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Abstract. Point constellation recognition is a common problem with many
pattern matching applications. Whilst useful in many contexts, this work
is mainly motivated by fingerprint matching. Fingerprints are tradition-
ally modelled as constellations of oriented points called minutiae. The
fingerprint verifier’s task consists in comparing two point constellations.
The compared constellations may differ by rotation and translation or by
much more involved transforms such as distortion or occlusion.

This paper presents three new constellation matching algorithms. The
first two methods generalize an algorithm by Bringer and Despiegel. Our
third proposal creates a very interesting analogy between mechanical sys-
tem simulation and the constellation recognition problem.

1 Introduction

Fingerprints are traditionally modelled as feature-sets called minutiae.
Each minutia mi is composed of two cartesian coordinates and an ori-
entation {xi, yi, θi}. Matching algorithms return a score expressing the
similarity between the candidate minutiae set M = {m1, . . . ,mℓ} and
the template minutiae set M ′ = {m′

1, . . . ,m
′
ℓ′}. The main difficulty met

while trying to compute such similarity scores is that many experimental
parameters may affect the minutiae comparison task. The easiest obsta-
cles to deal with are simple transforms such as translation and rotation
but minutiae may also disappear (occlusion), appear ex nihilo (noise) or
be subject to nonlinear distortion. Most matching algorithms usually try



to translate and rotate M ′ to obtain an optimal superimposition with M

(while dealing with nonlinear transforms using a variety of heuristics).
In general, matching algorithms use a {xi, yi, θi} representation stan-
dardized in ISO/IEC 19794-2 [1].

In [2] Bringer and Despiegel (BD) define the notion of vicinity. Instead
of using minutiae to compare M and M ′, [2] groups minutiae into vicini-
ties Vi. A vicinity Vi is defined as a center minutia mi = {xi, yi, θi} and all
the minutiae mj whose distance to mi does not exceed a certain range.
The advantage of this representation is that each vicinity Vi carries its
own coordinate system, whose center is {xi, yi} and whose x-axis is θi.
Thereby, rotation and translation issues are naturally avoided.

This paper presents three new point constellation matching algorithms.
The first two techniques generalize BD’s algorithm. Section 2 recalls BD’s
ideas and notations, which will serve as a basis for our two first algo-
rithms. Section 3 describes a technique based on second-order vicini-
ties, which are vicinities of vicinities. Second-order vicinities allow to
extract more information from constellations by exploiting the informa-
tion present in the relative distances separating vicinities. Section 4 de-
scribes missing minutiae analysis, a technique allowing to extract useful
information from... missing minutiae. Section 5, introduces a matching
method that stems from a very interesting analogy between mechanical
system simulation and the constellation recognition problem.

2 Fingerprints, Minutiae and Vicinities

2.1 From Minutiae to Vicinities

As we have already mentioned, a vicinity Vi consists of all the minutiae
mj whose distance from mi does not exceed some range ρ, i.e.:

mj ∈ Vi ⇔
√

(xi − xj)2 + (yi − yj)2 < ρ

Each Vi has its own coordinate system. {xi, yi} is the center of this co-
ordinate system and θi provides the orientation of Vi’s x-axis. All the
mj ∈ Vi have their coordinates recomputed with respect to {xi, yi}. Now



a fingerprint M can be regarded as a set of vicinities instead of a set of
minutiae. If M contains n minutiae then M will also yield n vicinities.
To compare two vicinities (hereafter A and B, respectively containing
the minutiae ai and bj) we will compare the ais to the bjs pairwise. For
each ai vs. bj comparison a matching score will be computed. Here we
use the simplified scoring formula:

s(ai, bj) = (xai − xbj )
2 + (yai − ybj )

2 +
σx

σθ
(θai − θbj )

2

where σx represents the variance of the position (we assume that σx =
σy), and σθ is the variance of the orientation. Experimentally measured
vicinities are used to tune these parameters.

Each pair of minutiae yields a score. A matrix containing all these scores
is built. Then, the Hungarian algorithm [3] is applied to this matrix to
find the best association between the minutiae of A and B. The final
matching score between the two vicinities will be computed as follows :

SA,B =
∑

f(ai)={bj}

s(ai, bj)− (NAR(A,B) + NAS(A,B))KNA

where f(ai) =

{

{bj} if ai is associated to bj
0 otherwise

NAR represents the number of minutiae of A that do not have any as-
sociation in B and NAS is the number of minutiae of B that do not
have any association in A. KNA is a penalty coefficient for non associ-
ated minutiae.

Once we have the scores corresponding to the comparisons between the
template’s and candidate’s vicinities, we can compute the binary feature
vector which will represent our fingerprint.

2.2 From Vicinities to the Binary Feature Vector

To create a feature vector that will represent a fingerprint we will need
N representative vicinities. This set of representative vicinities, denoted



DBR, contains N vicinities Ri that fulfill several conditions:

– The Ris are not related to the main fingerprint database. The Ris
come from generated fingerprints or external databases.

– The Ris contain more than ℓmin and less than ℓmax minutiae. ℓmin and
ℓmax are chosen so the Ris are not too discriminative.

– Each Ri isn’t similar to other Rjs (according to a certain threshold
criterion).

The vector V , of length N , representing the candidate fingerprint is com-
puted as follows:

– Extract all the vicinities (denoted Fj) from the candidate fingerprint.

– For 1 ≤ i ≤ N compute the matching scores S(Fj , Ri)

– Given a certain threshold t, create the vector V :

Vi =

{

1 if ∃j ∈ {1, . . . , n} such as S(Fj , Ri) < t

0 otherwise

To compare two fingerprints, compute the hamming distance of their
feature vectors.

This can be used both for authentication (compare a candidate finger-
print to a database of fingerprints, this database contains only the binary
vectors of each fingerprint) and for identification (compare the candi-
date fingerprint to one template fingerprint to check the identity). This
method has three main advantages :

– Avoiding rotation and translation problems usually met by alterna-
tive algorithms.

– Feature vector comparison is an easy binary operation.

– Feature vectors’ length depends on N . A small DBR is less expensive
in terms of memory. In fact if ρ is small, we won’t need a lot of repre-
sentative vicinities to cover all possibilities. If ρ is large, we will need
more representative vicinities, but achieve a better matching accu-
racy.

We now show how to improve this algorithm in two different ways.



3 Second-Order Vicinities

The algorithm that we have just described is insensitive to the relative
positions of vicinities. i.e. two fingerprints containing the same vicinities
at different locations will be considered equivalent. It is hence natural to
try to squeeze more information out of point constellations by consider-
ing the relative positions of vicinities.

Second-order vicinities are defined as vicinities of vicinities. Run the al-
gorithm as before and extract (first-order) vicinities. Replace each vicin-
ity by its barycenter and get a new scatter plot. Group each plot into
new vicinities, larger than previous ones. These new vicinities are our
second-order vicinities. This takes into account the position of a vicinity
with respect to the other vicinities and hence eases the discrimination of
two constellations containing identical vicinities at different places.

The program doing this, available from the authors, computes vicini-
ties as before and then filters them to keep only ”significant” vicinities,
having more than ℓmin and less than ℓmax vicinities. We delete vicinities
whose central minutiae belong to other vicinities to keep vicinities pair-
wise distinct. Once done, we reduce the vicinity representation to their
central minutiae. Finally, we run the BD algorithm, except that we now
use the vicinity barycenters instead of the center minutiae, and a radius
ρ2 larger than the ρ1 used for the first-order vicinities. We can notice that
at first sight, the final representation of second-order vicinities is not that
different from a larger first-order vicinity. The difference is in the recog-
nition. In fact, we make a double pass recognition, one for first-order
vicinities (in second-order vicinities) and one for minutiae (in first-order
vicinities). The same algorithm is hence run twice with different param-
eters. A fingerprint will match if both its first-order and second-order
vicinities match the target template. With proper parameter tuning, this
algorithm experimentally improves recognition accuracy.

Higher order vicinities can be defined as well. But the higher is the or-
der, the larger will the (higher-order) vicinity be. Hence, the information
increment brought by higher order vicinities quickly decreases with the
order.



4 Missing Minutiae Analysis

Let’s go back to BD’s classical (first-order) vicinities. We will now ex-
tract information from accidentally missing minutiae. Infering the miss-
ing minutiae and taking them into account reduces the algorithm’s False
Reject Rate. As shown in Figure 1, a given minutia may simultaneously
belong to (i.e. be at the intersection of) several vicinities.

Fig. 1. Example of a Missing Minutia

If several candidate vicinities present a missing minutia with respect to
their template vicinities, we may suspect that a minutia common to these
vicinities was omitted accidentally. In other words the simultaneous dis-
appearance of m in Figure 1 would be a ”smoking gun” indicating an
”explainable error”. The computational strategy implementing this in-
tuitive observation turns out to be a nontrivial exercise4.

The Hungarian algorithm compares vicinities (hereafter A and B) pair-
wise. To do so, the Hungarian algorithm takes as input a square matrix
containing the matching scores s(ai, bj) computed between the minutiae
of A (lines) and B (columns). If B has less minutiae than A, a virtual
column is created. All the elements of this virtual column are set to the

4 The Mathematica code is available from the authors.



value maxi,j s(ai, bj). After associations are found, the associations corre-
sponding to the virtual column are removed from the list of associations
between the minutiae of A and B.

The score S(A,B) is the sum of the matrix elements corresponding to
the associations, plus a penalty for non-associated elements. If the as-
sociated minutiae match each other, S(A,B) is essentially equal to the
penalty. In that case, we can plausibly assume that one of the vicinities
(A or B) presents a missing minutia.

This scheme can be generalized to more missing minutiae but claims
time exponential in the number of missing minutiae. It is hence useful
for assessing the occlusion (disappearance) of one or two minutiae only.

5 Can Nuts & Bolts Compare?

This section presents a rather unusual point constellation recognition al-
gorithm. One advantage of this scheme is the fact that it can be easily im-
plemented using physical engines. A physics engine is a computer soft-
ware that provides an approximate simulation of certain physical sys-
tems, such as rigid body dynamics (including collision detection), soft
body dynamics, and fluid dynamics, of use in the domains of computer
graphics, video games and films. Physical engines are mainly used in
video games (typically as middleware), in which case the simulations
are in real-time.

Let ai = (ai,x, ai,y) ∈ R
2 and bi = (bi,x, bi,y) ∈ R

2 denote points in R
2.

The reader may consider each such point as the barycenter of a specific
vicinity or as the {xi, yi} coordinates of minutiae to compare.

Let A = {a1, . . . , aℓ} and B = {b1, . . . , bℓ} be two sets of points.

Our goal is to measure the geometrical similarity between the point con-
stellations A and B.

Define the operator Γ by:

a′i = Γ (ai,∆x,∆y, θ) =

(

a′i,x
a′i,y

)

=

(

cos θ − sin θ
sin θ cos θ

)(

ai,x
ai,y

)

+

(

∆x

∆y

)



In other words, Γ translates a point by ∆x,∆y and rotates it by the angle
θ.

We define the similarity between the constellations A and B by:

sim(A,B) = min
∆x,∆y,θ

(

ℓ
∑

i=1

dist(Γ (ai,∆x,∆y, θ), bi)

)

∈ R

Where dist((x, y), (x′, y′)) =
√

(x− x′)2 + (y − y′)2.

Informally, sim(A,B) measures the total distance remaining between the
points ofA and B after the best possible translation and rotation attempt-
ing to match A and B. It is easy to see that 0 ≤ sim(A,B) < ∞ where
sim(A,B) = 0 ⇔ A = B (perfect match).

In applications requiring a [0, 1] score, one can use c−sim for some con-
stant c > 1 (e.g. the base of natural logarithms e).

The analytical determination of sim(A,B) turns out to be a complex task.
We hence replace sim by a function simφ which effect approximates sim.
As will be explained in the next section, the φ in simφ denotes the fact
that this new similarity measurement function is inspired by physics.

5.1 Elastic Potential Energy Matching

The two point constellations A and B are modeled as fully rigid physical
solids (illustrated by the red and black objects in Figure 3). We link each
couple of related points (i.e. ai and bi) with physical springs (Figure 4),
release the objects and simulate the resulting evolution of the mechani-
cal system using linear integral interpolation to get the result shown in
Figure 5.

Recall that elastic potential energy is the potential energy stored follow-
ing the deformation of a spring. This energy is the work necessary to
stretch the spring by x length units. According to Hooke’s law, the force
F = −kx required to stretch a spring is proportional to x. Since the
change in spring’s potential energy between two positions is the work
required to move the object from point 0 to point x, the spring’s poten-

tial energy at distance x is kx2

2 . We assume that the springs used in our
model start extending from a length of zero.



With well-chosen parameters, the system converges quickly to a minimal-
energy position (measured by the potential energy stored by the springs).
The higher this stable energy is, the further apart the sets are.

Figure 2 shows the convergence between the red (candidate vicinities A)
and the blue plots (template vicinities B). The green plots represent the
initial position of A before the release of the system. The blue plots are
assigned an infinite mass and hence don’t move. We can see in this fig-
ure that after the release of the system, the red plots are really close (and
at times even superimposed on) to blue plots. The system’s potential en-
ergy or the sum of the distances between red and blue plots after system
convergence provide two possible similarity scores.

Fig. 2. Convergence Plot

Let A′ be the solid obtained by placing a fixed unitary mass ma,i at each
of the ℓ coordinates given by A. All the unitary masses of A′ are linked
together by weightless rigid bars. Exactly the same construction is ap-
plied to B to yield a mechanical structure B′ composed of infinite masses
mb,i. Fixing mb,i = ∞ makes B′ immovable.



We then add for all i a spring linking ma,i ! mb,i and release the system.
Following this release, A′ and B′ will move to a position minimizing the
sum of spring energies, while preserving the spatial offsets between the
mass points composing A′ and B′.

We can manipulate two parameters : the strength coefficient of the spring,
and the friction coefficient. The friction force we apply is F = −kvV

where V is the speed. If we choose a friction coefficient which is too
low, the springs become too strong and the system keeps oscillating for
too long. If we choose a too low force coefficient, the figures will never
match in reasonable time. By using well-chosen parameters, the system
stabilizes in less than a second. After defining a proper stop condition
(cf. infra), we get Algorithm 1.

Algorithm 1 The Mechanical Comparator

1: “Assemble” rigid objects A′ and B
′ from the point sets A and B assigning an infinite

mass to B
′.

2: Compute the moment of inertia of A′

3: while stop condition is not met do
4: Compute springs forces and moments
5: Compute the next position of A′ using integral linear interpolation
6: end while

Fig. 3. Two Point Constellations (Black & Red) to Match

For now, the only stop condition that we use is the stabilization of the
system, but as further improvements we may consider having other stop



Fig. 4. Rigidified Constellations Attached with Springs Before Release

Fig. 5. Rigidified Constellations Attached with Springs Stabilized After Release



conditions.

The software (Figure 6), developed in Ocaml, is available from the au-
thors. The blue plots represent the (infinite mass) template minutiae and
the red plots represent the (mobile) candidate minutiae. The red lines
represent the rigid structure formed by the candidate minutiae. Black
lines represent springs. E shows the system’s energy at time t and Emin

is the minimum potential energy released by the system.

Fig. 6. The Mechanical Matching Software

5.2 Further Research

This work opens a number of interesting research perspectives:

– Is it possible to leverage physical attraction-repulsion phenomena
to build concrete analog point constellation comparison hardware?
i.e. cheap and disposable analog image recognition coprocessors? Be-
cause opposite electrical particles essentially act as springs this might
not be impossible. However, it remains to somehow neutralize the
”crosstalk attraction” between unrelated points (i.e. the attraction of
ai by bj for i 6= j). Note that such physically built systems can also
serve as real-life alert systems: by equipping a bridge with sensors
and consolidating the global system energy, an alert can be launched
if the mechanical strain on the bridge becomes dangerously high.



– Add to the simulation system perturbations to avoid meta-stable states.
Experimentally, such meta-stable states appeared when extreme phys-
ical coefficient values were chosen.

– Match point-sets more accurately (by making the moving system
partially flexible. This will capture the intuition that a finger or a face
are soft masses whose forms could have slightly been stretched if we
wanted to. Hence, by allowing the mobile object some flexibility we
reproduce a slight ”grimace” that the user could have naturally done
if we would have asked him to. Flexibility can be naturally imple-
mented by embedding in each solid bar an inner spring or by replac-
ing edges by mechanical articulations with two degrees of freedom.

– Matching non-tagged points with multiple springs. Here the idea
consists in finding the proper assignment between the ai and the bj
using multiple springs before comparing the tagged point constella-
tions. We note that if A and B only differ by an unknown rotation (of
a known center), a forced rotation of A during which we monitor the
system’s potential energy will reveal the unknown angle by a sud-
den global system energy drop. While this amounts to exhaustively
searching the unknown angle, it is probable that coarse-grain inter-
polation could be used to avoid testing useless configurations. For
instance one possibility would be to sample angles with a 10◦ incre-
ment, select those having the smallest energy and refine the search.
We did not try this so far and it is pretty probable that artificially
crafted (or maybe naturally encountered objects) would fail to be de-
tected. Finding and/or approximating the optimal ∆x,∆y using this
method is another open problem.

– Optimize friction, force and mass coefficients as a function of corre-
lation between simφ and sim using simulated annealing. Simulated
annealing is a generic probabilistic metaheuristic for the global op-
timization problem of locating a good approximation to the global
optimum of a given function in a large search space. It is often used
when the search space is discrete (e.g., all tours that visit a given set
of cities). For certain problems, simulated annealing may be more
efficient than exhaustive enumeration — provided that the goal is
merely to find an acceptably good solution in a fixed amount of time,
rather than the best possible solution. This seems to be case here. One
possibility could be to generate a library of objects Ai, slightly dis-
tort the Ais to obtain Bis, randomly rotate and translate the Bis and
compute the Pearson correlation coefficient ρ[simφ, sim] between the



data sets {simφ(Ai,Bi)} and {sim(Ai,Bi)}. Using simulated anneal-
ing determine the friction, force and mass coefficients that maximize
ρ[simφ, sim].

– The viscosity of a fluid is a measure of its resistance to gradual defor-
mation by shear stress or tensile stress. For liquids, it corresponds to
the informal notion of ”thickness”. For example, honey has a higher
viscosity than water. Viscosity is due to the friction between neigh-
boring particles in a fluid that are moving at different velocities. When
the fluid is forced through a tube, the fluid generally moves faster
near the axis and very slowly near the walls; therefore, some stress
(such as a pressure difference between the two ends of the tube) is
needed to overcome the friction between layers and keep the fluid
moving. For the same velocity pattern, the stress required is propor-
tional to the fluid’s viscosity. A liquid’s viscosity depends on the size
and shape of its particles and the attractions between the particles.
Replacing mechanical friction by viscosity (i.e. simulating the behav-
ior of the system immersed in water or honey) can be explored.

– Finally, apply this approach to image face recognition (the character-
istic points of the face are known and easy to detect and are thus easy
to match).
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