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Abstract. It follows from the well known min/max representation given
by Scholtes in his recent Springer book, that all piecewise linear contin-
uous functions y = F (x) : Rn → Rm can be written in a so-called
abs-normal form. This means in particular, that all nonsmoothness is
encapsulated in s absolute value functions that are applied to interme-
diate switching variables zi for i = 1, . . . , s. The relation between the
vectors x, z, and y is described by four matrices Y,L, J , and Z, such that[

z
y

]
=

[
c
b

]
+

[
Z L
J Y

] [
x
|z|

]
This form can be generated by ADOL-C or other automatic differenta-
tion tools. Here L is a strictly lower triangular matrix, and therefore zi
can be computed successively from previous results. We show that in the
square case n = m the system of equations F (x) = 0 can be rewritten
in terms of the variable vector z as a linear complementarity problem
(LCP). The transformation itself and the properties of the LCP depend
on the Schur complement S = L− ZJ−1Y .

Keywords: piecewise linearization (PL), algorithmic differentiation (AD),
equation solving, semi-smooth Newton, smooth dominance, complemen-
tary piecewise linear system (CLP), linear complementarity (LCP)

1 Introduction

Via algorithmic differentiation it is possible to calculate directional derivatives
from evaluation procedures of vector valued functions simultaneously with their
evaluation at a base point x0. These evaluations are exact within the limitations
of machine precision. An evaluation procedure is a composition of so called el-
ementary functions, which are aggregated as a library in their symbolic form
and thus make up the atomic constituents of complex functions. Basically the
selection of elementary functions for the library is arbitrary, as long as they
comply with assumption (ED) (elementary differentiability, in [3]), meaning that
they are at least once Lipschitz-continuously differentiable. In the literature (see
e.g. [3,8]) the following collection is suggested as the quasi-standard for a library:

Φ = {+,−, ∗, /, sin, cos, tan, cot, exp, log, . . . }
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Common software packages such as ADOL-C provide tools for the algorithmic
differentiation of functions composed from the contents of this collection.

But many practical problems and most algorithms are not smooth every-
where and thus cannot be modelled via a library that consists solely of a set
of functions that comply with (ED). More specifically one is likely to encounter
standard functions of computer arithmetic, that are not globally differentiable,
e.g. abs,max and min. Since

max(x, y, z) ≡ max(max(x, y), z), max(x, y) ≡ 0.5 ∗ (x+ y + abs(x− y))

max and min can be expressed in terms of the absolute value function. As shown,
this reformulation of max and min provides us with a very practical handle
on the representation of piecewise linearity, since Scholtes proved in [12], that
any scalar-valued, real piecewise linear function f : Rn → R can be expressed
as a finite nesting of max and min comparisons of linear functions. Here and
throughout we use linear in the sense of affine, i.e. allow a constant increment.

Generally any one dimensional piecewise linear function f : R → R can be
expressed in terms of absolute values. For a given set of points {(xi, yi) : i =
0, . . . , n}, where x0 < x1 < · · · < xn, two outer slopes s0, sn+1 and n inner slopes
si = (yi − yi−1)/(xi − xi−1), we obtain the formula

y =
1

2

[
y0 + s0(x− x0) +

n∑
i=0

(si+1 − si) abs(x− xi) + yn + sn+1(x− xn)

]

where the two linear functions at the beginning and the end can be combined
to [y0 − s0 x0 + yn − sn+1 xn + (s0 + sn+1)x]/2. This might be helpful for the
purpose of implementation. For example with a < b ∈ R we obtain the cut-off
function

f(x) = max(a,min(x, b)) = 0.5 ∗ [a+ abs(x− a)− abs(x− b) + b]

Similar to linear models of smooth functions, piecewise linearizations can be
used to approximate piecewise smooth functions [12]. The aim is to extend the
principles and techniques of classic algorithmic differentiation in such a way, that
these piecewise linear models can be evaluated with the same efficiency, stability
and simplicity of data structures as in the linear case. Since the absolute value
function is already piecewise linear, it can be modelled by itself. By proposition
3.1 from [4] we have for the procedure (introduced in the next chapter) that
the error of the piecewise linear approximation is of second order and varies
Lipschitz continuously w.r.t. the developing point.

2 Piecewise linearization and abs-normal form

Example 1. Formula, graph and sequential code instruction of an evaluation
procedure:
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F (x1, x2) =

[
x1 + |x1 − x2|+ |x1 − |x2||

x2

]

x1 v1 |v1|

v4 |v4|v0 |v0|

y1

x2 y2

v6

v−1 = x1 v0 = x2
v1 = v−1 − v0
v2 = abs(v1)
v3 = abs(v0)
v4 = v−1 − v3
v5 = abs(v4)
v6 = v5 + v2
y1 = v−1 + v6 y2 = v0

The vi are called intermediate values. The indices are in a dependency relation
j ≺ i, if there is an edge from vj to vi. In general the values of a sequential code
instruction of an evaluation procedure are denoted as a tuple

[v1−n, v1−(n−1), . . . , v0, v1, v2, . . . , vi, . . . , vl] where

vj−n = xj for j = 1, . . . , n

vi = ϕi(vj)j≺i for i = 1, . . . , l and ϕ ∈ Φabs = Φ ∪ {abs}

The values of the piecewise linearization can be evaluated simultaneuosly as
increments of the function value by the following set of propagation rules [4]
that implicitly defines a second code instruction.

Procedure 1

[∆v1−n, ∆v1−(n−1), . . . ,∆v0, ∆v1, ∆v2, . . . ,∆vi, . . . ,∆vl] where

for j = 1, . . . , n : ∆vj−n = ∆xj and for i = 1, . . . , l :

∆vi = ∆vj ±∆vk when vi = vj ± vk
∆vi = ∆vj ∗ vk + vj ∗∆vk when vi = vj ∗ vk
∆vi = cij ∗∆vj when vi = ϕ(vj)

where ϕ ∈ Φ \ {±, ∗, abs} and ci,j = ϕ′i(vj) is the local partial derivative

∆vi = abs(vj +∆vj)− abs(vj) when vi = abs(vj)

Then the k-th component of the piecewise linearization is determined by:

yk = vl−m+k +∆vl−m+k

The overall costs are at most four times of those of a function evaluation [3].
So far we have a method for a small number of evaluations at some base-

points. But for the purposes of integration, solving ODEs, optimization and
solving piecewise linear equation systems (see [4] and [5]) we need a suitable
data structure for a large number of evaluations of a single piecewise lineariza-
tion. A general nonlinear concept of Barton and Khan from [6] combined with
taping technology leads to the abs-normal form:
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Definition 1. For Z ∈ Rs×n, L ∈ Rs×s, J ∈ Rm×n, Y ∈ Rm×s matrices, where
L is of strictly lower triangular form and vectors c ∈ Rs, b ∈ Rm, the system[

z
y

]
=

[
c
b

]
+

[
Z L
J Y

] [
x
|z|

]
(1)

is called abs-normal form. The modulus operation |z| has to be understood com-
ponentwise here. An abs-normal form is called simply switched if L = 0.

The components of z can be evaluated successively, since L is a strictly lower
triangular matrix. The control flow in the evaluation of the abs-normal form is
conveniently characterised by the signature vectors and matrices

σx ≡ σz ≡ sign(z) ∈ {−1, 0, 1}s, Σz = diag(σz) ∈ {−1, 0, 1}s×s

In particular we will use throughout the identity |z| = Σzz. Using this relation
we can eliminate z for any given x ∈ Rn and obtain the explicit representation

F (x) = y =

piecewise constant︷ ︸︸ ︷
b+ Y Σσ(I − LΣσ)−1c+Jσ · x (2)

where Jσ = J + Y Σσ(I − LΣσ)−1Z (3)

On the other hand every piecewise linear function in max-min expression can be
represented in abs-normal form. Thus the abs-normal form is an equivalent char-
acterization of piecewise linear mappings, which is stable w.r.t to perturbations1.
Each signature vector σ ∈ {−1, 0, 1}s uniquely characterises the polyhedron

Pσ = {x ∈ Rn | σx = σ}

The collection of these mutually disjoint and relatively open polyhedra forms a
so called polyhedral decomposition or skeleton P of Rn. The restriction of F to
the closure of any Pσ ∈ P is linear.
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Fig. 1: example of a piecewise linear function and its corresponding polyhedral decomposition.

Each P = Pσ has a nonempty interior if and only if it is open, in which case
we will also refer to σ as open. By continuity all σ that have no zero components

1 Perturbations of the data Z,L, J, Y, c and b preserves the property of being a contin-
uous, piecewise linear abs-normal form, provided L stays strictly lower triangular.
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are open, but the converse need not be the case. It can be shown, that the Jσ
given in (3) are limiting Jacobians in the following sense exactly if σ is open.

For general Lipschitz continuous F it follows from Rademacher’s Theorem
that it has a Frechet derivative F ′(x) at all points in a set DF , whose complement
has the measure zero. The set of limiting Jacobians at any x0 ∈ Rn is defined as

∂LF (x0) =

{
lim
x→x0
x∈DF

F ′(x)

}
6= ∅

and the set of generalized Jacobians in the sense of Clarke as

∂F (x0) = conv(∂LF (x0))

The definition of ∂LF (x0) looks quite nonconstructive and in fact there is
no general methodology for evaluating limiting Jacobians since the rules for
propagating generalized derivatives are only inclusions. Given the abs-normal
form one can compute limiting Jacobians that are also generalized Jacobians of
the underlying nonlinear functions by a technique called polynomial escape [4]
and [6]. The computational complexity is similar to that of the foward mode in
the smooth case. Especially for generalized gradients where m = 1 an adaption
of the much cheaper reverse mode is under development.

Throughout the remainder of this paper, we will only consider piecewise
linear F in abs-normal form that are square in that m = n. Furthermore we
assume w.l.o.g. that the so called smooth part J is nonsingular. If this is not a
priori true one can shift terms by using the identity x = abs(x+abs(x))−abs(x).
The Schur complement of J within the abs-normal form is given by S = L −
ZJ−1Y . By using the Sherman-Morrison-Woodbury formula we can characterise
the nonsingularity of the generalized Jacobian Jσ as follows

det(Jσ) = det(J) det(I − SΣσ), for σ = σx ∈ {−1, 0, 1}s (4)

Note that the upper half of the abs-normal form, which maps x onto z, need not
be surjective. Hence the mapping is maybe partially switched in that some sig-
nature vectors σ ∈ {−1, 0, 1}s do not arise as σx for any x. In other words some
Pσ might be empty. On the other hand if the linear map Zx is surjective, then
the abs-normal form must be totally switched in that all 3n sign combinations
of σ with corresponding nonempty Pσ do arise. The following so called comple-
mentary piecewise linear mappings are always totally switched, since z ∈ Rs
becomes independent and ranges over all of Rs.

3 Complementary piecewise linear systems and their
relation to LCPs

In contrast the nonsingularity of the smooth part J allows the elimination of x
for any given z and y.

y = b+ Jx+ Y |z| ⇐⇒ x = J−1(y − b)− J−1Y |z|
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In view of solving F (x) = 0 we can set y = 0 or absorb it into b. Then substitution
of x into the upper half yields the complementary piecewise linear mapping

H(z) ≡ (I − SΣz)z − ĉ, where ĉ ≡ c− ZJ−1b

The function H : Rs → Rs is still piecewise linear and has the abs-normal form[
z̃

H(z)

]
=

[
0
−ĉ

]
+

[
I 0
I −S

] [
z
|z̃|

]
(5)

whose Schur complement is again S. Since the new L vanishes, the complemen-
tary piecewise linear map is always simply switched. Moreover the polyhedral
decomposition consists entirely of 2n open orthants and their faces. As shown
in [5] this implies that H is bijective if and only if it is an open map. For gen-
eral PL functions and in particular the underlying F we only have the chain of
implications [12]

F is injective =⇒ F is open =⇒ F is surjective

Furthermore Scholtes has proven in [12] that piecewise linear maps are open
maps if and only if the determinants of all limiting Jacobians have the same
sign (are w.l.o.g. positive). The limiting Jacobians of H are exactly the shifted
identities I−SΣ for any Σ = diag(σ) with σ ∈ {−1, 1}s. Consequently, coherent
orientation of H occurs if and only if all det(I −SΣ) are positive, which implies
by (4) the coherent orientation of F . Whereas the converse need not be true, i.e.
F may be coherently oriented but H not.

The problem of solving H(z) = 0, for some z ∈ Rn can be recast as a linear
complementarity problem (LCP). It turns out to have the P -matrix property if
and only if H is coherently oriented [11]. The reformulation requires:

Lemma 1. Let M,S ∈ Rs×s arbitrary, s.t. (I + S)M = (I − S), then

1. det(I + S) 6= 0 ⇐⇒ det(I +M) 6= 0
2. S = (I +M)−1(I −M) if det(I +M) 6= 0

Proof.

M = [I + S]−1[I − S] ⇐⇒ [I + S] 12 (I +M) = 1
2 ([I + S] + [I − S]) = I

⇐⇒ S = 2(I +M)−1 − I = (I +M)−1(I −M) ut

Now consider two vectors 0 ≤ u,w ≥ 0, such that z = u−w and u>w = 0. Then
by the upper half of an abs-normal form for F

u− w = c+ Zx+ L(u+ w)

= c+
[
ZJ−1(y − b)− ZJ−1Y (u+ w)

]
+ L(u+ w)

= ĉ+ S(u+ w) ⇐⇒ (I − S)u = ĉ+ (I + S)w

⇐⇒ w = u− (I + S)−1ĉ ⇐⇒ w = Mu+ q
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where M ≡ (I + S)−1(I − S) and q ≡ −(I + S)−1ĉ. Because of the substitution
of x, the solutions of this standard LCP w = q + Mu, are solutions of the
complementary piecewise linear system H. Any standard LCP w = q + Mu,
where u,w ≥ 0 and u>w = 0, can be rewritten as a complementary piecewise
linear equation system as

z = (I +M)−1(I −M)|z| − 2(I +M)−1q

where u = 1
2 (|z| + z) and w = 1

2 (|z| − z). This was proven by Bokhoven in his
thesis [1]. To transform the complementary piecewise linear system into an LCP
or vice versa one has to compute the Möbius transform of S or M , respectively.
This requires in either case at least implicitly a matrix inversion and several
multiplications. Therefore we consider methods for directly solving the original
and complementary piecewise linear system possibly even avoiding the explicit
computation of S = L− ZJ−1Y .

4 Solving piecewise linear equation systems

The principal task is to find solutions x ∈ Rn, such that F (x) = 0 with piecewise
linear F : Rn → Rn. A possible nonzero right hand side can be absorbed into
the vector b as described above.

There are several methods developed and discussed in detail in [5] and [4].
Some of them solve F (x) = 0 directly, whereas others solve the complementary
piecewise linear equation System H(z) = 0. Note that there is a one-to-one
solution correspondence between both representations [5]. Now, let us give an
overview of some of these methods.

4.1 Full-step Newton variants

All continuous piecewise linear functions are known to be semi smooth. Hence
the result in [10] ensures local convergence of the full-step iteration

x+ = x− J−1F (x), for J ∈ ∂F (x)

to a solution x∗, provided that all generalized Jacobians J ∈ ∂F (x∗) are non-
singular. However this condition need not be satisfied even if F is coherently
oriented. Coherent orientation in some vicinity of x∗ means that all limiting Ja-
cobians J ∈ ∂LF (x∗) are nonsingular, so that the stronger result from [9], where
the J are restricted to be limiting Jacobians, is applicable.

It should be noted that both results apply here in a trivial fashion, since
convergence in one step must occur from all points x0 belonging to polyhedra
Pσ, whose closure contains x∗. Of course finding such an initial point x0 requires
to resolve all combinatorial issues in advance.

Hence we are more interested in global convergence results. We can guarantee
full step convergence for the restricted generalized Newton method in finitely
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many steps towards the unique solution, if either of the contractivity conditions

‖I − J−1σ Jσ̃‖ < 1, for all σ, σ̃ open

or ‖I − JσJ−1σ̃ ‖ < 1, for all σ, σ̃ open

is satisfied w.r.t. to some induced matrix norm. The proof can be found in [5].
Either condition is rather strong and implies bijectivity. In terms of the abs-
normal form they are implied by the conditions

ρ̂ ≡ ‖Z‖‖J−1Y ‖ < 1− ‖L‖ and
ρ̂

(1− ρ̂− ‖L‖)(1− ‖L‖)
<

1

2

As we have already noted suitable Jσ can be computed from the abs-normal
form at reasonable expense.

Naturally the generalized Newton method with or without restriction to lim-
iting Jacobians can also be applied to the complementary piecewise linear sys-
tem, yielding

z+ = z − (I − SΣz)−1H(z) = (I − SΣz)−1ĉ

However, here the local convergence condition that all limiting Jacobians be
nonsingular is no weaker than the requirement that all generalized Jacobians be
nonsingular. Sufficient for global full-step convergence are either of the following
independent conditions

‖S‖p < 1
3 or ρ(|S|) < 1

2

where ρ denotes the spectral radius and |S| the componentwise modulus.

If the second condition is satisfied, the calculation can be organized such that
the whole solution process requires only 1

3s
3 operations, just like a Gaussian

elimination in the smooth linear case.

4.2 Piecewise Newton

Rather than taking full steps based on a local linearization one may restrict steps
to stay within the closure of one polyhedron Pσ. This requires some pivoting
and active set managament familiar from Lemke type algorithms for LCPs. For
a comparitive study of the two approaches see the dissertation of T. Munson [7].
In [4] it was observed that coherent orientation implies, that the fibres

[x0] ≡ {x ∈ Rn : F (x) = λF (x0), 0 < λ ∈ R}

are bifurcation-free piecewise linear paths for almost all x0 ∈ Rn. Then their
closure contains a solution. Even in the case of singular fibres, there are strategies
to reduce the residual towards a solution. An implementation is currently under
development.
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4.3 Modulus algorithm

Checking F for surjectivity or openess is NP-hard, because there may be 2n pos-
sible determinants det(Jσ), for σ = σx. An easier verifiable property is smooth
dominance.

Definition 2. F : Rn → Rn in abs-normal form is called smooth dominant, if
for some nonsingular diagonal matrix D and a p ∈ [1,∞]

‖DSD−1‖p < 1

Smooth dominant abs-normal forms are always injective [5]. Nevertheless there
are many practical problems which satisfy this condition.

In [2] Brugnano and Casulli consider unilateral constraints

solve max(0, x) + Tx = −e/2

where T ∈ Rn×n is an irreducible, symmetric, positive semidefinite matrix and
x, e ∈ Rn vectors. This class of problems is piecewise linear and its abs-normal
forms are smooth dominant. Electrical engineers considered piecewise linear
function as models of electrical circuits since the 50’s of the last century. For
example Bokhoven discussed those models in his dissertation [1] and introduced
the iteration

z+ = S|z| − ĉ

whose convergence follows from smooth dominance, by the Banach fix point
theorem. In our experience the modulus iteration is robust, but rather slow.

4.4 Alternating block Seidel iteration

Another fixed point iteration which has the potential of being significantly faster,
is the following block Seidel scheme from [5]. Solving alternatingly the upper half
for z and the lower half for x, we obtain z+ = hz(hx(z)), where

hz :Rn → Rs hz(x) = (I − LΣx)−1(c+ Zx)

hx :Rs → Rn hx(z) = −J−1b− J−1Y Σzz

The convergence of this method to the unique solution is ensured [5], if

‖S‖p ≤ ‖L‖p + ‖ZJ−1Y ‖p < 1

for some suitable p where positive diagonal scaling may be applied.
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Conclusion and outlook

We gave a short introduction to basic techniques of automatic differentiation and
methods for the modelling of piecewise smooth functions via piecewise lineariza-
tion with a second order error. We also discussed the solvabillity of the resulting
equation systems in abs-normal form, by finitely convergent Newton variants or
linearly convergent fix point solvers. Currently we are working on hybrid algo-
rithms to obtain stable global and fast local convergence. They will then be used
in the inner loop of a piecewise smooth equation solver by successive piecewise
linearization. A related task to equation solving are the (un)constrained opti-
mization of piecewise smooth objectives and the numerical integration of initial
value problems with Lipschitzian right hand sides. Common utillities for manip-
ulating abs-normal forms are developed as the linear algebra package PLAN-C,
which uses abs-normal forms as objects.
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