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Abstract. Although many fully decentralized content distribution sys-
tems have been proposed, they often lack key capabilities that make them
difficult to deploy and use in practice. In this paper, we look at the par-
ticular problem of content consumption prediction, a crucial mechanism
in many such systems. We propose a novel, fully decentralized proto-
col that uses the tags attached by users to on-line content, and exploits
the properties of self-organizing kNN overlays to rapidly estimate the
potential of a particular content without explicit aggregation.
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1 Introduction

User-generated content (UGC) services have grown extremely fast over the last
few years [1,37]. In order to support this growth, current services typically ex-
ploit private data centers owned by large companies such as Google, Sony and
Amazon. These data centers are further augmented with Content Distribution
Networks (CDNs) and caching servers positioned at points-of-presence (PoP)
within the infrastructure of Internet Service Providers (ISPs) [16].

This approach tends to favor big players, and to concentrate the industry in
the hands of a few powerful actors. For several years now, both academia and
practitioners have therefore sought to explore alternative designs to implement
social online services in general, and UGC video services in particular. One
strategy espouses a fully decentralized organization [2,5,18,24,28], in which each
individual user (through her computer or set-top box) provides resources to
implement the system’s overall services, including storage [24,29,30], indexing [9],
queries [3,19], recommendation [4,5,6], caching [13], and streaming [8,14].

To ensure their scalability, most of these services primarily rely on limited
interactions (e.g. with a small set of neighboring nodes) and local information
(e.g. users profiles, bandwidth, latency, tags). The use of local information is
one of the key reasons why these services scale. Too strong a focus on locality,
however, constrains the range of decisions that can be taken by individual nodes,
and their ability to adapt to phenomena occurring at a global scale.



In an attempt to address this limitation, we focus, in this paper, on the
particular problem of global predictions in large-scale decentralized systems, with
an application to the placement of videos in a decentralized UGC video service.
Being able to predict where a new video is likely to be consumed is a crucial
ability for decentralized services that often lack the tightly integrated global
infrastructure of large players. It can help inform storage and caching decisions
in order to best exploit the resources these services can rely on [33,32].

More precisely, we consider the problem of a newly uploaded videos that must
be stored and replicated within a peer-to-peer system in the countries where it
is more likely to be viewed. We have shown in a previous work that the tags
attached to videos are a good predictor of a video’s view distribution [11]. Un-
fortunately, individual peers do not by default have access to the past videos and
tags consumed within individual countries, and this information can be costly
to aggregate explicitly. In this paper, we therefore propose Mignon, a novel de-
centralized content consumption estimation mechanism that is fast and scalable
and eschews the need for any global aggregation. Mignon exploits the properties
of self-organizing similarity overlays [5,21,36] and delivers estimations that are
on average within 0.6% (respectively 13%) of an exhaustive view aggregation on
a MovieLens (respectively YouTube) dataset.

2 Problem Statement and Related Work

We consider a global decentralized P2P UGC service, in which each user con-
tributes her resources to the system. As we focus on video placement and view
prediction, we assume our service can store and retrieve videos from users’ ma-
chines [31,34,29]. As is now common in many on-line services, we also assume
that the past activity of users can be used to predict their affinity with new
content (Fig. 1). More precisely, the individual devices of users (Alice and Bob,
label 1) store the list of videos they have consumed (their video profile, label 2).
Each video is associated with a set of descriptive tags provided by its uploading
user [17,15] (label 3). Here for instance, Alice has viewed a BBC video with the
tag ‘news’ ( ), and a video on environmental protection with the tags ‘news’,
and ‘animals’ ( ). The tags of the videos viewed by a user form her tag
profiles (label 4): [ :2, :1] for Alice and [ :1] for Bob.

We rely on a tag-based affinity function f that measures a user’s affinity with
new videos (5) [5,11]. The only assumptions we make about f is that its result
is correlated with the probability that this user will watch the video (6).

2.1 Placing new videos: the prediction problem

When uploading a new video, copies of this video should ideally be placed in
storage locations close to where it might be most consumed. This is because
the viewing patterns of many videos in UGC services present clear geographic
trends [7], which are strongly correlated with a video’s tags [11]. Table 1 shows
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Fig. 1: Using tags to predict users’ affinity with a new video

Table 1: Top 3 countries for bollywood (left) and favela (right)
country #views %age
India 200,956,055 39.8%
United-States 124,461,447 24.7%
United-Kingdom 29,506,586 5.8%

country #views %age
Brazil 19,834,633 47.9%
United-States 14,468,608 34.9%
United-Kingdom 1,701,496 4.1%

for instance how the tags “bollywood ” and “favela” follow clearly distinctive ge-
ographic distributions in a Youtube dataset analyzed in an earlier work [11].
Correctly predicting the geographic distribution of a video’s views is particularly
important in decentralized systems that often lack the caching infrastructure of
large integrated services. In Fig. 2 for instance, Dave must decide whether to
store his new video in the USA or in France. This decision should be driven by
the video’s likely future popularity in both countries, which can be estimated as
the sum of all user affinities in each country.

Obtaining this aggregated sum efficiently is unfortunately challenging in
a large P2P system. Dave could trigger a P2P aggregation in the USA and
France [27], but such an approach would require computing the similarity be-
tween the new video and every user in each country, a slow and costly operation.

In this paper, we therefore investigate how such a sum can be efficiently,
rapidly, and accurately estimated in a fully decentralized system while involving
only a small subset of the users in a given country.

2.2 Related work

A number of works have been proposed to perform aggregation operations in
decentralized peer-to-peer systems [20,27]. These works typically use an epi-
demic procedure in which nodes repeatedly interact with other random peers in
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Fig. 2: Placing new videos based on aggregated affinity

a pair-wise fashion. They often further rely on a peer-sampling protocol [22,35]
to maximize the diversity of interactions between peers. Following this strategy,
averaging can for instance be implemented in the following manner: all peers pi
start with an initial value v0i . A given peer pi then periodically selects another
random peer pj returned from the peer sampling service, and both peer update
they respective value to (vi+vj)

2 . This procedure guarantees that all nodes pro-
gressively converge to a value that is increasingly close to the average of all initial
values 1

N

∑N
i=1 vi. The number of rounds required to attain a given aggregate

accuracy primarily depends on the distribution of the original data [20].
This aggregation procedure can be used to estimate the size of a network,

with all nodes but one starting with a value of 0, and one node (the initiator) a
value of 1: all nodes will converge to a value of 1

N [27]. Combined with the above
averaging protocol, such a size estimation can provide an estimate of the sum
of the original peer values

∑N
i=1 vi. Unfortunately, this approach is ill-suited to

our case, as it would require the tags of every new video to be propagated to the
entire network before any estimation may take place, incurring both additional
latency and high network costs for every new load.

3 Fast Decentralized Sum Estimation

Instead of launching an expensive aggregation every time a new video is up-
loaded, we propose a cheaper mechanism to estimate the aggregated affinity of a
video. Our approach exploits a similarity-driven overlay [5] that interconnects all
the users in a country. In the following we first briefly describe similarity-driven
overlays, and then present the details of our approach.

3.1 Self-organizing overlays

Similarity-driven overlay networks organize peers according to their similar-
ity [21], with a wide range of applications [5,3,6,13,12]. In this work, we consider
gossip-based similarity driven overlays, whose working is depicted in Figures 3-5.
The machine of each user holds the user’s profile: in our case the list of viewed
videos and their attached tags (Fig. 3). Starting from random neighborhoods
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the overlay eventually connects each peer to its k most similar other peers in
the network, according to some similarity metric (e.g. Jaccard’s coefficient, or
Cosine Similarity).

This construction uses two greedy mechanisms (Figures 4 and 5). With the
first mechanism, a peer (e.g. Alice) regularly polls an underlying and constantly
evolving Random Peer Sampling (RPS) overlay [22] to obtain a set of random
peers from the rest of the system. In Fig. 4 for instance, Alice might discover
Dave through the RPS layer. If Dave turns out to be a better neighbor for
Alice than Bob (upper self-organizing layer), Alice will replace Bob by Dave in
her neighborhood. This stochastic process ensures that the system eventually
converges to an optimal state. The convergence might however be very slow.

To speed up convergence, peers use a second ‘neighbor-of-neighbor ’ mecha-
nism (Fig. 5). The intuition is that if Alice is similar to Bob, and Bob to Carl,
then Carl might be similar to Alice. Peers therefore periodically exchange their
current neighbors lists (Step 1 in Fig. 5), and use the new peers they discover
to optimize their neighborhoods (Step 2). This mechanism greatly accelerates
convergence (usually in log(N) rounds [21]), but might get stuck in a local min-
imum, and is therefore complementary to the stochastic mechanism of Fig. 4.

3.2 Mignon: Fast Decentralized Estimation

In this paper we propose Mignon, a protocol that employs the similarity-driven
overlay we have just described to estimate the aggregated affinity of a new video
with all the users in a country. To this end, all the users in a country participate
in a similarity-driven overlay whose similarity function is the affinity function



f of Fig. 1. When one of these users uploads a new video, v, she additionally
creates a new virtual peer Pv, whose profile contains the tags associated with v.

Our estimation problem simply consists in computing the sum of the simi-
larities between Pv and every other user in the country. To compute this sum
exhaustively, either at peer Pv or using a standard aggregation protocol, we
would either have to collect the profiles of all other nodes at Pv, or disseminate
the profile of Pv to every other node. In both cases, the delay and the resulting
network cost would be prohibitive for very large networks.

Instead, in Mignon, the uploading user simply impersonates the virtual peer
by having it join the similarity-based overlay. In a very short time (generally
logarithmic in the size of the network [21]), Pv obtains its k-nearest neighbors.
Once this happens, the uploading user exploits the content of the KNN and
RPS neighborhoods of Pv to estimate the video’s aggregated affinity without
any further network exchanges.

The key to the approach consists in considering the affinity values of users
found in the KNN and RPS views of Pv as samples taken from a monotonically
decreasing function. Fig. 6 shows this pictorially in two examples. The black
vertical lines represent the affinity values of the users found in the KNN and
RPS views of Pv. Mignon uses these values to interpolate the function’s shape,
from which we derive an aggregated affinity by integration. The values obtained
from the KNN neighbors constitute the first k consecutive samples, while those
in the RPS represent randomly chosen samples distributed along the rest of the
x-axis. To associate each of them with an x-coordinate (which the RPS does
not indicate), we rely on a network-size estimation protocol [25] that provides
us with the length of the x-axis, and assume that the RPS samples are equally
spaced along this axis.

It should be noted that the inherent cost of size-estimation does not offset the
benefits provided by our approach in terms of delay and network cost. First, the
size estimation protocol does not need to be run for every video upload. Rather,
in a setup consisting of set-top boxes that are almost always on, the protocol can
run every few days. Second, protocols like Sample & Collide [25] can estimate
the size of the network within a reasonable error margin at a minimal cost. We
evaluate the impact of protocols like Sample & Collide in Section 4.3. In the
following we describe the two interpolation techniques we use in Mignon.

Trapezoidal rule. The first technique we consider is the trapezoidal rule, a well-
known method for approximating the integral of a function. The rule replaces
the function to be integrated with a sequence of linear segments and computes
the integral as the sum of the areas of the corresponding trapezoids.

Polynomial Interpolation. As a second estimation mechanism, we consider a
polynomial interpolation. Specifically, we compute the polynomial of degree n−1
that goes through all of the n samples in the KNN and RPS. We then use this
polynomial to compute the values associated with the users that are not among
the samples.



4 Evaluation

We evaluate Mignon on two distinct datasets. The first consists of an adaptation
of the YouTube dataset we introduced in our previous work [10,18]. It contains
590, 897 videos, each associated with a set of tags —11.18 per video on average,
with a total of 705, 415 distinct tags— and with a popularity vector that provides
an estimated number of views per country. We extracted videos and tags directly
from YouTube, while we computed the number of views for videos and tags by
crossing YouTube data with information from Alexa Internet Inc.3 as described
in [10], with the following equation.

views(v)[c] ' p̂yt [c]× pop(v)[c]∑
γ∈World

(
p̂yt [γ]× pop(v)[γ]

) × tot_views(v)
(1)

Where views(v)[c] is the number of views of video v in country c, pyt [c]
is the proportion of Youtube views in country c at the time our data set was
collected, and pop(v)[c] is a popularity vector issued from our ground hypothesis
in [10], i.e. a number proportional to the share of video v’s views in country c.
To evaluate Mignon, we “reinterpreted” this dataset by considering each country
as if it was a single user. Our modified dataset therefore consists of 257 users in
a single country.

Our second dataset, MovieLens, consists of a trace from a movie recommen-
dation system4. It contains a set of movies, each associated with a vector of
ratings (1 to 5 integers) by a subset of the users, and a set of n pairs, each con-
sisting of a tag and a real-valued relevance score. The rating Ru(m) expresses
the interest of a user u in movie m, while the relevance rm(t) score expresses
the importance of a tag t for a given movie m. Based on this information, we
compute the interest score ut of a user u for a tag t as follows.

ut =
1

n

n∑
m=1

(rm(t) ∗Ru(m)) (2)

Since we want to evaluate Mignon’s ability to estimate the aggregation of a
score value, we consider a synthetic set of new “videos”, whose profile only com-
prises a single tag taken from the dataset. For each such video v, we first select
the set of users in its KNN and RPS views, and then compute its affinity with
these users. We use this sample of affinity values to produce an estimate (noted
âv) of the video’s aggregated affinity with all the users in the system (which we
note av). To assess the performance of different estimation techniques, we define
an estimation ratio: ERv = âv

av
. We evaluate ERv in a variety of configurations on

each of our datasets. Let n be the number of tags in a dataset (and hence of syn-
thetic videos), we present the distribution of ERv, its mean ER = 1

n

∑n
i=1 ERvi ,

as well as its standard deviation
√

ER2 − ER2.
3 http://www.alexa.com/siteinfo/youtube.com
4 www.movielens.org
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Fig. 6: Interest curve for MovieLens(a) and YouTube(b) datasets.
Black vertical lines represent KNN and RPS samples.

Figure 6 exemplifies the affinity score distribution of particular tags (inter-
preted as videos) in each of the two dataset. The curve depicts the affinity score
of each user for the tag in decreasing order, while the vertical bars represent the
data available in the KNN and RPS views.

4.1 Accuracy Comparison

We start our evaluation by comparing the results obtained by Mignon with those
obtained by three baseline approaches that exploit either the KNN or the RPS
views but not both. For Mignon, we consider the two estimation techniques
presented in Section 3.2 (the Trapezoidal and Polynomial interpolations). For
the baselines, we tested both these techniques as well as linear and quadratic
regression and selected the three that obtained the best performance. Specifically,
KNN-Trapezoid applies the trapezoid rule on a KNN view without using the
RPS, RPS-Trapezoid also applies the trapezoid rule but on an RPS view with
no KNN, while RPS-Mean simply computes the average similarity of the nodes
in the RPS view and multiplies it by the size of the network. We configured our
techniques to use a KNN view size of 15 and an RPS size of 10, while all the
baselines use a single view (RPS or KNN) of size 25.

Figure 7 shows the results on both of our datasets. Figure 7a depicts the the
error on the mean estimation ratio, that is |ER− 1|, and shows that combining
the KNN and the RPS views allows Mignon to adapt to multiple data sets.
Specifically, both the Trapezoidal rule and Polynomial interpolation obtain very
good estimates on both datasets with an error on the mean ratio respectively of
0.06 (6%) and 0.01 (1%) on MovieLens and of 0.143 (14.3%) and 0.114 (11.4%)
on YouTube. The baselines, on the other hand, can achieve good performance on
one of the datasets but not on both. KNN-Trapezoid achieves a very low error
of 0.09 (9%) on YouTube, but a very high error of 0.7 (70%) on MovieLens.
RPS-Mean achieves a very low error of 0.02 (2%) on MovieLens but a high error
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Fig. 7: Evaluation of the error and the standard deviation for both
datasets MovieLens and YouTube

of 0.30 (30%) on YouTube, while RPS-Trapezoid achieves errors of 0.13 (13%)
on MovieLens and of 0.21 (21%) on YouTube, worse than both of Mignon’s
approaches on both datasets.

Figure 7b completes the picture by showing the standard deviation of the
estimation ratio. Again, Mignon obtains low standard deviations on both data
sets, contrary to RPS-Trapezoid and RPS-Mean. KNN-Trapezoid also achieves
good standard deviations on both dataset, but with a very high mean error on
MovieLens (Figure 7a).

4.2 Sensitivity Analysis

Now that we have shown the effectiveness of Mignon’s estimation approach on
multiple datasets, we analyze how the KNN and RPS views impact its perfor-
mance. We present our results in the form of whisker plots in Figures 8 and 9.
Each box in the plot covers the values between the lower and the upper quartiles;
the point in the box represents the mean, while the line the median. The end-
points of the whiskers represent the lowest datum still within 1.5∗InterQuartile
Range (IQR) of the lower quartile, and the highest datum still within 1.5∗IQR
of the upper quartile, while the points outside the whiskers represent outliers.

Trapezoidal rule. Figure 8 shows how the effectiveness of the trapezoid rule varies
when we vary the sizes of the KNN and RPS views. For fairness we maintain
a total view size of 25 and vary the proportion of nodes in the two views from
|KNN|=2 |RPS|=23 to |KNN|=23 |RPS|=2. Figure 8a shows that larger KNN
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Fig. 8: Fast Decentralized Area Estimation using the trapezoid rule in
the Movielens dataset(a) and YouTube dataset(b).

views slightly tend to overestimate the total affinity, while large RPS views
slightly tend to underestimate it, with the best performance being achieved with
a KNN view of 15 and an RPS view of 10. Additional tests (results not shown
for space reason) showed that this results primarily from the size of the RPS
view. Varying the KNN size with a constant RPS size has almost no impact,
while varying the RPS size with a constant KNN size results in overestimation
with few RPS nodes and in underestimation with too many RPS nodes.

Figure 8b complements the above results with the performance of the Trape-
zoid rule on the YouTube dataset. Again, we obtain the best performance with
a KNN-to-RPS ratio of 3/2. With a KNN view of 15 and an RPS view of 10, the
mean estimation ratio settles at 1.14. Moreover, slightly smaller or slightly larger
KNN-to-RPS ratios impact this result only to a limited extent. In our tests, we
observed that this results from the fact that when one view remains constant,
performance consistently improves when increasing the size of the other.

Polynomial interpolation. Next, we evaluate the effectiveness of Mignon using
polynomial interpolation. To this end, we used the Gregory-Newton interpolation
algorithm as implemented in SciPy. Figure 9 shows the results. Both datasets
exhibit similar behaviors. For low RPS sizes, results resemble those obtained
with the trapezoid rule, with the best performance being achieved with an RPS
of 10 and a KNN of 15. However, results start diverging as soon as the RPS size
goes beyond 15. We experimentally verified that this also occurs when increasing
the RPS size with a constant KNN size, but not when increasing the KNN size
with a constant RPS size.

To understand the high variability associated with high RPS sizes, we ex-
amine two runs of the Gregory-Newton interpolation algorithm in Figure 10.
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Fig. 9: Fast Decentralized Area Estimation using Polynomial interpo-
lation in the Movielens dataset(a) and YouTube dataset(b).

Figure 10a shows a run with 10 RPS nodes, while Figure 10b shows one with 30.
In both figures, the diamonds represent the real abscissas of the samples on the
curve, while the crosses represent those taken into account by our protocol (see
Section 3.2). For KNN samples, the two coincide (points at the extreme left of
the curve), but for the RPS the difference can be very large. This, together with
the numerical instability of the Gregory-Newton’s method causes oscillations at
the right end of the curve. Some oscillations are visible even with an RPS of 10.
But with an RPS of 30, they completely disrupt the estimation.

4.3 Influence of Sample & Collide

We now assess the impact of errors on the network-size estimation. As previ-
ously stated, nodes do not need to recompute the size of the network for every
new upload as we assume the network to be relatively stable. Nonetheless, it is
possible to limit the cost of size estimation by means of protocols like Sample &
Collide [26]. Such a protocol yields an estimate with a 10% error at a very limited
network cost. We estimate the impact of this error in Table 2 where we shows
the absolute value of the error on the mean estimation ratio for both Mignon’s
approaches in the presence of a positive or negative error on the estimation size.
The data shows that the error on the network size has almost no impact on
YouTube, and a relatively low one on MovieLens.

4.4 Convergence speed

We conclude by evaluating the time required to compute the estimate using
Mignon. First, let us consider a baseline system that would simply compute the
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Fig. 10: Details of the Gregory-Newton interpolation with different
RPS sizes in the Movielens dataset.

Error 0% +10% -10%
MovieLens -0.8% +8.8% -11%
YouTube +12.4% +14.9% +8.7%

(a)

Error 0% +10% -10%
MovieLens -0.6% +8.9% -11.1%
YouTube +14.3% +10.4% +17%

(b)

Table 2: Mean error percentage for various size-estimation errors, for
Polynomial interpolation(a) and Trapezoidal rule(b).

sum of the affinities of the uploaded video with all the other nodes in the country.
Such a system would either require the uploading node to contact each other node
in the country to compute its affinity, or it would have to disseminate the video’s
profile so that other nodes could evaluate the video’s affinity with them. Both of
these approaches would clearly be difficult to scale to large numbers of nodes and
their convergence time would be comparable, if not worse, than that required by
a KNN protocol to converge from a completely random configuration.

Mignon, on the other hand, takes advantage of the presence of an already
converged KNN protocol. This overlay allows the uploading node to quickly
reach its closest neighbors. To evaluate this difference, we counted the number of
gossip cycles required by a KNN protocol to reach convergence from scratch with
6000 nodes. In each cycle, a node contacts one other node, and is, on average,
contacted by another one. We then added one random node, and counted the
cycles it took to reach convergence again. Convergence from scratch took between
150 and 190 gossip cycles, while convergence after adding a node to an already
converged network took an order of magnitude less (10− 20).



5 Conclusion

In this paper, we have proposed Mignon, a new protocol to rapidly estimate the
aggregate affinity of a newly uploaded video in a community of users in a fully
decentralized manner. Our proposal avoids an explicit and costly aggregation by
relying on the properties of similarity-based self-organizing overlay networks, and
can be used to decide where to place videos in a decentralized UGC system. By
eschewing the need for a central support infrastructure, our approach hints at the
possibility of fast reactive aggregate analytics in decentralized systems. This may
be useful both to promote alternatives to the cloud-centered model of current
UGC video services, but also to improve hybrid P2P/cloud architectures [23,38]
by offloading complex adaptive tasks to the P2P part of a hybrid system.
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