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Abstract. Clustering of video sequences is essential in order to perform
video summarization. Because of the high spatial and temporal dimen-
sions of the video data, dimensionality reduction becomes imperative
before performing Euclidean distance based clustering. In this paper, we
present non-adaptive dimensionality reduction approaches using random
projections on the video data. Assuming the data to be a realization from
a mixture of Gaussian distributions allows for further reduction in dimen-
sionality using random projections. The performance and computational
complexity of the K-means and the K-hyperline clustering algorithms
are evaluated with the reduced dimensional data. Results show that ran-
dom projections with an assumption of Gaussian mixtures provides the
smallest number of dimensions, which leads to very low computational
complexity in clustering.

Key words: Clustering, Random projections, Gaussian mixtures, Video
summarization.

1 Introduction

Classification of data is an important problem in machine learning, where data
sets are separated into several disjoint classes based on predefined criteria. The
predefined criteria, referred as the hypothesis, can be supplied by the user or
learned by the machine itself from classes of labeled training samples. In super-
vised learning, hypotheses of multiple classes are learned from a set of labeled
training data for each class [1]. Clustering is a more general problem in machine
learning where the observed unlabeled data need to be grouped into different
clusters. A cluster is a group of similar data where the similarity is quantified
based on a well-defined measure. A useful similarity measure for clustering is
the Euclidean distance measure and clustering based on Euclidean distance is
an NP-hard problem [2].

Clustering of video frames is more than just a generalization of clustering of
images. This is because the video frames that convey meaning as a group are
both statistically and semantically related. One of the popular approaches to
video clustering involves extracting the keyframes by shot boundary detection
and clustering the keyframes together to derive a semantic interpretation [3].
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However, it is important to understand that extraction of the keyframes by
detecting the shot boundaries itself is a fundamental clustering problem which
we address in this paper. Video frames of a single shot have similar background
structure and they can be clustered together using color histograms or distance
measures.

In this paper, we address the problem of clustering high dimensional long
video sequences. In general, this kind of video clustering involves grouping the
frames with similar background together for the purpose of extracting keyframes.
Using the fact that the video frames that have similar backgrounds are close
together in terms of the Euclidean distance measure (l2 norm), we perform dis-
tance based clustering. It is important to clarify the notion of background in this
problem. Background is the region in a frame that remains relatively motion-
less. Even if some objects in the foreground are relatively motionless they can
be treated as background. The very high spatial and temporal dimensionality
of the video data makes l2 norm based clustering intractable in the absence of
tremendous computational power. Therefore, it becomes essential to reduce the
dimensionality of the video data in order to perform clustering with low complex-
ity. This problem is highly significant in scenarios where fast summarization of
video needs to be performed at a reduced computational cost. In this paper, we
propose a framework for dimensionality reduction to cluster video frames having
similar background structure. The framework is based on non-adaptive dimen-
sionality reduction using the theory of random projections [4] and assumption
of Gaussian mixture (GM) models for data.

2 K-Means and K-Hyperline clustering

The K-means clustering problem seeks to cluster the T data samples into K
clusters by minimizing the sum of intracluster distances across all clusters. It
converges to a locally optimal solution closest to the initial values. This is a 2-
step alternating minimization problem where the samples are associated to the
cluster centroids in the first step and the centroids are recalculated in the second
step using the associated member samples. The member sample is associated to
a cluster centroid that is closest in terms of the Euclidean distance measure.
The centroid that minimizes the sum of distances to all its member samples is
computed by solving,

x̄j = min
r

∑
i∈Λj

∥xi − r∥2, (1)

where x̄j is the cluster centroid and Λj is the index set containing the mem-
berships of the jth cluster. The solution obtained for x̄j is the mean of member
samples.

K-hyperline clustering seeks to compute a rank-1 subspace using Singular
Value Decomposition (SVD) for each cluster that minimizes the sum of distance
of the member data to the subspace [5]. K-hyperline clustering is more accurate
and general than K-means clustering in that the minimization problem yields
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lesser sum of distances than the K-means clustering and it can easily general-
ize to higher rank subspaces. The association rule for the member sample for
the nearest rank-1 subspace is based on a maximum correlation measure. In
K-hyperline clustering the rank-1 subspace is of unit norm, whereas no such
constraint is imposed in K-means clustering on the cluster centroid.

3 Random Projections

Consider a high dimensional data matrix, X, with dimensions M × T , where
each column represents a single data observation. In order to project this onto
a random low dimensional space, we define a matrix R of dimensions M × N
with N < M , whose entries are chosen independently from the standard normal
distribution N (0, 1). The Random Projection (RP) of the data vectors is,

Y =
1√
N

RTX. (2)

RP reduces the dimensionality of the data from M to N while approximately
preserving pair-wise distances with high probability [4]. This is formalized by
the Johnson-Lindenstrauss (JL) lemma, which states that for a large enough N
(N ≥ C lnT

ϵ2 ) (3) holds with high probability.

(1− ϵ) ∥yi∥2 ≤ 1

N
∥RTxi∥2 ≤ (1 + ϵ) ∥yi∥2, (3)

where yi and xi represent the columns of the matrices Y and X respectively
and 0 < ϵ < 1. It is important to note that the JL lemma does not depend on
the actual dimensionality of the data and depends only on the number of data
vectors. The K-means clustering defines the cluster centroid as the mean of data
vectors in a cluster. It is easy to observe from JL lemma that the distances be-
tween the cluster centroid and the data vectors will be approximately preserved
even after random projections. Hence we can use the JL lemma to reduce the
dimensionality of the data matrix for use in K-means clustering.

3.1 Computation of SVD using Random Projections

The computation of SVD can also be performed using the reduced dimensional
matrix from random projections [4]. It can be shown that for the same low
rank approximations of Y and X, the Frobenius norms will be approximately
preserved with high probability. This can be mathematically expressed as,

s∑
i=1

λ2
i ≥ (1− ϵ)

s∑
i=1

σ2
i , (4)

where λi and σi are the singular values of Y and X respectively and s is the
desired rank of the approximation [4]. In particular, considering a rank-1 ap-
proximation, it can be shown that, with high probability [4, 6]

(1− ϵ)σ2
1 ≤ λ2

1 ≤ σ2
1 . (5)



4 J.J. Thiagarajan, K.N. Ramamurthy and A. Spanias

The existence of such upper and lower bounds motivates the use of K-hyperline
clustering on Y instead of X.

4 Gaussian Mixture Models for Clustering

Statistical clustering algorithms assume that the data is a realization from a
mixture of probability distributions. In the case of mixture of K arbitrary dis-
tributions, the overall probability density is given by,

f =
K∑
i=1

wifi s.t. wi ≥ 0 and
K∑
i=1

wi = 1, (6)

where fi is the probability distribution function (pdf) and wi is the non-negative
weight of the ith distribution.

The best SVD subspace for a spherical Gaussian distribution is any subspace
through its mean [2]. More importantly, the best K-dimensional SVD subspace
for a mixture of K Gaussians whose covariance is a scalar multiple of identity,
contains the span of the means of the component distributions. This can also
be extended to a mixture of arbitrary distributions. In general, we do not have
the exact statistics of a GM and we have only the samples of realizations. The
covariance matrix is also not a scalar multiple of identity. Even under these
conditions, it has been proved that the SVD subspace of the sample matrix is
not far from the subspace spanned by the actual component means [2].

4.1 Separation Between Spherical Gaussians

Two spherical Gaussians N (µ1, σ
2
1I) and N (µ2, σ

2
2I) are considered to be c-

separated if ∥µ1 − µ2∥22 ≥ c2M max(σ2
1 , σ

2
2), where M is the dimension of the

Gaussian [6]. A 2-separated mixture corresponds to almost completely separated
Gaussians, whereas a 1- or 1/2-separated mixture contains Gaussians which
overlap significantly. By projecting the Gaussian mixtures on to aK-dimensional
subspace spanned by the means of K Gaussians, we are equivalently projecting
the Gaussian mixtures onto their best rank-K SVD subspace. This preserves
the distance between the means (intercluster distance), whereas the intracluster
distance reduces drastically [2]. Therefore, the separation between the Gaussians
in the mixture increases and the clustering performance improves. Similar results
can also be shown for mixtures of Gaussians with arbitrary covariances [2].

5 Proposed Clustering Framework

In this paper, we use both the K-means and the K-hyperline clustering algo-
rithms for clustering the video data. We consider four different approaches: a)
basic K-means/K-hyperline clustering on the high dimensional data, b) reduc-
ing the dimensions of the data using random projections prior to clustering, c)
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reducing the dimensions of the data assuming it as a mixture of Gaussians prior
to clustering and d) reducing the dimensions, first using RP and then under
the mixture of Gaussians assumption, prior to clustering. Both centroid and left
singular vector of a group of video frames retrieve the background information
effectively. This motivates the use of both K-means/K-hyperline clustering in
our approaches. We will assume that we have K clusters of the T video frames
and we vectorize each video frame into a M dimensional vector thereby generat-
ing the M × T matrix X. The K index sets of the clusters are given by {Λi}Ki=1

and Ti = |Λi|. In the remaining part of this section, we describe the different
approaches for clustering.

5.1 Random Projection based Clustering

The RP method can be used to reduce the dimensionality of the data matrix X
according to (2), preserving the length of the data vectors, pairwise distances and
angles with high probability. We have also seen in Section 3 that the centroid and
SVD of a set of data vectors are approximately preserved with a high probability,
given a sufficiently large number of measurements N .

Assuming that K = 1, the centroid and the first singular vector of Y are
approximately equal to that ofX for a sufficiently large N . IfK > 1, the centroid
and first singular vector of each cluster will still be approximately preserved
because Ti < T . Therefore, the RP method will be useful regardless of the
number of clusters, provided we choose N based on the assumption of single
cluster. The linear increase in the number of data vectors T will not change
N significantly because N ∝ lnT . Therefore, in order to perform RP based
clustering, we use either the K-means or the K-hyperline clustering algorithm
on the reduced dimensional data.

5.2 Gaussian Mixture based Clustering

We know from Section 4 that the rank-K SVD subspace of the sample matrix
is not far from the space spanned by the K component means even when the
Gaussians are not spherical. In this approach for clustering, we assume that X
contains realizations from a mixture of K Gaussians, not necessarily spherical,
where each Gaussian represents a cluster. We compute the best rank-K subspace
of X using SVD and denote the basis vectors of the rank-K subspace (first K
left singular vectors of X ) by UK . The projection to the rank-K subspace is
given by,

W = UT
KX, (7)

where W contains the K dimensional data vectors after projection. Because of
the reasoning provided in Section 4.1, the clusters in the K dimensional space
are more separated than the clusters in the M dimensional space. Therefore, we
perform K-means or K-hyperline clustering on W and identify the index sets of
the clusters.
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Goal: To perform clustering of high-dimensional long video sequences using
the approach given in Section 5.3

Variables
High-dimensional data matrix, X of size M × T .
Intermediate data matrix after RP, Y of size N × T .
Final data matrix used for clustering, Z of size K × T .
Initial number of clusters, J .
Actual number of clusters, K.
Cluster centroid matrix (J Clusters), B of size K × J .
Cluster centroid matrix (K Clusters), A of size K ×K.

Index set for the ith cluster, Λi.
Gaussian i.i.d. random matrix, R of size M ×N .

Algorithm

1. Compute the RP, Y = (1/
√
N)RTX.

2. Compute rank-K SVD, [UK ,SK ,VK ] = SVD(Y,K) .
3. Project on to the K-dimensional SVD space, Z = UT

KY.
4. Initialize B with J randomly chosen columns of Z.
5. Perform K-means/K-hyperline clustering for J clusters.
6. Using greedy combinations of columns of B, create A.
7. Perform K-means/K-hyperline clustering for K clusters using A as initial
centroids.
8. Using the index sets Λi obtained from clustering, identify the keyframes.

Table 1. Algorithm to cluster video data and identify keyframes.

5.3 Random Projection and Gaussian Mixture based Clustering

Similar to the previous case, in this approach we assume X to be a set of T
realizations of K Gaussians. Furthermore, as RP approximately preserves the
pairwise distances of the samples, realizations from a mixture of K Gaussians
in M dimensions preserve their structure in N dimensions. This fact is used to
further reduce the computational complexity of the framework.

In this approach, we first project X to obtain Y according to (2). The ele-
ments of Y are treated as realizations of a mixture of K Gaussians in N dimen-
sions. From the arguments in Section 5.2, we project Y onto a K dimensional
SVD subspace to obtain Z. K-means or K-hyperline clustering can be performed
on Z to identify the index sets of the clusters. Note that in this case, we first per-
form an initial level of dimensionality reduction using RP, which aids in a faster
computation of the SVD subspace. In the second stage, we reduce the dimen-
sionality further using the GM assumption. Hence, this approach combines the
advantages of both the previous approaches in terms of a much reduced com-
putational complexity due to RP and improved clustering performance along
with further reduction in computational complexity due to the assumption of
Gaussian mixtures. The outline of the algorithm to perform video clustering and
identify the keyframes is shown in Table 1.
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Fig. 1. Keyframes obtained by clustering the test data using the algorithm in Table 1.

To improve the clustering performance, we adopt a two stage approach to
clustering. This reduces the possibility of the clustering algorithm being stuck
in a local minima. Initially, we solve the clustering problem for a number of
clusters J that is larger than the actual number K. Then, we greedily combine
the columns of the cluster centroid matrix B in order to obtain the matrix
A (step 6 of Table 1). In this greedy combination method we first choose the
two most similar vectors of B and combine them. We repeat this procedure
for two columns at a time until we are left with only K columns. In the K-
means method two most similar vectors are the ones that have the minimum
pairwise Euclidean distance and the combined vector is the mean of the two.
In K-hyperline clustering two most similar vectors are the ones that have the
maximum correlation and the combined vector is principal left singular vector
of the matrix of the two vectors.

6 Experimental Results

The video sequences in QCIF format, used for evaluating the performance of
the algorithms, were obtained from [7] and the spatial resolution was changed to
128 × 128. The first test data set was generated by stitching 10 different video
sequences and it contains 1900 frames in total. The second test data set has a
total of 550 frames obtained from 3 different video sequences. The initial number
of clusters J is set to 3 times the actual number of clusters K. For the first data
set K = 10 and for the second data set K = 3. The keyframes are identified
using all the four approaches for both K-means and K-hyperline clustering. The
keyframes obtained for the first data set are shown in Figure 1. The keyframes
identified are similar with the all the four approaches and we also obtain 100%
clustering performance.
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Running time(s) Number of

Approach K-means Hyperline Dimensions

Basic 696.51/37.69 774.23/102.22 16384/16384

RP 33.87/7.59 32.17/10.15 400/400

GM -/10.18 -/10.30 10/3

RP and GM 29.41/7.36 26.84/7.45 10/3

Table 2. Comparison of running time for the different clustering approaches in MAT-
LAB. Wherever applicable, the running times include dimensionality reduction phase
also. The results for the first and the second data sets are separated by a slash (/). The
third approach could not run for the first data set owing to memory issues because of
high dimensionality.

The running times for the different approaches in MATLAB (version R2007b)
to cluster the test data are listed in Table 2. It can be seen that the approach
based on RP and GM is of least computational complexity. The running time for
the K-means and the K-hyperline clustering algorithm are close to each other
except for the case of the basic approach, which however is not the choice when
clustering high dimensional data.

7 Conclusions

In this paper, we proposed different approaches for dimensionality reduction
based on random projections in order to cluster video data. These approaches
provide a practical solution to clustering video frames with similar background
for fast video summarization. Incorporation of outlier rejection and compensat-
ing for global motion between the video frames are possible extensions to the
proposed dimensionality reduction approaches for robust clustering.
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