole application. Its core
classes are ApplicationConfiguration, ServletContextHelper, ResourceObjectMap,
andDesignedApplicationObjectMapItem. TheApplicationConfiguration is respon-
sible to read configuration file and make its entries accessible by other compo-
nents of the application. The ApplicationConfiguration uses the ServletContex-

tHelper class to find the real path of the configuration file. Both classes are
designed using Singleton pattern.
♦ Package org.cream.tosca.model:

This package contains JAXB generated classes from TOSCA XML schema
(XSD). It also contains a sub-package org.cream.tosca.model.properties

which includes JAXB generated classes for our defined properties schema. There
are several sub-packages such as org.cream.tosca.model.properties.amazonec2
whereas each package contains JAXB generated classes from a specific proper-
ties XML schema file. We use Properties element in TOSCA NodeTemplate to
store specifications of each resource. We have defined these properties elements
for each resource with XML schema. For each XML schema, we have generated
corresponding classes using Java API JAXB. All packages in org.cream.tosca.

model.properties corresponds to one schema.
♦ Package org.cream.wso2.greg:

This package contains helper classes to connect to WSO2 Governance Reg-
istry and to retrieve resources and collections. Class GovernanceRegistryConnec-

tor is responsible to make connection to WSO2 Governance Registry. Method
getRemoteRegistry returns an instance of class RemoteRegistry since the reg-
istry data retrieval APIs are defined here. Class GovernanceRegistryReader is
responsible to read and write resources.
♦ Package org.cream.tosca.loader:

Classes of this package works with JAXB generated classes. They extract
TOSCA elements from TOSCA files and generate TOSCA Definitions and CSAR
files. Class JAXBMetaDataExtractor uses Java Reflection API to extract prop-
erties’ element names from JAXB property classes. Class ToscaFileReader mar-
shals TOSCA Definitions from the given InputStream. It also provides a few
helper classes for entire application to retrieve needed information about a
TOSCA XML file. Class ToscaBuilder is responsible to generate final TOSCA
definition object from user-defined topology. Finally this class converts the gen-
erated TOSCA Definitions to its XML string and stores it in WSO2 Governance
Registry.

7 Conclusion and Outlook

So far, we have used the REA model to specify the business requirements, con-
straints and rules for building cloud applications. In support of our approach,
we developed the CREAM tool in which, initially does the conceptual mapping
and build the TOSCA-based cloud application. As an outlook, our future work



10 Qanbari et al.

includes further extension to the CREAM tool that can also support the REA’s
structural and behavioral business patterns[15] at policy, operational and aspect
layers to provide a more holistic coverage of the various perspectives relevant to
application development process. Summarizing, we envision cloud REA Model
as a potential cloud value modeling framework for building business-driven cloud
applications.

References

1. MichaelP. Papazoglou. Cloud blueprints for integrating and managing cloud fed-
erations. 7365:102–119, 2012.

2. Osterwalder, alexander; pigneur, yves; and tucci, christopher l. (2005) ”clarifying
business models: Origins, present, and future of the concept,” communications of
the association for information systems: Vol. 16, article 1.

3. Jaap gordijn and hans akkermans. e3-value: Designing and evaluating ebusiness
models. ieee intelligent systems, 16(4):1117, 2001.

4. William e. mccarthy. the rea accounting model: A generalized framework for
accounting systems in a shared data environment. the accounting review,
57(3):554578, 1982.

5. Iso: Information technology - business operational view - part 4: Business transac-
tion scenarios. (2007) iso/iec 2007, iso 15944-4.

6. Oasis, un/cefact: ebxml - technical architecture specification. (february 2001) ver-
sion 1.4.

7. AshrafBany Mohammed, Jrn Altmann, and Junseok Hwang. Cloud computing
value chains: Understanding businesses and value creation in the cloud. In Eco-

nomic Models and Algorithms for Distributed Systems, Autonomic Systems, pages
187–208. Birkhuser Basel, 2010.

8. J. Gordijn, E. Yu, and B. van der Raadt. E-service design using i* and e3value
modeling. Software, IEEE, 23(3):26–33, 2006.

9. S. Ramel, E. Grandry, and E. Dubois. Towards a design method supporting the
alignment between business and software services. In Computer Software and Ap-

plications Conference, 2009. COMPSAC ’09. 33rd Annual IEEE International,
volume 1, pages 349–354, 2009.

10. Frederik Gailly and Guido Geerts. Formal definition of business rules using rea
business modeling language. In 7th International Workshop on Value Modeling

and Business Ontology, Proceedings, page 7, 2013.
11. Rainer Schuster, Thomas Motal, Christian Huemer, and Hannes Werthner. From

economic drivers to b2b process models: A mapping from rea to umm. In Busi-

ness Information Systems, volume 47 of Lecture Notes in Business Information

Processing, pages 119–131. Springer Berlin Heidelberg, 2010.
12. Christian Sonnenberg, Christian Huemer, Birgit Hofreiter, Dieter Mayrhofer, and

Alessio Braccini. The rea-dsl: A domain specific modeling language for business
models. In Advanced Information Systems Engineering, volume 6741 of Lecture

Notes in Computer Science, pages 252–266. Springer Berlin Heidelberg, 2011.
13. Ben Roelens, Elisah Lemey, and Geert Poels. A service science perspective on

business modeling. In 6th International Workshop on Value Modeling and Business

Ontology, Proceedings, page 8, 2012.
14. Geert Poels. The resource-service-system model for service science. In LECTURE

NOTES IN COMPUTER SCIENCE, volume 6413, pages 117–126. Springer, 2010.
15. Pavel Hruby. Model-Driven Design Using Business Patterns. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2006.


	CREAM: Cloud Resources-Events-Agents Model
	Introduction
	Related work
	REA - the input model
	TOSCA - the output model
	Mapping REA to TOSCA
	Conceptual Mapping
	Mapping Rules (M.R.)

	Implementation: CREAM Tool Support
	CREAM Architecture
	Package description

	Conclusion and Outlook


